More examples of problems in NP.

Example. 2-COLORABILITY.

Instance: A simple undirected graph \(G=(V,E)\).

Question: Is \(G\) 2-colorable? That is, does there exist a function \(f: V \rightarrow \{1, 2\}\) such that \(f(u) \neq f(v)\) for all \(\{u, v\}\in E\)? (Equivalently, is \(G\) bipartite?)

Certificate: A function \(f : V \rightarrow \{1, 2\}\). This has size \(O(|V|)\), which is polynomial in the size of the instance.

Verifier:

- For every \(v \in V\), if \(f(v) \in \{1, 2\}\), then output "no" and stop.
- For every \(\{u, v\} \in E\), if \(f(u) = f(v)\), then output "no" and stop.
- Output "yes."

This verification can be done in \(O(|V| + |E|)\) time.

Example. 3-COLORABILITY.

[Just like 2-COLORABILITY.]
Example. HAMILTONIAN CIRCUIT.

Instance: A simple undirected graph $G=(V,E)$.

Question: Does G contain a Hamiltonian circuit (i.e., a spanning cycle)?

Certificate: A list of integers $(v_0, v_1, v_2, ..., v_n)$ naming the vertices in order around a Hamiltonian circuit. This has size $O(|V|)$. (Or $O(|V| \log |V|)$, if you want to count bits.)

Verifier:
- If $n \neq |V|$, output "no" and stop.
- If $v_0 \neq v_n$, output "no" and stop.
- For each $i \in \{0, 1, 2, ..., n-1\}$, if $v_i \notin \{1, 2, ..., n\}$, output "no" and stop.
- For each $i \in \{0, 1, 2, ..., n-2\}$, for each $j \in \{i+1, i+2, ..., n-1\}$, if $v_i = v_j$, output "no" and stop.
- For each $i \in \{0, 1, 2, ..., n-1\}$, if $\exists v_i, v_{i+1} \notin E$, output "no" and stop.
- If $n < 3$, output "no" and stop.
- Output "yes."

This verification can be done in $O(|V|^2)$ time.
Example. SAT. [P&S Example 15.7, §15.3]

Instance: A propositional formula F on the Boolean variables x_1, \ldots, x_n.

Question: Is F satisfiable? That is, does there exist an assignment of truth values to x_1, \ldots, x_n such that the resulting truth value of F is TRUE?

Certificate: Truth values for all variables. This has size $O(n)$.

Verifier:
- If the certificate does not consist of exactly n bits, output "no" and stop.
- Evaluate F using the given truth values for the variables x_1, \ldots, x_n. If the result is FALSE, output "no" and stop.
- Output "yes."

This verification can be done in $O(m)$ time, where m is the length of the formula F. (Note: m is not the number of variables, because each variable may appear many times in F.)

2 July
Example. ILP. [P&S Example 15.8, §15.3]

Instance: An $m \times n$ matrix A of integers and a vector b of m integers.

Question: Does there exist a vector x of n integers such that $Ax = b$ and $x \geq 0$?

Certificate: A vector x of n integers.
[See P&S Example 15.8, and P&S Thm 13.4 in §13.3, for careful justification that a feasible IP always has a polynomial-size feasible solution.]

Verifier: Output "yes" iff all entries of x are integers, $Ax = b$, and $x \geq 0$. This verification can be done with $O(mn)$ arithmetic operations.
Aside: The class \textit{co-NP} [P&S §16.1]

Defn. The complement of a decision problem \(A \) is the decision problem \(\overline{A} \) in which an instance is the same as an instance of \(A \) and in which the answer to an instance \(x \) is "yes" if and only if the answer to \(x \) in \(A \) is "no."

Defn. The class \textit{co-NP} is the class of decision problems whose complement is in \(NP \).

So, a decision problem is in \(co-NP \) iff all "no" instances have polynomial-size "co-certificates" proving that the answer is "no," verifiable by a "co-verifier" in polynomial time.

Intuitively:

- A decision problem is in \(NP \) when you can efficiently prove "yes" answers.
- A decision problem is in \(co-NP \) when you can efficiently prove "no" answers.

Example. The complement of \textit{COMPOSITENESS} is \textit{PRIMALITY} (well, counting 1 as prime). \textit{COMPOSITENESS} is in \(NP \), so \textit{PRIMALITY} is in \(co-NP \).
Example. 2-COLORABILITY is in co-NP, because a "co-certificate" to prove a "no" answer is an odd cycle. (A graph is bipartite if and only if it contains no odd cycle.)

Example. 3-COLORABILITY \notin co-NP.
Nobody knows an efficient "co-certificate" to prove that a graph is not 3-colorable. (But, on the other hand, it is also true that nobody has proven 3-COLORABILITY is not in co-NP.)

Example. HAMILTONIAN CIRCUIT \notin co-NP.
Same situation as for 3-COLORABILITY. Nobody knows an efficient way to prove that a general graph does not have a Hamiltonian circuit.

Example. P \subseteq NP \cap co-NP.
P \subseteq co-NP for the same reason that P \subseteq NP: the "co-certificate" can be nothing, and the "co-verifier" can verify a "no" answer by just solving the instance.

Polynomial-time reductions [P&S §15.4]

Defn. Let A_1 and A_2 be decision problems. We say that A_1 reduces in polynomial time to A_2 iff there exists a polynomial-time algorithm A_1 for A_1 that uses a (hypothetical) algorithm A_2 for A_2 as a subroutine at unit cost. We call A_1 a polynomial-time reduction from A_1 to A_2.

Note: The phrase "at unit cost" in this definition means that in measuring the running time of A_1 we are counting the execution of A_2 as a single elementary operation.

In reality, of course, such an algorithm A_2 for A_2 almost certainly takes many elementary operations. But counting A_2 as a single elementary operation is justifiable in light of the following:

Proposition. [P&S Prop. 15.1] If A_1 polynomially reduces to A_2 and there exists a polynomial-time algorithm for A_2, then there exists a polynomial-time algorithm for A_1.

2 July
Proof. Let the polynomial \(p_1(n) \) bound the running time of \(A_1 \) (with the assumption of unit-cost invocation of \(A_2 \)), and let the polynomial \(p_2(n) \) bound the running time of \(A_2 \). Then the actual number of elementary operations used to run \(A_1 \) on an instance of size \(n \), counting all operations used by the calls to \(A_2 \), is bounded by

\[
p(n) = p_1(n) \cdot p_2(p_1(n))
\]

because \(A_1 \) makes at most \(p_1(n) \) calls to \(A_2 \), and the largest possible input to \(A_2 \) is \(p_1(n) \) even if \(A_1 \) used all of its steps just to write that input, so each call to \(A_2 \) takes at most \(p_2(p_1(n)) \) elementary operations. Since \(p(n) \) is a polynomial, this is a polynomial-time algorithm for \(A_1 \). \(\square \)

In a polynomial-time reduction, \(A_2 \) may be called many times (well, only polynomially many times) by \(A_1 \), and the operation of \(A_1 \) may depend on the results of earlier calls to \(A_2 \). But there is a particularly interesting kind of polynomial-time reduction in which \(A_1 \) calls \(A_2 \) only once, at the very end, and then directly returns the result from \(A_2 \)
Poly-time reductions -2

Defn. We say that a decision problem A_1 polynomially transforms to another decision problem A_2 if there is a polynomial-time algorithm to convert any instance x of A_1 to an instance y of A_2 such that the answer to x is "yes" if and only if the answer to y is "yes".

Example. CNF-SAT polynomially transforms to ILP.

(CNF-SAT is a special case of SAT in which the instances are restricted to be formulas in conjunctive normal form.)

We saw an IP formulation for CNF-SAT in the lecture on June 24. For example, the CNF-SAT instance

$$(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_3) \land (x_2 \lor x_3 \lor \overline{x}_4)$$

can be converted (in polynomial time) to the IP

$$\text{max } 0$$
$$\text{s.t. } x_1 + (1-x_2) + (1-x_3) \geq 1$$
$$\quad (1-x_1) + x_3 \geq 1$$
$$\quad x_2 + x_3 + (1-x_4) \geq 1$$
$$\quad x_i \in \{0,1\} \text{ for all } i.$$
ILP is the decision version of integer programming; the question is, "Is this IP feasible?" (Or, equivalently here, "Does this IP have a feasible solution with objective value \(\geq 0 \)?)

The answer to ILP for the IP formulation of a CNF-SAT instance is "yes" if and only if the original CNF formula is satisfiable. So this is a polynomial-time transformation. ✓

Example. HAMILTONIAN CIRCUIT polynomially transforms to TSP.

Recall the decision version of TSP:
Instance: \(n \) cities, the cost of each arc \((i,j)\), and a value \(L \in \mathbb{R} \).
Question: Does there exist a tour through all cities having total cost \(\leq L \)?

Given an instance of HAMILTONIAN CIRCUIT, i.e., a graph \(G=(V,E) \), construct an instance of TSP as follows: Set \(n = |V| \), set the cost of arc \((i,j)\) to 0 if \((i,j) \in E \) or 1 otherwise, set \(L = 0 \). Then the answer to the TSP instance is "yes" (i.e., there exists a tour of total cost 0) if and only if \(G \) has a Hamiltonian circuit. This conversion can be done in polynomial time, so this is a polynomial-time transformation. ✓
Example. CLIQUE polynomially transforms to INDEPENDENT SET.

CLIQUE:
- Instance: Graph $G=(V,E)$, integer k.
- Question: Does G contain a clique of size k, i.e., a subset $K \subseteq V$ with $|K|=k$ such that every two vertices in K are adjacent?

INDEPENDENT SET:
- Instance: Graph $G=(V,E)$, integer k.
- Question: Does G contain an independent set of size k, i.e., a subset $S \subseteq V$ with $|S|=k$ such that no two vertices in S are adjacent?

Given an instance (G, k) of CLIQUE, convert G to its complement \overline{G} (change edges to non-edges and vice versa) to get an instance (\overline{G}, k) of INDEPENDENT SET. The graph \overline{G} has an independent set of size k if and only if G has a clique of size k. √
Defn. A decision problem A is called NP-complete if

- $A \in \text{NP}$ and
- all other problems in NP polynomially transform to A.

At the moment it is not clear that any such problems exist (this is the result of Cook's theorem—tomorrow's lecture), but

- if a decision problem A is NP-complete, and
- if there exists a polynomial-time algorithm for A,

then, as a consequence of the proposition from earlier, we would have a polynomial-time algorithm for all problems in NP!

This would mean $P=NP$, which appears not to be true (because no one has ever been successful in finding a polynomial-time algorithm for any NP-complete problem).

So, in a meaningful sense, NP-complete problems are the hardest problems in NP: if we could solve any NP-complete problem in poly time, then we could solve all problems in NP in poly time.