"Anatomy" of an LP.

Objective $\rightarrow \max 40p + 120w$

Constraints \rightarrow

- $p + w \leq 100$
- $p + 4w \leq 160$
- $10p + 20w \leq 1100$

Variable domains $\rightarrow [p \geq 0, w \geq 0]$

Terminology

- **Solution**: An assignment of values to variables.
- **Feasible solution**: A solution that satisfies all constraints (and domains).
- **Feasible region** (a.k.a. feasible set): The set of all feasible solutions.
- **Objective value**: The value of the objective function corresponding to a given solution.
- **Optimal (feasible) solution**: A feasible solution whose objective value is at least as "good" as that of any other feasible solution.
- **Optimal objective value**: The objective value of an optimal feasible solution.
More terminology.

- **Feasible LP**: An LP with at least one feasible solution.
- **Infeasible LP**: One that is not feasible.
- **Unbounded LP**: A feasible LP with no optimal feasible solution.

Solving an LP means attempting to find an optimal feasible solution (not just the optimal objective value!).

Possible outcomes:

- LP is infeasible.
- LP is feasible.
- LP is unbounded.
- LP has an optimal feasible solution.
 - LP has a unique optimal feasible solution.
 - LP has a nonunique optimal feasible solution (i.e., at least two).

Objective value

| Objective value | 0 | 4000 | 4800 | 5400 | 4800 |

Solution

- (0, 0)
- (100, 0)
- (40, 25)
- (60, 0)

Max \(40p + 120w\)

S.t.

- \(p + w \leq 100\)
- \(10p + 20w \leq 1100\)
- \(p \geq 0\)
- \(w \geq 0\)

Inequality

- \(40p + 120w = 6000\)
- \(40p + 120w = 3600\)

Optimal solution

- \((60, 25)\)
Defn. A level curve of a function f is the curve defined by $f = K$ for some constant K.

Graphical solution process (for an LP with two variables):

1. Draw constraints.

2. Determine feasible region, and find coordinates of corners.

3. Evaluate objective function at each corner.

4. Choose the best solution(s).

Warning: If the feasible region is unbounded, the LP may also be unbounded. Be sure to consider this possibility. Drawing a couple level curves may help.

Note that the feasible region of a two-variable LP is a polygon (if bounded). In higher dimensions (i.e., more variables), feasible region is a polytope.
29 May.

Matrix form of LP. [P&S §2.1]

Farmer Brown: \[\text{max} \ 40p + 120w \]
\[
\begin{align*}
\text{s.t.} & \quad p + w \leq 100 \\
& \quad p + 4w \leq 160 \\
& \quad 10p + 20w \leq 1100 \\
& \quad p \geq 0, \ w \geq 0.
\end{align*}
\]

We can write this LP in terms of matrices as follows:

\[
\begin{align*}
\text{Max} \ & \ c^T x \\
\text{s.t.} \ & \ Ax \leq b \\
& \ x \geq 0
\end{align*}
\]

where

\[
c = \begin{bmatrix} 40 \\ 120 \end{bmatrix}, \ x = \begin{bmatrix} p \\ w \end{bmatrix}, \ A = \begin{bmatrix} 1 & 1 \\ 10 & 20 \end{bmatrix}, \ b = \begin{bmatrix} 100 \\ 160 \\ 1100 \end{bmatrix}.
\]

Note that \(c^T x = 40p + 120w, \)

\[
A x = \begin{bmatrix} p + w \\ p + 4w \\ 10p + 20w \end{bmatrix}.
\]

Vector inequality \(Ax \leq b \) (and \(x \geq 0 \)) is to be interpreted componentwise.
Slack variables and standard form.

We can turn inequalities into equalities by adding slack variables to fill up the gap between the two sides:

\[
\begin{align*}
\text{max} & \quad 40p + 120w \\
\text{s.t.} & \quad p + w + s_1 = 100 \\
& \quad p + 4w + s_2 = 160 \\
& \quad 10p + 20w + s_3 = 1100 \\
\end{align*}
\]

\[p \geq 0, \quad w \geq 0, \quad s_1 \geq 0, \quad s_2 \geq 0, \quad s_3 \geq 0\]

To ensure original inequalities are satisfied.

Therefore, we may convert any LP to standard form:

\[
\begin{align*}
\text{max} & \quad c^T x \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0.
\end{align*}
\]

Note: — The \(x\) vector here includes any necessary slack variables.
— P&S prefers writing LPs as minimization problems. For certain reasons, I will write LPs as maximization problems instead. Conversion between the two is easy: negate objective function.
Basic feasible solutions. [P&S §2.2, 2.3]

Suppose the coefficient matrix A of an LP in standard form is an $m \times n$ matrix (i.e., m rows, n columns).

Assumption: A has m linearly independent columns (i.e., A has rank m).

- Intuitively, this is equivalent to saying the LP has no "redundant" constraints—no (LHS of) constraint is a linear combo of any others.

Defn. A basis of A is a linearly independent collection B of m columns of A:

$$B = \{ A_j_1, A_j_2, \ldots, A_j_m \}.$$

Alternatively, we can think of B as an $m \times m$ nonsingular matrix $B = [A_j_i]$ formed by choosing m linearly independent columns of A.

The basic solution corresponding to B is a vector $x \in \mathbb{R}^m$ such that

- nonbasic variables $\rightarrow x_j = 0$ for $A_j \notin B$;
- basic variables $\rightarrow x_{j_k} = k\text{th component of } B^{-1}b$, $k = 1, \ldots, m$.

29 May.
So, to find a basic solution \(x \):

1. Choose a basis \(B \), a set of \(m \) linearly independent columns of \(A \).

2. Set all components of \(x \) corresponding to columns not in \(B \) equal to zero. (These are the nonbasic variables.)

3. Solve the \(m \) resulting equations to determine the remaining components of \(x \). (These are the basic variables.)

Example. \(\max 40p + 120w \)

\[
\begin{align*}
\text{s.t.} & \quad p + w + s_1 = 100 \\
& \quad p + 4w + s_2 = 160 \\
& \quad 10p + 20w + s_3 = 1100 \\
& \quad p \geq 0, \quad w \geq 0, \quad s_1 \geq 0, \quad s_2 \geq 0, \quad s_3 \geq 0
\end{align*}
\]

Obvious basis is \(B = \{ A_3, A_4, A_5 \} \), corresponding to basic variables \(\{ s_1, s_2, s_3 \} \), because these columns of \(A \) form the identity matrix.

This yields basic solution \((p, w, s_1, s_2, s_3) = (0, 0, 100, 160, 1100) \).

- Note this is a corner of the feasible region.

Another basis is \(B = \{ A_3, A_1, A_4 \} \), corresponding to basic variables \(\{ p, s_1, s_2, s_3 \} \). This yields the basic solution \((p, w, s_1, s_2, s_3) = (110, 0, -10, 50, 0) \).

- Note that this solution is not feasible because \(s_1 < 0 \).

Defn. If a basic solution is feasible, it is a basic feasible solution (bfs).