5.5. Cardinality

Notation
For any $m \in \mathbb{N}$, we define $[m] = \{i \in \mathbb{N} \mid 0 \leq i < m\} = \{0, 1, \ldots, m-1\}$,
e.g.: $[0] = \emptyset$
$[1] = \{0\}$
$[2] = \{0, 1\}$
Crucially: $[m]$ has m elements.

Definition (isomorphic sets)
Let A and B be sets. If there exists a bijection $f : A \to B$, then we say that A and B are isomorphic, and we write $A \cong B$.

Definition (finite, infinite, countably infinite)
Let S be a set.
(i) If there exists $m \in \mathbb{N}$ such that $S \cong [m]$, then we say that S has size (or cardinality) m, and we write $|S| = m$.
(ii) If S is not finite, then we say that S is infinite.
(iii) If $S \cong [\mathbb{N}]$, then we say that S is countably infinite.

Examples
(1) $\forall m, n \in \mathbb{N}, \quad [m] \cong [n] \cong [k]$, i.e. $|[m]| = n$
N.B. Elements of $\mathbb{N}^{\mathbb{N}}$ look like sequences of n numbers between 0 and $n-1$.

(2) Let $E = \{\text{even natural numbers}\}$ and $O = \{\text{odd natural numbers}\}$.
Then $\mathbb{N} \cong E \cong O$ since
\[
\begin{align*}
f : \mathbb{N} &\to E, f(n) = 2n \quad \forall n \in \mathbb{N} \\
g : \mathbb{N} &\to O, g(n) = 2n+1 \quad \forall n \in \mathbb{N}
\end{align*}
\]
are bijections.
Hence $|\mathbb{N}| = |E| = |O| = 101$.

Definition (comparing cardinalities)
Let S and T be sets.
(i) We say S has the same cardinality as T, and write $|S| = |T|$, if there exists a bijection $f : S \to T$ (i.e. if $S \cong T$).
(ii) We say S has cardinality at most $|T|$, and write $|S| \leq |T|$, if there exists an injection $f : S \to T$.
(iii) We say S has a strictly smaller cardinality than T, and write $|S| < |T|$, if $|S| \leq |T|$ and $|S| \neq |T|$.
(iv) We say \(S \) has cardinality at least \(|T| \), and write \(|S| \geq |T| \), if there exists a surjection \(f : S \to T \).

(v) We say \(S \) has a strictly larger cardinality than \(T \), and write \(|S| > |T| \), if \(|S| \geq |T| \) and \(|S| \neq |T| \).

Remark

Do not be fooled by this suggestive notation which makes some statements look simpler than they are. For example, consider:

1. For any sets \(A \) and \(B \), \(|A| < |B| \iff |B| > |A| \)
2. For any sets \(A \) and \(B \), \(|A| < |B| \vee |B| < |A| \)
3. For any sets \(A \) and \(B \), \(|A| < |B| \wedge |B| < |A| \) \(\implies |A| = |B| \)

One of these statements is easy to prove (and we will), one is difficult to prove (and we will not), and one is axiom!

Lemma

Let \(A \) and \(B \) be sets. Then \(|A| \leq |B| \iff |B| \geq |A| \),

i.e. there is an injection from \(A \) to \(B \) if and only if there is a surjection from \(B \) to \(A \).

Proof

\[
|A| < |B| \iff \exists \text{ injection } f : A \to B \\
\iff \exists \text{ left-invertible } f : A \to B \\
\iff \exists f : A \to B, \exists g : B \to A \text{ s.t. } g \circ f = \text{id}_A \\
\iff \exists \text{ right-invertible } g : B \to A \\
\iff \exists \text{ bijection } g : B \to A \\
\iff |B| \geq |A|
\]

Axiom (Principle of Cardinal Comparability)

Given any two sets \(A \) and \(B \), we must have \(|A| \leq |B| \) or \(|B| \leq |A| \) (or both),

i.e. there must be an injection from \(A \) to \(B \) or an injection from \(B \) to \(A \).

Theorem (Cantor-Schröder-Bernstein)

Given any two sets \(A \) and \(B \), \(\exists f : A \to B, \exists g : B \to A \) \(\iff |A| = |B| \),

i.e. if there exist injections from \(A \) to \(B \) and from \(B \) to \(A \), then there exists a bijection between \(A \) and \(B \).
Remark
Consider the "relation" R defined via: for any two sets A and B, $A R B \iff |A| \leq |B|$. Then:
1. The Principle of Cardinal Comparability says that every pair of sets is R-comparable.
2. The Cantor-Schröder-Bernstein Theorem says that R is anti-symmetric.

Corollary
For any two sets A and B, $\neg (|A| > |B|) \iff |A| < |B|$

Proof
\Leftarrow
Suppose $\neg (|A| > |B|)$, i.e. $\neg (|B| \leq |A|)$ (by the lemma above).
Then, by the Principle of Cardinal Comparability we must have $|A| \leq |B|$.
So it is enough to show that $|A| \leq |B|$.
Suppose for the sake of contradiction that $|A| = |B|$.
Then in particular $|A| \leq |B|$, a contradiction.
So indeed $|A| < |B|$ and $|A| \neq |B|$, i.e. $|A| < |B|$.

\Rightarrow
Suppose $|A| < |B|$, i.e. $|A| < |B|$ and $|A| < |B|$.
Suppose for the sake of contradiction that $|A| > |B|$.
Then, by the lemma above, $|B| < |A|$.
So by anti-symmetry, i.e., by Cantor-Schröder-Bernstein, $|A| = |B|$.
This is a contradiction, so indeed $\neg (|A| > |B|)$.

Lemma
For any three sets A, B, and C,
(i) If $|A| < |B|$ and $|B| < |C|$ then $|A| < |C|$
(ii) If $|A| < |B|$ and $|B| < |C|$ then $|A| < |C|$

Proof
(i) Let A, B, and C be sets such that $|A| < |B|$ and $|B| < |C|$.
This means there exist injections $f: A \rightarrow B$ and $g: B \rightarrow C$.
Therefore, by a previous result, $g \circ f: A \rightarrow C$ is an injection and indeed $|A| < |C|$.

(iii) Let $A, B,$ and C be sets such that $|A| \leq |B|$ and $|B| \leq |C|$. In particular $|A| \leq |B|$ and $|B| \leq |C|$, and hence, by part (ii), $|A| \leq |C|$.

We now want to show that $|A| \neq |C|$.

Suppose for the sake of contradiction that $|A| = |C|$.

Since $|C| \leq |A|$ and $|A| \leq |B|$, it follows from part (ii) that $|C| \leq |B|$.

In particular $|C| = |B|$, which contradicts $|B| < |C|$.

Thus $|A| \neq |C|$, and hence indeed $|A| < |C|$.

Theorem

Let S be a set. Then $|S| < |\mathcal{P}(S)|$.

Proof

By the corollary above: $|S| < |\mathcal{P}(S)| \Rightarrow \neg (|S| \geq |\mathcal{P}(S)|)$.

Suppose, for the sake of contradiction, that there exists a surjection $f: S \rightarrow \mathcal{P}(S)$.

Define $T = \{x \in S | x \notin f(x)\}$.

Since $T \subseteq \mathcal{P}(S)$ and since f is a surjection, there exists $x_0 \in S$ such that $f(x_0) = T$.

Now observe that: $x_0 \in T \iff x_0 \notin f(x_0) \iff x_0 \notin T$

by definition of T, since $f(x_0) = T$

which is a contradiction.
Proposition

$|\mathbb{Z}| = |\mathbb{N}|$, i.e. \mathbb{Z} is countable

Proof

Consider $f: \mathbb{Z} \to \mathbb{N}$ given by, $\forall z \in \mathbb{Z}$, $f(z) = \begin{cases} -2z & \text{if } z < 0 \\ 2z-1 & \text{if } z > 0 \end{cases}$

and $g: \mathbb{N} \to \mathbb{Z}$ given by, $\forall n \in \mathbb{N}$, $g(n) = \begin{cases} \frac{1}{2}(n+1) & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$

Then $g \circ f = \text{id}_{\mathbb{Z}}$, so f and g are invertible, hence bijective, which means that $\mathbb{Z} \cong \mathbb{N}$.

Proposition

$|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$, i.e. $\mathbb{N} \times \mathbb{N}$ is countable

Proof

We will use the following claim:

Claim: $\forall n \in \mathbb{N}$, $f(1, n) = \frac{n}{2}$ if n is even.

Proof of claim: Exercise (use induction).

The claim says that $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is a bijection.

Now consider $g: \mathbb{N} \to \mathbb{N}$ given by $g(n) = n - 1 \forall n \in \mathbb{N}$.

Observe that g is a bijection.
So finally, \(\circ f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \) is a composition of bijections, hence a bijection.

Lemma

Let \(A, B \) be sets.

If \(A \) and \(B \) are countably infinite, then \(A \times B \) is countably infinite.

Proof

We want to show that \(A \times B \cong \mathbb{N} \).

Since the proposition above tells us that \(\mathbb{N} \times \mathbb{N} \cong \mathbb{N} \), it is enough to show that \(A \times B \cong \mathbb{N} \times \mathbb{N} \).

Note that since \(A \) and \(B \) are countably infinite, there exist bijections \(f : A \to \mathbb{N} \) and \(g : B \to \mathbb{N} \).

Define \(H : A \times B \to \mathbb{N} \times \mathbb{N} \) by, for all \(a \in A, b \in B \), \(H(a, b) = (f(a), g(b)) \), and define \(\overline{H} : \mathbb{N} \times \mathbb{N} \to A \times B \) by, for all \(p, q \in \mathbb{N} \), \(\overline{H}(p, q) = (f^{-1}(p), g^{-1}(q)) \).

Let us show that

\[
\begin{align*}
H \circ \overline{H} &= \text{id}_{\mathbb{N} \times \mathbb{N}} \quad (1) \\
\overline{H} \circ H &= \text{id}_{A \times B} \quad (2)
\end{align*}
\]
(1) \(\forall p, q \in \mathbb{N}, \ H(f(p), g(q)) = H(f^{-1}(p), g^{-1}(q)) \)
\[
= \left(f(f^{-1}(p)), g(g^{-1}(q)) \right)
\]
\[
= (p, q)
\]
\[
= \text{id}_{\mathbb{N} \times \mathbb{N}}(p, q)
\]

(2) \(\forall a \in A, b \in B, \ H(H(a, b)) = H(f(a), g(b)) \)
\[
= \left(f^{-1}(f(a)), g^{-1}(g(b)) \right)
\]
\[
= (a, b)
\]

Since \(H \) & \(F \) are invertible, they are injections, so indeed \(A \times B \cong \mathbb{N} \times \mathbb{N} \).

Theorem

\(\mathbb{Q} \) is countably infinite.

Proof

We want to show that \(|\mathbb{Q}| = |\mathbb{N}| \).

Clearly \(|\mathbb{N}| \leq |\mathbb{Q}| \) since \(\iota: \mathbb{N} \to \mathbb{Q} \) where \(\iota(n) = \frac{n}{n} \), is an injection.

Now let us show that \(|\mathbb{N}| \geq |\mathbb{Q}| \).

By the results above, \(|\mathbb{Z}| = |\mathbb{N}| \).

\[
|\mathbb{Z} \times \mathbb{N} : 0 \times \mathbb{N}| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|
\]

Since both \(\mathbb{Z} \) & \(\mathbb{N} \times \mathbb{N} \) are countably infinite, so it is enough to show that \(|\mathbb{Z} \times \mathbb{N} : 0 \times \mathbb{N}| \). This is immediate since \(\iota: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q} \) where \(\iota(g, m) = \frac{g}{m} \) is a surjection.
Definition (Uncountable set)
We say a set is uncountable if it is infinite but not countably infinite.

Theorem
\(\mathbb{R} \) is uncountable.

Lemma
\((0,1)\) is isomorphic to \(\mathbb{R} \).

Proof (of lemma)
Consider \(f : (0,1) \to \mathbb{R} \) defined by, \(\forall x \in (0,1), \ f(x) = \begin{cases} \frac{1}{x} - 2 & \text{if } x < \frac{1}{2} \\ 2 - \frac{1}{1-x} & \text{if } x > \frac{1}{2} \end{cases} \)

\(f \) is a bijection since it has inverse \(g : \mathbb{R} \to (0,1) \) given by, \(\forall y \in \mathbb{R}, \ g(y) = \begin{cases} \frac{1}{y+2} & \text{if } y \geq 0 \\ 1 + \frac{1}{y-2} & \text{if } y < 0 \end{cases} \)
Proof (of theorem)

We want to show that \(|\mathbb{N}| < |\mathbb{R}|\), which is equivalent to \(-(|\mathbb{N}| \geq |\mathbb{R}|)\), i.e., we want to show that there is no surjection from \(\mathbb{N}\) to \(\mathbb{R}\).

Since \(\mathbb{R}\) is isomorphic to \((0,1)\), it is enough to show that there is no surjection from \(\mathbb{N}\) to \((0,1)\).

Let \(f: \mathbb{N} \rightarrow (0,1)\) be any function.

Every \(x \in (0,1)\) has a unique decimal representation, so let \(a_j\) be the \((j+1)\)-th decimal of \(f(x)\), i.e.,

\[
\begin{align*}
f(0) &= 0.a_{00}a_{01}a_{02}a_{03} \ldots \\
f(1) &= 0.a_{10}a_{11}a_{12}a_{13} \ldots \\
f(2) &= 0.a_{20}a_{21}a_{22}a_{23} \ldots \\
&\text{etc.}
\end{align*}
\]

For each \(b \in \mathbb{N}\), let \(b_f = \begin{cases} a_{bb} - 1 & \text{if } 1 \leq ab_b < 9 \\ 9 & \text{if } ab_b = 0 \end{cases}\)

\[
0 \rightarrow 0 \\
1 \rightarrow 1 \\
2 \rightarrow 2 \\
8 \rightarrow 8 \\
9 \rightarrow 9
\]

and let \(x^* = 0.b_1b_2b_3 \ldots\).

Note that \(\{x \in (0,1) : x \neq f(b) \text{ for all } b \in \mathbb{N}\}\) i.e., \(x \notin \text{Inf}(\mathbb{N})\).
In other words, if cannot be surjective.