Definition (composition of functions)
Let A, B, and C be sets, let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. We define the composition of g with f, denoted $g \circ f$, and sometimes read "g after $f"$, as the function $g \circ f: A \rightarrow C$ given by $\forall x \in A, (g \circ f)(x) = g(f(x))$.

Examples
(i)

\[
\begin{align*}
\text{A} & \quad \text{B} & \quad \text{C} \\
1 & \rightarrow a & \rightarrow \text{France} \\
2 & \rightarrow b & \rightarrow \text{Croatia} \\
3 & \rightarrow c & \rightarrow \text{Brazil} \\
4 & \rightarrow e & \rightarrow \text{France} \\
\end{align*}
\]
(2) Consider \(C, F : \mathbb{R} \to \mathbb{R} \), where \(V \in \mathbb{R} \)

\[
C(x) = x - 273.15
\]

\[
F(x) = \frac{9}{5}x + 32
\]

i.e., \(\text{Kelvin} \rightarrow \text{Celsius} \rightarrow \text{Fahrenheit} \)

\[
(F \circ C)(x) = F(C(x))
= \frac{9}{5}C(x) + 32
= \frac{9}{5}(x - 273.15) + 32
= \frac{9}{5}x - 459.67
\]

(3) For any function \(f : A \to B \), we have that \(f \circ id_A = f = id_B \circ f \).

Remarks

(1) Function composition is associative: for any \(f : A \to B \), \(g : B \to C \), and \(h : C \to D \), we have that \(h \circ (g \circ f) = (h \circ g) \circ f \), so we omit the parentheses and write \(h \circ g \circ f \).

(2) Any function \(f : A \to B \) induces functions \(\text{Inf} : \mathcal{P}(A) \to \mathcal{P}(B) \) and \(\text{Inf}^{-1} : \mathcal{P}(B) \to \mathcal{P}(A) \).

Proposition (composition \& injectivity)

Let \(A, B, \) and \(C \) be sets, let \(f : A \to B \) and \(g : B \to C \) be functions.

(i) If \(f \) and \(g \) are injections, then \(g \circ f \) is an injection.

(ii) If \(g \circ f \) is an injection, then \(f \) is an injection.

Proof (see next page for (ii))

(ii) Suppose \(g \circ f \) is an injection.

We want to show that \(\forall x, y \in A \), \(x \neq y \Rightarrow f(x) \neq f(y) \)

\[\Leftrightarrow \quad (f(x) = f(y) \Rightarrow x = y)\]

So let \(x, y \in A \) and suppose \(f(x) = f(y) \).

Applying \(g \) to both sides yields \(g(f(x)) = g(f(y)) \),
Proof of (ii): Let \(f, g \) be injections and let \(x, y \in A \) such that \(x \neq y \). Then \(f(x) \neq f(y) \) since \(f \) is injective, so \(g(f(x)) \neq g(f(y)) \) since \(g \) is injective, and so indeed \((g \circ f)(x) \neq (g \circ f)(y) \), i.e. \(g \circ f \) is injective.

Therefore, since \(g \circ f \) is injective, it follows that \(x = y \).

We have thus shown that \(f(x) = f(y) \Rightarrow x = y \), i.e. that \(f \) is injective.

Remark:

\(g \circ f \) is injective \(\neq \) \(g \) is injective.

Consider, for example \(A = \{1, 2\} \)
\(B = \{a, b, \text{potato}\} \)
\(f(1) = a \)
\(g(a) = g(b) = \text{potato} \)
\(g \) is not an injection.

Then \((g \circ f)(1) = g(f(1)) = g(a) = \text{potato} \), and \(g \circ f \) is an injection.

![Diagram](attachment:image.png)

Definition (right-inverse):

Let \(A \) and \(B \) be sets, and let \(f: A \rightarrow B \) be a function. If there exists a function \(g: B \rightarrow A \) such that \(f \circ g = \text{id}_B \), then we say that \(g \) is a right-inverse of \(f \), and we say that \(f \) is right-invertible.

Proposition (surjectivity \(\iff \) right-invertibility):

Let \(A, B \) be sets, and let \(f: A \rightarrow B \) be a function.

Then: \(f \) is surjective \(\iff \) \(f \) is right-invertible.

Proof:

\(\Leftarrow \) Suppose \(f \) is right-invertible. Then \(f \) has a right-inverse, let us call it \(g \). Since \(g \) is a right-inverse of \(f \),

\[\forall x \in B, \quad g(f(x)) = x \]

Then \(f(x) = f(g(f(x))) = (f \circ g)(x) = x \)

i.e. \(f \) is surjective.

\(\Rightarrow \) Suppose \(f \) is surjective. Let \(g \) be any function such that \(f \circ g = \text{id}_B \).

Now: \(\forall x \in B, \quad f(g(x)) = x \)

Then \(f(x) = f(g(f(x))) = (f \circ g)(x) \)

i.e. \(f \) is right-invertible.
Suppose \(f : A \rightarrow B \) is surjective.
Then \(\{ \text{pre} f (x) \mid x \in B \} \) is a collection of non-empty subsets of \(A \) so there exists \(g : B \rightarrow A \) such that \(\forall x \in B, \ g (y) \in \text{pre} f (x) \), i.e. \(f (g (y)) = y \), or in other words: \(g \) is a right-inverse for \(f \).

Remark/Example
Finding a right-inverse is essentially finding a solution \(x \) to \(f (x) = y \) systematically. Indeed, if \(g \) is a right-inverse of \(f \), then picking \(x = g (y) \) is precisely solving \(f (x) = y \) for \(x \), since \(f (x) = f (g (y)) = y \).

For example: \(f : \mathbb{R} \rightarrow \{ y \in \mathbb{R} \mid y \geq 4 \} = S \) defined by, \(\forall x \in \mathbb{R}, \ f(x) = x^2 + 4 \), has right-inverses \(g(y) = \sqrt[4]{y-4} \) and \(h(y) = -\sqrt[4]{y-4} \), where \(g : S \rightarrow \mathbb{R} \).
Indeed: \(f (g(y)) = (\sqrt[4]{y-4})^4 + 4 = (y-4) + 4 = y \)
\(f (h(y)) = (-\sqrt[4]{y-4})^4 + 4 = (y-4) + 4 = y \)

Remark (axiom of choice)
That for every collection of non-empty subsets of \(X \), say \(\{ S_i \mid i \in I \} \), there exists a "choice function" \(c : I \rightarrow X \) such that \(\forall i \in I, \ c(i) \in S_i \), is an axiom called the "axiom of choice."

Definition (left-inverse)
Let \(A, B \) be sets and let \(f : A \rightarrow B \) be a function.
If there exists a function \(g : B \rightarrow A \) such that \(g \circ f = \text{id}_A \), then we say that \(g \) is a left-inverse of \(f \), and we say that \(f \) is left-invertible.

Proposition (injectivity \(\iff \) left-invertibility)
Let \(A \) and \(B \) be sets and let \(f : A \rightarrow B \) be a function.
Then: \(f \) is injective \(\iff \) \(f \) is left-invertible.

Proof
Suppose \(f \) is left-invertible.
Then \(f \) has a left-inverse, let us call it \(g \).
Now: \(\forall x, y \in A, \ f(x) = f(y) \implies g(f(x)) = g(f(y)) \)
\[\iff (g \circ f)(x) = (g \circ f)(y) \]
\[\iff x = y \]
since \(g \) is a left-inverse of \(f \).
i.e. \(f \) is injective.

Lemma 1 Suppose \(f \) is injective.

We now define \(g : B \to A \) as follows:

1. **Pick some** \(a_0 \in A \).
2. **Since** \(f \) is injective (so \(f(x) = f(y) \Rightarrow x = y \))
3. \(\forall y \in f(A) \), \(\exists ! x \in A \) s.t. \(f(x) = y \), so let \(g(y) = x \),
4. \(\forall y \in B \setminus f(A) \), let \(g(y) = a_0 \).

Then, \(\forall x \in A \), \(f(x) \in f(A) \) and hence \(g(f(x)) = x \) by definition of \(g \),

i.e. \(g \) is a left-inverse of \(f \).

\[
\text{Im} f(A)
\]

Remark

This new characterization of injectivity yields a new proof of "\(g \circ f \) injective \(\Rightarrow f \) injective".

Indeed: suppose \(g \circ f \) is injective, and hence left-invertible.

- Let us call its left-inverse \(h \).
- Then \(h \circ g \circ f \) is a left-inverse of \(f \), since \((h \circ g) \circ f = h \circ (g \circ f) = \text{id} \).
- i.e. \(f \) is left-invertible, hence injective.

Remark

Finding a left-inverse is essentially finding a way to "systematically undo" a function, since for a left-inverse \(g \) of \(f \), \(g(f(x)) = x \).

Definition (Inverse)

Let \(A \) and \(B \) be sets and let \(f : A \to B \) be a function.

If there exists a function \(g : B \to A \) which is both a right-inverse and a left-inverse of \(f \), i.e. \(f \circ g = \text{id}_B \) and \(g \circ f = \text{id}_A \), then we say that \(g \) is an inverse of \(f \), we say that \(f \) is invertible, and we write \(g = f^{-1} \).
Example
Consider $f: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{1\}$ given by $f(x) = \frac{x}{1+x}$. Then $f^{-1}(x) = \frac{y}{1-y}$.

Remark
If $f: A \to B$ is invertible, then $\forall x \in A, \forall y \in B$, $f(x) = y \iff x = f^{-1}(y)$.

Proof: Let $f: A \to B$ be invertible, let $x \in A$ and $y \in B$.
If $f(x) = y$ then $x = f^{-1}(f(x)) = f^{-1}(y)$.
If $x = f^{-1}(y)$ then $f(x) = f(f^{-1}(y)) = y$.

For example: $\frac{x}{1+x} = y \iff x = \frac{y}{1-y}$.

Theorem (invertible \iff bijective)
Let A, B be sets and let $f: A \to B$ be a function.
Then: f is invertible \iff f is bijective.

Proof: f bijective \iff f injective and surjective.
\iff f left-invertible and right-invertible
\iff f invertible

Theorem (inverse of a composition)
Let $A, B,$ and C be sets and let $f: A \to B$ and $g: B \to C$ be functions.
If f and g are invertible, then $g \circ f$ is invertible.
Moreover, $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

```
g \circ f
A ------- B ------- C
\downarrow f \downarrow \downarrow g
\downarrow \downarrow \downarrow
f^{-1} \quad \quad \quad g^{-1}
```

$f^{-1} \circ g^{-1} = (g \circ f)^{-1}$
Proof
Suppose \(f \) & \(g \) are invertible.

We want to show that

\[
\begin{align*}
(g \circ f) \circ (g^{-1} \circ f^{-1}) &= \text{id}_B \\
(f \circ g^{-1}) \circ (g \circ f) &= \text{id}_A
\end{align*}
\]

Observe

\[
(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ \text{id}_B \circ g^{-1} = g \circ g^{-1} = \text{id}_c
\]

and

\[
(f \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ \text{id}_B \circ f = f^{-1} \circ f = \text{id}_A
\]