Equivalence relations

Question 1 [5 points]
The goal of this problem is to show that partitions and quotients are essentially the same thing. More precisely, you will prove that (i) quotients are partitions, and (ii) given a partition, there exists an equivalence relation whose corresponding quotient is equal to the partition given.

(i) Let A be a set and let S be an equivalence relation on A. Prove that A/S is a partition of A.

(ii) Let R be a partition of A, and suppose that $\emptyset \not\in R$. Define a relation T on A via:

$$\forall x, y \in A, \quad xTy \iff \exists D \in R \text{ such that } x \in D \text{ and } y \in D$$

Prove that T is an equivalence relation, prove that every element of R is an equivalence class of T, and prove that $R = A/T$.

Remember that you are allowed to use any results proven in earlier homework problem sets.

Order relations

Question 2 [5 points]

A partial order R on a set A is called a well-order if every non-empty subset of A has a minimal element with respect to R. Note that the well-ordering principle states that \leq is a well-order on \mathbb{N}.

Let A be a set and let R be a well-order on A. Prove that every non-empty subset of A has a unique minimal element with respect to R. In other words, prove that

$$\forall B \subseteq A, \quad B \neq \emptyset \implies \exists! x \in B \text{ such that } \forall y \in B, xRy$$

Functions

Question 3 [5 points]

Below you are asked to “use proper notation” to define a few functions. For example, if you are asked to define a function that inputs a natural number and outputs its square, using proper notation, you could write:

$$f : \mathbb{N} \to \mathbb{N} \text{ defined via: } \forall n \in \mathbb{N}, \ f(n) = n^2$$

or

$$f : \mathbb{N} \to \mathbb{R} \text{ defined via: } \forall x \in \mathbb{N}, \ f(x) = x^2$$

(i) Use proper notation to define a function that inputs an integer and outputs the square root of its absolute value.

(ii) Use proper notation to define a function that inputs a pair of natural numbers and outputs their average (arithmetic mean).

(iii) Let X be a set. Use proper notation to define a function that inputs a subset of X and outputs that set’s complement (where the universal set is taken to be X).

Question 4 [5 points]

(i) Let $A = \{-2, -1, 0, 1, 2\}$. Let $f : A \to A$ be defined by $\forall x \in A, \ f(x) = x^2 - 3$. Is f well-defined? Explain why or why not.

(ii) Let $g : \mathbb{Z} \times \mathbb{Z} \to \mathbb{N}$ be defined by $\forall (x, y) \in \mathbb{Z} \times \mathbb{Z}, \ g(x, y) = \frac{1}{2}|x + 1| \cdot |y|$. Is g well-defined? Explain why or why not.
(iii) Let \(B = \{-1, 0, 1\} \), and let \(h : B \to B \) be defined by \(\forall x \in B, \ h(b) = b^7 \). Show that \(h = \text{id}_B \).

(iv) Let \(A = \{(x, y) \in \mathbb{R}^2 \mid x \neq y\} \), and let \(i, j : A \to \mathbb{R} \) be defined by \(\forall (x, y) \in A, \ i(x, y) = \frac{x^3 - y^3}{x+y} \) and \(j(x, y) = (x+y)^2 - xy \). Show that \(i = j \).

Images and pre-images

Question 5 [5 points]

For each of the following functions \(f \) and subsets \(S \) of their domain, describe \(\text{Im}_f (S) \).

(i) \(f : \mathbb{Z} \to \mathbb{Z} \) defined by \(f(n) = 3n \), with \(S = \mathbb{N} \).

(ii) \(f : X \to X \times X \) (where \(X \) is any set) defined by \(f(x) = (x, x) \), with \(S = X \).

(iii) \(f : \{a, b, c\} \to \{1, 2, 3\} \) defined by \(f(a) = 1, \ f(b) = 3, \) and \(f(c) = 1 \), with \(S = \{a, b, c\} \).

Now let \(f : \mathbb{Z} \to \mathbb{Z} \) be a function defined by \(f(x) = x^2 \) for all \(x \in \mathbb{Z} \). For each of the following set \(S \), describe \(\text{PreIm}_f (S) \).

(iv) \(S = \{1, 4, 9\} \).

(v) \(S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \).

(vi) \(S = \mathbb{N} \).

Question 6 [5 points]

Let \(f : A \to B \) be a function. Let \(S, T \subseteq A \). For each of the following claims, prove that it must hold, or disprove it by finding a counterexample.

(i) \(\text{Im}_f (S \cup T) \subseteq \text{Im}_f (S) \cup \text{Im}_f (T) \)

(ii) \(\text{Im}_f (S) \cup \text{Im}_f (T) \subseteq \text{Im}_f (S \cup T) \)

Question 7 [5 points]

Let \(f : A \to B \) be a function. Let \(S, T \subseteq A \). For each of the following claims, prove that it must hold, or disprove it by finding a counterexample.

(i) \(\text{Im}_f (S^c) \subseteq (\text{Im}_f (S))^c \)

(ii) \((\text{Im}_f (S))^c \subseteq \text{Im}_f (S^c) \)

Here complements are taken with respect to \(A \) for subsets of \(A \) and with respect to \(B \) for subsets of \(B \).

Question 8 [5 points]

Prove or disprove the following claim:

Let \(A \) and \(B \) be sets. Let \(f : A \to B \) be a function. Let \(Y \subseteq B \). Then \(Y \subseteq \text{Im}_f (\text{PreIm}_f (Y)) \)
Additional problems

Question 1 [with solutions]
Use proper notation to define a function that inputs an even natural number and outputs half of that number.

Question 2 [with solutions]
(i) Let \(f = \{ (a^2, a) \mid a \in \mathbb{R} \} \). Is \(f \) a well-defined function? Explain why or why not.
(ii) Let \(f = \{ (x, y) \in \mathbb{Q} \times \mathbb{Q} \mid x, y \in \mathbb{Q}, xy = 1 \} \). Is \(f \) a well-defined function? Explain why or why not.

Question 3 [with solutions]
Let \(f : \mathbb{N} \to \mathbb{R} \) be a function defined by \(f(x) = \sqrt{x} \) for all \(x \in \mathbb{N} \). Describe

(i) \(\text{Im}_f(\{0, 1, 2, 3, 4\}) \)
(ii) \(\text{PreIm}_f(\mathbb{Z}) \)
(iii) \(\text{PreIm}_f(\mathbb{R}) \)

Question 4 [with solutions]
Let \(f : A \to B \) be a function. Let \(S, T \subseteq B \). For each of the following claims, prove that it must hold, or disprove it by finding a counterexample.

(i) \(\text{PreIm}_f(S \cup T) \subseteq \text{PreIm}_f(S) \cup \text{PreIm}_f(T) \)
(ii) \(\text{PreIm}_f(S) \cup \text{PreIm}_f(T) \subseteq \text{PreIm}_f(S \cup T) \)

Question 5 [with solutions]
Prove or disprove the following claim:
Let \(A \) and \(B \) be sets. Let \(f : A \to B \) be a function. Let \(X \subseteq A \). Then \(X \subseteq \text{PreIm}_f(\text{Im}_f(X)) \)
Question 1
Let $E = \{\text{even natural numbers}\} = \{m \in \mathbb{N} \mid \exists a \in \mathbb{N}, \text{ s.t. } m = 2a\}$
and define $f : E \to \mathbb{N}$ by $\forall e \in E, f(e) = \frac{e}{2}$.

Question 2
(i) f is not a well-defined function because it is not left-total.
For example, there is no $a \in \mathbb{R}$ such that $(-1)f(a)$, since $-1 \neq a^2$ \forall \mathbb{R}.

(ii) f is not a well-defined function because it is not left-total.
In particular, there is no $y \in \mathbb{R}$ such that $0f(y)$, since $0 \neq 1 \forall y \in \mathbb{R}$.

Question 3
(i) $\text{Im } f(\{0, 1, 2, 3, 4\}) = \{0, 1, \sqrt{2}, \sqrt{3}, 2\}$.
(ii) $\text{PreIm } f(\mathbb{N}) = \{\text{perfect squares}\} = \{n^2 \mid n \in \mathbb{N}\} = \{0, 1, 4, 9, \ldots\}$
(iii) $\text{PreIm } f(\mathbb{R}) = \mathbb{N}$

Question 4
Both (i) and (ii) are true.
We prove that $\text{PreIm } f(S \cup T) = \text{PreIm } f(S) \cup \text{PreIm } f(T)$
by proving that $\forall x \in A$, $x \in \text{PreIm } f(S \cup T)$
\iff $x \in \text{PreIm } f(S) \cup \text{PreIm } f(T)$.

Let $x \in A$. Then:
\[\iff f(x) \in S \cup T \]
\[\iff f(x) \in S \text{ or } f(x) \in T \]
\[\iff x \in \text{PreIm } f(S) \text{ or } x \in \text{PreIm } f(T) \]

Question 5
The claim is true.
Let $e \in \mathbb{R}$. Then $\frac{e}{f(e)} \in \text{Im } f(X)$ by definition of images,
and hence $e \in \text{PreIm } f(\text{Im } f(X))$ since $f(x) = 0$
\[\iff y \in \text{PreIm } f(\text{Im } f(X)) \text{ for every } y \in A \text{ and } f(x) = 0 \text{ for every } x \in \mathbb{R} \]
\[(\text{here } D = \text{Im } f(X)). \]