
Collars and Intestines:
Practical Conforming Delaunay Refinement

Alexander Rand and Noel Walkington

Carnegie Mellon University

Summary. While several existing Delaunay refinement algorithms allow acute 3D
piecewise linear complexes as input, algorithms producing conforming Delaunay
tetrahedralizations (as opposed to constrained or weighted Delaunay tetrahedral-
izations) often involve cumbersome constructions and are rarely implemented. We
describe a practical construction for both “collar” and “intestine”-based approaches
to this problem. Some of the key ideas are illustrated by the inclusion of the analogous
2D Delaunay refinement algorithms, each of which differs slightly from the stan-
dard approach. We have implemented the 3D algorithms and provide some practical
examples.

1 Introduction

Acute input angles pose significant challenges to Delaunay refinement algo-
rithms for quality mesh generation in both two and three dimensions. In 2D,
the formation of a conforming mesh is relatively simple: acutely adjacent in-
put segments must be split at equal lengths. Research extending Ruppert’s al-
gorithm [17] to accept small input angles [18, 9] focused on finding algorithms
which involve simple modifications of Ruppert’s algorithm and produce the
“best” output meshes in practice. In 3D, producing a conforming tetrahedral-
ization of an arbitrary piecewise linear complex (PLC) involves a substantial
construction [11, 6] and quality refinement algorithms have been developed
in the context of this construction [5, 12]. Alternative algorithms involving
weighted [4, 3] and constrained [18, 20, 19] Delaunay tetrahedralization have
also been developed. Due to these different challenges, the algorithms for 3D
Delaunay refinement of acute domains are markedly different than those in
2D.

In this paper, we describe two related strategies for the protection of acute
angles during 3D Delaunay refinement: collars and intestines. The collar
approach generalizes the construction of Murphy, Mount, and Gable [11]
and that of Cohen-Steiner, Colin de Verdière, and Yvinec [6] and produces a

2 Alexander Rand and Noel Walkington

quality mesh following the ideas of Pav and Walkington [12]. The intestine
approach is closely related to the quality refinement algorithm of Cheng and
Poon [5]. Unlike these previous algorithms for 3D Delaunay refinement of
acute input, our algorithms are motivated by analogous 2D versions and,
more notably, have been implemented.

Algorithm 1 Quality Refinement of Acute Input
(PROTECT) Protect acute input angles.
(REFINE) Perform a protected version of Ruppert’s algorithm.

Algorithm 1 is the template for both the collar and intestine based re-
finement algorithms. The (PROTECT) step requires information about the
(d − 2)-dimensional features of the input complex. We note that a brute force
computation of this information can be avoided using estimates resulting
from certain Delaunay refinement algorithms [14, 15] or an exact computa-
tion during sparse Voronoi refinement [10].

Section 2 contains necessary preliminaries for our analysis. Section 3 de-
scribes both collar and intestine based Delaunay refinement algorithms in
two dimensions, and the three-dimensional algorithms are given in Section 4.
Finally, some examples and practical issues are discussed in Section 5.

2 Preliminaries

2.1 Definitions

Our algorithms accept an arbitrary PLC as input and involve an intermediate
piecewise smooth complex (PSC), defined below.

Definition 1. In three dimensions [or two dimensions]:

• A piecewise linear complex (PLC), C = (P,S,F) [(P,S)], is a triple [duple]
of sets of input vertices P, input segments S, and polygonal input faces F such
that the boundary of any feature or the intersection of any two features is the
union of lower-dimensional features in the complex.

• A PLC C′ = (P′,S′,F ′) [(P′,S′)] is a refinement of the PLC C = (P,S,F) if
P ⊂ P′, each segment in S is the union of segments in S′, and every face in F
is the union of faces in F ′.

• A piecewise smooth complex (PSC), C = (P,S,F) [C = (P,S)], is a triple
[duple] of sets of input vertices P, non-self-intersecting smooth input curves S,
and non-self-intersecting smooth input faces F such that the boundary of any
feature or the intersection of any two features is the union of lower-dimensional
features in the complex.

Practical Conforming Delaunay Refinement 3

Definition 2. Let C be a PLC.

• The i-local feature size at point x with respect to C, lfsi(x,C), is the radius of
the smallest closed ball centered at x which intersects two disjoint features of C
of dimension no greater than i.

• The 1-feature size of segment s with respect to C, fs1(s,C), is the radius of the
smallest closed ball centered at a point x ∈ s intersecting a segment or input
vertex of C which does not intersect s.

If the argument supplied to the local feature size function is a set of points,
rather than a single point, then the result is defined to be the infimum of the
function over the set, i.e. lfsi(s,C) := infx∈s lfsi(x,C). Often the PLC argument
supplied to the local feature size is that of the input complex and in this case
the argument will be omitted. The subscript will be omitted when it is equal
to (d − 1) where d is the dimension, i.e. lfs(x) := lfs2(x) in 3D.

For a PSC we will use the same definition of local feature size as for a PLC.
Typically the definition of local feature size for a PSC also involves the radius
of curvature or the distance to the medial axis. Since we will only use a very
restricted class of PSCs the simpler definition is sufficient. In our particular
constructions the radius of curvature is proportional to (and often equal to)
the local feature size defined above.

2.2 Generic Delaunay Refinement Algorithm

Algorithm 2 Delaunay Refinement
Create an initial Delaunay triangulation.
Queue all unacceptable simplices.
while the queue of simplices is nonempty do

if it is safe to split the front simplex then
Take an action based on the front simplex.
Queue additional unacceptable simplices.

end if
Remove the front simplex from the queue.
Dequeue any queued simplices which no longer exist.

end while

The Delaunay refinement algorithms which we will consider have the
form of Algorithm 2. Additionally, we require that each of the operations
involve only local computations in the Delaunay triangulation of the cur-
rent vertex set. To specify an algorithm from Algorithm 2, it is necessary to
carefully describe the following four statements.

4 Alexander Rand and Noel Walkington

Action Where should a vertex be inserted to “split” a simplex?
Should other simplices be added to the queue?

Priority In what order should the queue be processed?
Unacceptability Which simplices are unacceptable?

Safety Which simplices are safe to split?

3 Delaunay Refinement in 2D

Before describing the full 3D algorithms, analogous 2D Delaunay refinement
algorithms are given. The resulting algorithms are similar to those typically
used for Delaunay refinement in the presence of acute input angles [18, 9],
but avoid certain challenges which are difficult to extend to 3D.

We will describe the two steps in the refinement of an arbitrary PLC given
in Algorithm 1: acute input angles are first protected, and then Delaunay
refinement is performed. We assume that an appropriate estimate of the local
feature size is available at each input vertex. Specifically, we require that for
each q0 which is the vertex of an acute input angle, we are given a distance dq0

which satisfies b · lfs(q0) ≤ dq0 ≤ min(c0 · lfs0(q0), c1 · lfs(q0)) for some constants
b > 0, c0 ∈ (0, .5) and c1 ∈ (0, 1).

3.1 Collar Protection Region

A collar protection region involves forming “collar” segments of equal length
around each input vertex so that the Delaunay triangulation conforms to the
input near this vertex. The subsequent Delaunay refinement algorithm will
then prevent the insertion of any vertices which encroach this collar region.

(PROTECT) Formation of the Protection Region

For each q0 which is the vertex of an acute input angle, each input segment
containing q0 is split at a distance dq0 away from q0. Figure 3.1 depicts an
example of the points inserted during this step.

(a) Collar approach (b) Intestine approach

Fig. 1. Two different protection approaches.

Practical Conforming Delaunay Refinement 5

Each end segment containing the vertex of an acute input angle will be
called a collar simplex and vertices inserted during this step are called collar
vertices. First, we observe that the collar simplices are sufficiently far away
from disjoint input features of C.

Lemma 1. For any input point q0 ∈ P,

dist
(
B(q0, dq0),B(q′0, dq′0)

)
≥ (1 − 2c0) lfs(q0) for all P 3 q′0 , q0 and

dist
(
B(q0, dq0), s

)
≥ (1 − c1) lfs(q0) for all segments s = q0.

Let α be the smallest angle between adjacent segments in C and let C̄
denote the refined PLC obtained after inserting all of the collar vertices. The
next lemma quantifies the relationship between the local feature size of C̄ and
C.

Lemma 2. There exists K > 0 depending only on b and c0 such that for all x,

lfs(x, C̄) ≤ lfs(x,C) ≤ K
sin(α)

lfs(x, C̄).

With the protection region in place, Delaunay refinement can now be
performed.

(REFINE) Protected Delaunay Refinement

This step is the Delaunay refinement algorithm described in Algorithm 3
(by specializing Algorithm 2). Each new end segment is “protected” during
refinement: no vertices will be inserted in the diametral ball of these segments.
To ensure this, circumcenters which encroach these end segments are rejected
by the safety criteria. Lemma 1 ensures that no inserted midpoints encroach
upon a collar simplex and thus the diametral disk of each collar simplex will
be empty throughout the algorithm.

Algorithm 3 2D Delaunay Refinement With Collar

Action Insert the circumcenter of a simplex unless it causes a lower-
dimensional simplex to be unacceptable. In this case, queue the
lower-dimensional simplex.

Priority Segments are given higher priority than triangles.
Unacceptability A segment with a non-empty diametral disk is unacceptable.

A triangle with radius-edge ratio larger than τ is unacceptable.
Safety Collar simplices are not safe to split.

The termination of the algorithm and properties of the resulting mesh are
described in Theorems 1 and 2. The first theorem ensures that the algorithm

6 Alexander Rand and Noel Walkington

terminates and the resulting mesh is graded to the local feature size, and the
second theorem asserts that the mesh conforms to the input PLC and specifies
which triangles near collar simplices may have poor quality.

Theorem 1. For any τ >
√

2, there exists K > 0 depending only upon τ, b, and c0
such that for each vertex q inserted by Algorithm 3,

lfs(q,C) ≤ K
sin(α)

rq.

Remark 1. The inequality lfs(q, C̄) ≤ Krq is shown using an argument identical
to the standard analysis of Ruppert’s algorithm. Then Lemma 2 yields the
desired inequality.

Theorem 2. Algorithm 3 produces a conforming Delaunay triangulation of C. The
circumcenter of any remaining triangle with radius-edge ratio larger than τ lies in
the diametral disk of a collar simplex.

3.2 Intestine Protection Region

The intestine protection region yields the added result that no triangles in
the resulting mesh have angles larger than π− 2κ, where κ := sin−1

(
1

2τ

)
is the

minimum angle corresponding to the radius-edge threshold τ.

(PROTECT) Formation of the Protection Region

For each input vertex q0 at an acute input angle, all input segments con-
taining q0 are split at a distance dq0 away from q0. Additionally, vertices are
added such that all arcs of the circle centered at q0 with radius dq0 are no larger
than π

2 . This ensures that the diametral ball of each arc of the circle does not
contain q0 and requires at most three additional vertices per input vertex.

We will now consider a PSC Ĉ defined by the input PLC, vertices inserted
on each segment at distance dq0 from each input vertex q0 (as in the collar
protection region), and the boundary arcs of each disk B(q, dq) as depicted in
Figure 3.1. The essential property of the PSC Ĉ is that all acute angles between
features occur between segments of C and are contained in

⋃
q0

B(q0, dq0). Let
α again denote the smallest angle between adjacent segments of C. The local
feature sizes with respect to C and Ĉ are related, as described in the next
lemma.

Lemma 3. There exists K > 0 depending only on b, c0, and c1 such that for all x,

lfs(x, Ĉ) ≤ lfs(x,C) ≤ K
sin(α)

lfs(x, Ĉ).

A suitably sized protection region has been formed and now the subse-
quent Delaunay refinement algorithm can be described and analyzed.

Practical Conforming Delaunay Refinement 7

(REFINE) Protected Delaunay Refinement

Ruppert’s algorithm can be performed outside of
⋃

q0
B(q0, dq0) and each

of the boundary arcs of any disk B(q0, dq0) is protected by the diametral disk
of its endpoints. This is described completely in Algorithm 4. Refinement of
general PSCs in 2D by algorithms similar to Ruppert’s has been considered
[1, 2, 13] and our analysis follows these developments.

Algorithm 4 2D Delaunay Refinement With Intestine
Action Insert the circumcenter of a simplex unless it causes a lower-

dimensional simplex or arc to be unacceptable. In this case, queue
the lower-dimensional object. Insert the midpoint of an arc.

Priority Segments and arcs are given higher priority than triangles.
Unacceptability A segment or arc with a non-empty diametral disk is unacceptable.

A triangle with radius-edge ratio less than τ is unacceptable.
Safety All simplices and arcs are safe to split.

Algorithm 4 terminates and produces a conforming graded mesh as de-
scribed in the following two theorems.

Theorem 3. For any τ >
√

2, there exists K > 0 depending only upon τ, b, c0, and
c1 such that for each vertex q inserted by Algorithm 4,

lfs(q,C) ≤ K
sin(α)

rq.

Remark 2. Unlike Theorem 1, the proof of Theorem 3 is substantially more
involved than the usual proof for Ruppert’s algorithm. This is a result of the
smooth input features of Ĉ. Using the techniques of Theorem 1, Theorem 3
can be shown with the strong restriction that τ > 2.

Theorem 4. Algorithm 4 produces a conforming Delaunay triangulation of C. Any
remaining triangle with radius-edge ratio larger than τ is inside B(q0, dq0) for some
input vertex q0. The resulting triangulation contains no angles larger than π − 2κ.

4 Delaunay Refinement in 3D

Producing a conforming Delaunay tetrahedralization of a 3D PLC requires
a consistent mesh along segments between acutely adjacent features. To ini-
tially form this consistent mesh we require the feature size to be known along
segments of the input mesh. Given a PLC C = (P,S,F), we will assume that
we have a refinement C1 = (P1,S1,F) such that

8 Alexander Rand and Noel Walkington

(H1) (P′ \ P) \ (∪s∈Ss) = ∅,
(H2) for any q0 ∈ P, all s1 ∈ S1 such that q0 ∈ s1 have equal length satisfying

|s1| ≤ c0 · lfs0(q0), and
(H3) for all s1 ∈ S1, b ·min(fs1(s1), lfs(s1)) < |s1| < c1 ·min(fs1(s1), lfs(s1)),

where b > 0, c0 ∈ (0, .5), and c1 ∈ (0, 1) are some constants.

4.1 Collar Protection Region

(PROTECT) Formation of the Protection Region

For each input face, the collar is formed by inserting vertices according to
the following rules.

1. If s and s′ are adjacent non-end segments which meet at vertex q, then
a vertex p is inserted at distance max(|s|,|s′ |)

2 from q, in any direction into
the face perpendicular to s.

2. If s is an end segment and s′ is an adjacent non-end segment, both
containing vertex q, then insert vertex p at the intersection of any line
parallel to s in the face at distance |s

′ |
2 away from s and on the circle of

radius |s| around the input point on s.
3. For any input vertex q0 on a segment s, insert collar vertices such that

the sphere of radius |s| around q0 restricted to the face has no arcs of
angle larger than π

2 .

Below is a list of objects defined to describe the collar based on the vertices
inserted during this step. These objects are depicted in Figure 2(a).

Collar Vertex A vertex inserted during the (PROTECT) step or as a mid-
point of a collar segment or arc during the (REFINE) step.

Collar Segment A segment between collar vertices corresponding to adja-
cent vertices on an input segment.

Collar Arc An arc between adjacent collar vertices corresponding to
the same input vertex.

Collar Region The region between input segments and collar segments
and arcs.

Collar Simplex A simplex in the Delaunay triangulation of the face which
lies inside the collar region.

Following the insertion of the collar vertices, the resulting Delaunay tetra-
hedralization satisfies a number of properties given in the following lemma.

Practical Conforming Delaunay Refinement 9

Collar Vertex

Collar Simplex

Collar Segment

Collar Region

Collar Arc

Input Vertex Input Segment

(a) Collar definitions (b) Typical collar simplices

Fig. 2. Collar region

Lemma 4. After inserting collar vertices, the following properties hold.

(I) All adjacent collar segments and arcs meet at non-acute angles.
(II) The diametral disk of each collar segment contains no vertices in P′.

(III) The circumball of any collar simplex contains no vertices in P′.
(IV) The circumball of any collar simplex does not intersect any disjoint faces or

segments.

Remark 3. The circumball of a simplex refers to the smallest open sphere such
that all vertices of the simplex lie on the boundary of the sphere.

Since the circumball of each collar simplex is empty, the collar simplices
conform to the input. Collar segments meet non-acutely and thus the comple-
ment of the collar region in each face is well-suited for Ruppert’s algorithm.
The final property is needed to guarantee that subsequent vertices inserted
for conformity will not encroach upon disjoint collar simplices.

The collar divides each face into two regions: the collar region and the
non-collar region. Let C̄ be the PSC including each face divided into its collar
and non-collar regions and all collar segments and arcs. Let α1 be the smallest
angle between an input segment and another adjacent input feature in the
mesh and let α2 be the smallest angle between adjacent input faces. The
next lemma asserts that this augmented complex C̄ preserves the initial local
feature size, up to a factor depending on α1 and α2.

Lemma 5. There exists a constant K > 0 depending only upon b, c0, and c1 such
that

lfs(x, C̄) ≤ lfs(x,C) ≤ K
sinα1 sinα2

lfs(x, C̄).

10 Alexander Rand and Noel Walkington

As usual, the protection procedure is followed by a Delaunay refinement
algorithm.

(REFINE) Protected Delaunay Refinement

The PSC C̄ is now refined based on both quality and conformity criteria
using a modified version of Ruppert’s algorithm. Similarly to the non-acute
case, any maximum radius-edge threshold τ > 2 can be selected for determin-
ing poor quality tetrahedra. The Delaunay refinement algorithm is specified
in Algorithm 5.

Algorithm 5 3D Delaunay Refinement With Collar
Action Insert the circumcenter of a simplex unless it causes a lower-

dimensional simplex, collar segment, or collar arc to be unaccept-
able. In this case, queue the lower-dimensional object. Insert the
midpoint of a collar arc.

Priority Collar segments and arcs are given the highest priority. Other sim-
plices are prioritized by dimension with lower-dimensional sim-
plices processed first.

Unacceptability A simplex, collar segment, or collar arc is unacceptable if it has a
nonempty circumball. A tetrahedron is unacceptable if its radius-
edge ratio is larger than τ.

Safety It is not safe to split any collar simplex (this includes both triangles
in input faces and subsegments of input segments).

The key difference between Algorithm 5 and the 3D version of Ruppert’s
algorithm is the safety criteria. This prevents the cascading encroachment
associated with acutely adjacent segments and faces. Since collar arcs must
be protected, analysis of the 3D refinement with the collar protection scheme
is closely related to the 2D refinement with the intestine protection scheme.

During the algorithm, it is important to ensure that the properties of
the collar in Lemma 4 continue to hold while allowing refinement of the
non-collar region of each face to create a conforming mesh. In the 2D collar
protection procedure, the collar simplices (i.e. the end segments) never change
during Algorithm 3. In 3D however, the set of collar simplices does change.
This occurs when the standard Delaunay refinement algorithm seeks to insert
a vertex in a face that encroaches upon a collar segment or collar arc. Instead
of adding this encroaching vertex, this collar segment or arc is split. This new
vertex is a collar vertex and the collar segment or arc is replaced with two
new collar segments or arcs. The collar region has not changed but the set of
collar simplices has changed. Further, this new vertex may encroach upon the
circumball of another collar simplex in an adjacent face. In this face, the collar
segment associated with this encroached circumball is also split so that the

Practical Conforming Delaunay Refinement 11

collar simplices on adjacent faces again “line up.” So conformity of the mesh
is maintained by only splitting the collar segments and thus the algorithm
never attempts to insert the circumcenter of an encroached collar simplex.

Several key properties hold throughout the algorithm whenever there are
no collar segments or collar arcs on the queue.

Lemma 6. If the queue of unacceptable simplices does not contain any collar seg-
ments or collar arcs, the following properties hold.

(I) Adjacent collar segments and arcs meet at non-acute angles.
(II) The circumball of any collar element contains no vertices in P′.

The first property is important to guarantee the termination of the algorithm,
while the second property is important for ensuring the resulting tetrahedral-
ization conforms to the input. These two facts are stated precisely in the next
two theorems. Recall that α1 is the smallest angle between an input segment
and an adjacent feature while α2 is the smallest angle between adjacent input
faces.

Theorem 5. For any τ > 2, there exists K > 0 depending only upon τ, b, c0, and c1
such that for each vertex q inserted by Algorithm 5,

lfs(q,C) ≤ K
sinα1 sinα2

rq.

Remark 4. Since C̄ includes smooth arcs, the proof of Theorem 5 involves many
of the techniques used in Theorem 3.

Theorem 6. Algorithm 5 produces a conforming Delaunay tetrahedralization of C.
The circumcenter of any remaining tetrahedra with radius-edge ratio larger than τ
lies in the circumball of a collar simplex.

4.2 Intestine Protection Region

The intestine approach for protecting acute input angles mirrors that in 2D
described in Section 3.2. Smooth features will be added to the input to isolate
all input segments and vertices (or at least those contained in acutely adjacent
features) from the region to be refined for tetrahedron quality.

(PROTECT) Formation of the Protection Region

The vertices and features which are added to the mesh in this step are a
superset of those added during the (PROTECT) step of the collar approach
(which created the PSC C̄). In addition to features of C̄, the following objects
are included to form a new PSC Ĉ.

• For each input vertex q0 which belongs to some segment let dq0 be the
length of all segments containing q0. Then Ĉ includes ∂B(q0, dq0).

12 Alexander Rand and Noel Walkington

• For each collar segment s let c be the surface of revolution produced by
revolving segment s about its associated input segment. The features c
and ∂c are included in Ĉ.

Fig. 3. Intestine Protection Region

The region inside each sphere and cylindrical surface added to the mesh
will be called the intestine region and the remaining volume is called the non-
intestine region. This is depicted in Figure 3. This construction is designed to
ensure the following fact.

Lemma 7. The non-intestine region of the PSC Ĉ contains no acute angles between
features.

This lemma is necessary to ensure that the usual proof of termination and
grading will apply to Delaunay refinement in the non-intestine region. Let α1
and α2 denote the smallest angles in the input as discussed previously.

Lemma 8. There exists K > 0 depending only on b, c0 and c1 such that for all x,

lfs(x,C) ≤ lfs(x, Ĉ) ≤ K
sinα1 sinα2

lfs(x,C).

Remark 5. Recall that C̄ is the PSC containing the input and the collar con-
struction. Lemma 8 is shown by first showing

lfs(x, Ĉ) ≤ lfs(x, C̄) ≤ K lfs(x, Ĉ),

and then applying Lemma 5.

(REFINE) Protected Delaunay Refinement

In a similar fashion to the Delaunay refinement algorithm of Cheng and
Poon [5], the PSC Ĉ has been constructed without any acute angles in the non-
intestine region so that Delaunay refinement can be performed. The analysis

Practical Conforming Delaunay Refinement 13

of this approach involves an understanding of the Delaunay refinement of
smooth surfaces in 3D. The intermediate PSC C̄ including the collar region is
much simpler from this perspective as all 2D faces in the complex are affine.
While the collar approach involved elements of the analysis for 2D PSCs,
the analysis of the intestine approach more closely resembles the much less
complete theory of the refinement of 3D PSCs [5, 3, 16, 7].

We now consider two different approaches to performing a quality refine-
ment of the non-intestine region. The first is to perform the usual Delaunay
refinement and split smooth surfaces by projecting the circumcenter of any
Delaunay triangle in the face to the surface. This is described in Algorithm 6.
This approach suffers from one minor drawback: the Delaunay tetrahedral-
ization inside the cylindrical regions of the intestine may not conform to the
input. To eliminate this issue, the second approach is to impose more struc-
ture on the refinement of these cylindrical regions. This algorithm is given in
Algorithm 7. Figure 4 shows the difference between the refinement around
required cylindrical surfaces of the two algorithms.

Algorithm 6 3D Delaunay Refinement With Intestine - Unstructured
Action Project the circumcenter of a simplex to its associated sur-

face or curve and insert this vertex, unless it causes a lower-
dimensional simplex to be unacceptable. In this case, queue the
lower-dimensional object.

Priority Simplices are prioritized by dimension, with lower-dimensional
items processed first.

Unacceptability A simplex in the non-intestine region is unacceptable if it has a
nonempty circumball. A tetrahedron is unacceptable if its radius-
edge ratio is larger than τ.

Safety All simplices are safe to split.

(a) Unstructured Approach
of Algorithm 6

(b) Structured Approach of
Algorithm 7

Fig. 4. Refinement of cylindrical surfaces around the intestine.

These algorithms terminate and produce meshes which are graded to the
local feature size. This is summarized in the following theorem.

14 Alexander Rand and Noel Walkington

Algorithm 7 3D Delaunay Refinement With Intestine - Structured

Action Project the circumcenter of a simplex to its associated sur-
face or curve and insert this vertex, unless it causes a lower-
dimensional simplex to be unacceptable. In this case, queue the
lower-dimensional object.
EXCEPTION: when handling a triangle associated with a cylindrical
region which did not yield to another simplex, divide this cylindri-
cal region into two cylinders of equal length and include the new
boundary circle in the PSC. Moreover, insert vertices on this circle
in the same fashion as in the construction of the intestine region.

Priority Simplices are prioritized by dimension, with lower-dimensional
items processed first.

Unacceptability A simplex in the non-intestine region is unacceptable if it has a
nonempty circumball. A tetrahedron is unacceptable if its radius-
edge ratio is larger than τ.

Safety All simplices are safe to split.

Theorem 7. For any τ > 4, there exists K > 0 depending only upon τ, b, c0, and c1
such that for each vertex q inserted by Algorithm 6 or Algorithm 7,

lfs(q,C) ≤ K
sinα1 sinα2

rq.

Remark 6. The restriction τ > 4 is stronger than the restriction τ > 2 seen in
Theorem 5. The techniques of Theorem 3 have not yet been extended to the
case of curved surfaces, and without these techniques, the stronger condition
on τ is necessary. Extending this result to admit all τ > 2 is a topic of ongoing
research.

Algorithm 7 produces a conforming Delaunay tetrahedralization of the
input. This is shown in the next theorem.

Theorem 8. Algorithm 7 produces a conforming Delaunay tetrahedralization of C.
All tetrahedra with radius-edge ratio larger than τ lie in the intestine region.

The previous result does not hold for Algorithm 6, as the resulting mesh
may not conform to the input. This may occur when a vertex on the boundary
of the cylindrical region encroaches upon a triangle in a required face inside
the intestine region.

However, a simple conforming (but not Delaunay) tetrahedralization of
the intestine region does exist. The spheres around input vertices are tetra-
hedralized using the Delaunay tetrahedra. For the cylindrical sections, let p1
and p2 be the endpoints of the corresponding input segment. The tetrahedral-
ization is produced with two types of tetrahedra.

• For any Delaunay triangle t on the boundary of the cylinder, include the
tetrahedron with base t and vertex at p1.

Practical Conforming Delaunay Refinement 15

• For any arc s on the circle around p2, include the tetrahedra with vertices
p1, p2 and the endpoints of s.

These tetrahedra are depicted in Figure 5. This construction yields a mesh
which conforms to the input. This is summarized in the following theorem.

p1 p2

t

s

Fig. 5. Two types of tetrahedra are used to produce a conforming tetrahedralization
of the intestine region following Algorithm 6.

Theorem 9. Algorithm 6 produces a conforming Delaunay tetrahedralization of the
non-intestine region of Ĉ. The previous construction yields a conforming tetrahedral-
ization of the intestine region of Ĉ which matches the Delaunay tetrahedralization
on the boundary of the intestine region. All tetrahedra with radius-edge ratio larger
than τ lie in the intestine region.

5 Implementation Details and Examples

In 3D, we have implemented both collar and intestine based protection
schemes. Our implementation relies on estimates of the local feature size
given by a different Delaunay refinement algorithm [14, 15]. Algorithm 6
(rather than Algorithm 7) has been implemented and will be referred to as
the intestine approach in the examples below. In the future, we hope to im-
plement both algorithms and do a thorough comparison.

Figure 6 demonstrates both protection strategies on a very simple PLC:
a single tetrahedra. Figure 7 shows the refinement of a single face of the
pyramid during this refinement using the collar. The result looks very similar
when using the intestine approach.

An essential method for reducing the number of vertices in the final mesh
is to protect only input segments and vertices which are part of acute input an-
gles. This yields a substantial improvement in the output mesh size. Figure 8
shows an input PLC, the resulting mesh when all segments are protected,
and the resulting mesh when only acute input segments are protected. The
resulting mesh with full protection contains 18079 vertices while the mesh
with partial protection only contains 3216 vertices.

Finally, Figure 9 contains six examples produced by Algorithm 5. Data on
the input and output sizes of the meshes produced for each of these examples

16 Alexander Rand and Noel Walkington

(a) Initial PLC (b) PSC with intes-
tine

(c) Initial collar (d) Final collar (e) Initial intestine (f) Final intestine

Fig. 6. Refinement of a simple pyramid.

Fig. 7. Refinement of the base of the pyramid.

(a) Input PLC (b) Full protection (c) Partial protection

Fig. 8. Comparison of full and partial collar protection.

Practical Conforming Delaunay Refinement 17

is contained in Table 1. Each of the meshes produced only uses the partial
collar described above. While the refinement is performed in a bounding box,
this bounding box was removed for the PLCs which enclose a volume. This
is indicated in the “Box” column of Table 1.

(a) Tetrahedron (b) Wheel (c) Non-manifold

(d) Duck (e) Rabbit (f) Gazebo

Fig. 9. Examples meshes produced by Algorithm 5.

Table 1. Results of Algorithm 5 on six PLCs with acute angles.

Input Output
Name Vertices Segments Faces Vertices Tetrahedra Box

Tetrahedron 24 54 28 3700 11476 No
Wheel 46 65 21 4397 27182 Yes

Non-manifold 22 35 10 2498 15142 Yes
Duck 93 273 182 3216 11001 No

Rabbit 453 1353 902 18968 69001 No
Gazebo 97 148 57 4868 15318 No

References

1. C. Boivin and C. Ollivier-Gooch. Guaranteed-quality triangular mesh generation
for domains with curved boundaries. International Journal for Numerical Methods

18 Alexander Rand and Noel Walkington

in Engineering, 55(10):1185–1213, 2002.
2. D. E. Cardoze, G. L. Miller, M. Olah, and T. Phillips. A Bezier-based moving

mesh framework for simulation with elastic membranes. In Proceedings of the 13th
International Meshing Roundtable, pages 71–80, 2004.

3. S.-W. Cheng, T. K. Dey, and J. A. Levine. A practical Delaunay meshing algo-
rithm for a large class of domains. In Proceedings of the 16th International Meshing
Roundtable, pages 477–494, 2007.

4. S.-W. Cheng, T. K. Dey, and E. A. Ramos. Delaunay refinement for piecewise
smooth complexes. In Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1096–1105, 2007.

5. S.-W. Cheng and S.-H. Poon. Three-dimensional Delaunay mesh generation. In
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
295–304, 2003.

6. D. Cohen-Steiner, E. Colin de Verdière, and M. Yvinec. Conforming Delaunay
triangulations in 3D. Computational Geometry: Theory and Applications, 28(2-3):217–
233, 2004.

7. B. Hudson. Safe Steiner points for delaunay refinement. Research Notes of the
17th International Meshing Roundtable, 2008.

8. G. L. Miller, S. E. Pav, and N. J. Walkington. An incremental Delaunay meshing al-
gorithm. Technical Report 02-CNA-023, Center for Nonlinear Analysis, Carnegie
Mellon University, Pittsburgh, Pennsylvania, 2002.

9. G. L. Miller, S. E. Pav, and N. J. Walkington. When and why Ruppert’s algorithm
works. In Proceedings of the 12th International Meshing Roundtable, pages 91–102,
2003.

10. G. L. Miller, T. Phillips, and D. Sheehy. Fast sizing calculations for meshing. In
18th Fall Workshop on Computational Geometry, 2008.

11. M. Murphy, D. M. Mount, and C. W. Gable. A point-placement strategy for
conforming Delaunay tetrahedralization. International Journal of Computational
Geometry and Applications, 11(6):669–682, 2001.

12. S. E. Pav and N. J. Walkington. Robust three dimensional Delaunay refinement.
In Proceedings of the 13th International Meshing Roundtable, pages 145–156, 2004.

13. S. E. Pav and N. J. Walkington. Delaunay refinement by corner lopping. In
Proceedings of the 14th International Meshing Roundtable, pages 165–181, 2005.

14. A. Rand and N. Walkington. 3D Delaunay refinement of sharp domains without a
local feature size oracle. In Proceedings of the 17th International Meshing Roundtable,
2008.

15. A. Rand and N. Walkington. Delaunay refinement algorithms for estimating local
feature size, 2009. Submitted.

16. L. Rineau and M. Yvinec. Meshing 3D domains bounded by piecewise smooth
surfaces. In Proceedings of the 16th International Meshing Roundtable, pages 443–460,
2007.

17. J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. Journal of Algorithms, 18(3):548–585, 1995.

18. J. R. Shewchuk. Mesh generation for domains with small angles. In Proceedings of
the 16th Annual Symposium on Computational Geometry, pages 1–10, 2000.

19. H. Si. On refinement of constrained Delaunay tetrahedralizations. In Proceedings
of the 15th International Meshing Roundtable, pages 510–528, 2006.

20. H. Si and K. Gartner. Meshing piecewise linear complexes by constrained Delau-
nay tetrahedralizations. In Proceedings of the 14th International Meshing Roundtable,
pages 147–163, 2005.

Practical Conforming Delaunay Refinement 19

A Details and Proofs

Below is additional information and details which may be of use to the
reviewer. Due to the page limit, only the first 18 pages are to be submitted for
inclusion in the IMR proceedings.

A.1 Properties of Local Feature Size

Definition 3. A PLC C∗ = (P∗,S∗,F ∗) [(P∗,S∗)] is a subcomplex of the PLC
C = (P,S,F) if either C∗ = C or there is a feature t ∈ P ∪ S ∪ F [t ∈ P ∪ S] such
that

P∗ = {p ∈ P | p ⊂ t},
S∗ = {s ∈ S | s ⊂ t}, and
F ∗ = { f ∈ F | f ⊂ t}.

To protect acute input features, additional vertices, segments, and faces
will be added input PLC before performing the Delaunay refinement. The
propositions and lemmas below are useful for comparing the local feature
size of the input PLC to the local feature size of the protected PLC. The
first two propositions consider the refinement and augmentation of PLCs (or
PSCs) respectively.

Proposition 1. Let C = (P,S,F) [or (P,S)] be a PLC and let C̄ = (P̄, S̄, F̄) [or
(P̄, S̄)] be a refinement of C. Let C̄s be some (possibly trivial) subcomplex of C̄. If

lfs(y,C) ≤ K lfs(y, C̄s)

for all points y which belong to some feature of C̄s of dimension at most dim(C̄s) − 1,
then

lfs(x,C) ≤ (2K + 1) lfs(x, C̄s)

holds for all x.

Proof. Let x be any point. Let y be the nearest point on a feature of C̄s to x.
Then

lfs(x,C) ≤ lfs(y,C) + |x − y|
≤ K lfs(y, C̄s) + |x − y|
≤ K lfs(x, C̄s) + (K + 1)|x − y|
≤ (2K + 1) lfs(x, C̄s)

Above, we have used the fact that |x − y| ≤ lfs(x, C̄s) since y is the nearest
point to x on any feature of C̄s.

20 Alexander Rand and Noel Walkington

Proposition 2. Let C = (P,S,F) [or (P,S)] and Ĉ = (P ∪ P̂,S ∪ Ŝ,F ∪ F̂) [or
(P ∪ P̂,S ∪ Ŝ)] be PSCs. Suppose that for all y ∈ P̂, y ∈ s ∈ Ŝ, or y ∈ f ∈ F̂ ,

lfs(y,C) ≤ K lfs(y, Ĉ)

then for all x
lfs(x,C) ≤ (4K + 3) lfs(x, Ĉ).

Proof. Consider any point y contained in a feature of C. Suppose lfs(y, Ĉ) <
lfs(y,C). This implies the existence of a point z either in P̂ or on a segment of
S which is disjoint from the feature containing y such that |y − z| ≤ lfs(y, Ĉ).
Hence,

lfs(y,C) ≤ lfs(z,C) + |y − z|
≤ K lfs(z, Ĉ) + |y − z|
≤ K lfs(y, Ĉ) + (K + 1)|y − z|
≤ (2K + 1) lfs(y, Ĉ).

Finally, we can apply Proposition 1 to extend this bound from points on
features of Ĉ to all points and get the desired estimate.

The next lemmas estimate the change in the local feature size which occurs
when performing certain types of refinements to PLCs in the presence of acute
input angles.

Lemma 9. LetC = (P,S,F) [or (P,S)] be a PLC with refinement C̄ = (P∪P̄, S̄,F)
[or (P ∪ P̄, S̄)] such that

P̄ ⊂
⋃
s∈S

s◦ (1)

where s◦ is the relative interior of segment s. For a segment s ∈ S, let C̄s be the PLC
containing all features of C̄ which are contained in s. If for any segment s ∈ S

lfs(q,C) ≤ K lfs(q, C̄s)

holds for any vertex q ∈ s ∩ P̄, then

lfs(x,C) ≤
(4K + 4

sinα1
+ 4K + 3

)
lfs(x, C̄)

holds for all x.

Proof. First, let q0 ∈ P and let s be a segment containing q0. Let q be the nearest
vertex to q0 on s. If q ∈ P, then

lfs(q0,C) ≤ lfs(q0,Cs) = lfs(q0, C̄s).

Otherwise, q ∈ P̄ and it follows that

Practical Conforming Delaunay Refinement 21

lfs(q0,C) ≤ lfs(q,C) + |q − q0|
≤ K lfs(q, C̄s) + |q − q0|
≤ K lfs(q0, C̄s) + (K + 1)|q − q0|
≤ (2K + 1) lfs(q0, C̄s). (2)

Next, let u be a point (not necessarily a vertex in the mesh) contained in
some segment of S. The local feature size can be realized several ways. Let w
be the point on a disjoint feature of C̄ which realizes the local feature size at
u with respect to C̄.

Case 1. u and w lie on disjoint features of C.

Then lfs(u,C) = lfs(u, C̄).

Case 2. u and w are contained in the same segment of s ∈ S.

In this case, apply Proposition 1 using (2) to get the desired inequality:

lfs(u,C) ≤ (4K + 3) lfs(u, C̄s) = (4K + 3) lfs(u, C̄).

Case 3. u and w belong to adjacent segments in C, denoted su and sw.
Let q0 denote the input point which lies at the intersection of su and sw.

Then,

lfs(u,C) ≤ lfs(q0,C) + |u − q0|
≤ (2K + 1) lfs(q0, C̄) + |u − q0|
≤ (2K + 1) lfs(u, C̄) + (2K + 2)|u − q0|
≤

(
2K + 1 +

2K + 2
sinα

)
lfs(u, C̄).

As seen in Figure 10, we have used the fact that

lfs(u, C̄) ≥ dist(u, sw) ≥ |u − q0|
sinα

.

su

sw

u

w

q0

α

Fig. 10. In Case 3 of Lemma 1, dist(p, s2) ≥ |p−q0 |
sin(α) .

Finally, applying Proposition 1 on the entire complex C̄ with constant K
yields the desired result.

22 Alexander Rand and Noel Walkington

Lemma 10. Let C = (P,S,F) be a PLC with refinement C̄ = (P ∪ P̄,S ∪ S̄, F̄)
such that

P̄ ⊂
⋃
f∈F

f ◦

and for all s̄ ∈ S̄,
s̄ ⊂

⋃
f∈F

f ◦

where f ◦ is the relative interior of face f . For a face f ∈ F , let C̄ f be the PLC
containing all features of C̄ which are contained in f . If for any face f ∈ F

lfs(y,C) ≤ K lfs(y, C̄ f)

holds for any y ∈ f which belongs to P̄ or a segment of S̄, then

lfs(x,C) ≤
(4K + 4

sinα2
+ 4K + 3

)
lfs(x, C̄)

holds for all x.

Proof. The first step is to show that

lfs(y,C) ≤ (2K + 1) lfs(y, C̄ f)

for any y ∈ P and y ∈ s ∈ S. This is a result of the same argument seen
previously. Following the proof of Lemma 9, consider any point u contained
a face of F and let w be the point on a feature of C̄ which is disjoint from
the feature containing u which realizes the local feature size. This gives three
cases:

1. u and w lie on disjoint features of C.
2. u and w are contained in a single face of C.
3. u and w belong to adjacent faces if C.

The first three cases have identical proofs to those of Lemma 9 with one
exception: the minimum angle between faces α2 is used in the third case.

A.2 Section 3 Details

Proof (Lemma 1). This follows directly from the restrictions on c0 and c1.

Proof (Lemma 2). Let s be an input segment, and let q be a collar vertex in s.
Observe the following inequality:

lfs(q,C) ≤ max
{

1 − b
b
,

1 − b
1 − 2c0

}
lfs(q, C̄s).

The desired inequality then follows from Lemma 9.

Practical Conforming Delaunay Refinement 23

Proof (Theorem 1). The standard analysis of Ruppert’s algorithm applies with
respect to the protected complex C̄ since end segments are never split (which
follows from Proposition 1) and thus no segment is encroached by a vertex
on an adjacent segment of C̄. This asserts the existence of C depending only
upon τ such that

lfs(q, C̄) ≤ Crq.

The proof is then completed by applying the estimate in Lemma 2 to convert
the estimate on the local feature size with respect to C̄ into an estimate on the
local feature size with respect to C.

Remark 7. While the constant in Theorem 1 does not depend on c1, the re-
striction that c1 < 1 is important to ensure the proof is valid: otherwise, it
would be possible for vertices to be inserted on segments which encroach
upon collar simplices and the proof would not hold.

Proof (Theorem 2). No vertex is inserted which encroaches a collar simplex so
all collar simplices conform in the resulting mesh. All unacceptable (and thus
non-collar) segments are queued for splitting and none are rejected by the
safety rule, thus in the final mesh all segments conform to the input.

Proof (Lemma 3). The first inequality is immediate from the definition of lo-
cal feature size: adding additional features and refining existing ones only
decreases the local feature size. The second inequality will be shown by ap-
plying Proposition 2 to C̄, the complex with just the initial collar vertices
inserted. Let y ∈ ∂B(q, dq). Then,

lfs(y, C̄) ≤ 2
1 − c1

lfs(y, C̄).

Combining the conclusion of Proposition 2 with Lemma 2 yields the result.

Before proving Theorem 3, it is important to understand the application of
Ruppert’s algorithm to smooth input complexes. Below is a brief discussion
and an essential lemma used in this analysis.

Ruppert’s algorithm can be generalized to PSCs [1, 2, 13]. The analysis of
Pav and Walkington applies to Algorithm 4, however that theory involves a
trade-off between the maximum total variation in orientation of the curves in
the input and the smallest allowable radius-edge threshold of the refinement.
This application leads to two choices:

• Use the input as specified and select a sufficiently large τ to ensure termi-
nation.

• Pick any τ >
√

2. First split smooth input features to have a sufficiently
small total variation in orientation based on the τ value selected and then
perform Algorithm 4.

24 Alexander Rand and Noel Walkington

However, we will show that this trade-off is unnecessary. Algorithm 4 will
terminate and produce a well-graded, conforming Delaunay triangulation
for any input complex previously described (such that all input arcs have
total variation in orientation of at most π

2) and any radius-edge threshold
τ >

√
2. This will require a more careful analysis, which is centered around

the following technical lemma.

Proposition 3. Let θ ∈ (0, π2] and let aθ be the arc of a circle ∂B(q0,R) which
subtends an angle θ. Let x ∈ ∂B(aθ) \ B(q0,R), let p be the nearest endpoint of aθ to
x and let q be the projection of x onto ∂B(aθ). For any τ >

√
2 there exists β∗τ > 0,

independent of θ, such that if
|x − q|

R
≤ β∗τ,

then |x − p|
|x − q| ≤ τ.

Remark 8. The most important feature of this lemma is that β∗τ is independent
of θ. This is essential in the proof of termination of the Delaunay refinement
algorithm for any τ >

√
2 without a coupled restriction based on the total

variation in orientation of the input curves.

Proof (Proposition 3). Let c be the center of B(aθ) and let φ denote the angle
between segments pc and xc as shown in Figure 11. Let r denote the radius of
B(aθ).

p
c

q

x

r

q0

R

φ

θ

aθ

Fig. 11. Configuration in Proposition 3.

Applying the fact that r = R sin
(
θ
2

)
gives

Practical Conforming Delaunay Refinement 25

|x − p| = 2r sin
(
φ

2

)
= 2R sin

(
θ
2

)
sin

(
φ

2

)
. (3)

Using |c − q0| = R cos
(
θ
2

)
and the law of cosines gives the next sequence of

equalities:

(|x − q| + R
)2 = r2 +

(
R cos

(
θ
2

))2

− 2rR cos
(
θ
2

)
cos

(
φ +

π
2

)
=

(
R sin

(
θ
2

))2

+
(
R cos

(
θ
2

))2

− 2R2 sin
(
θ
2

)
cos

(
θ
2

)
cos

(
φ +

π
2

)
= R2 + R22 sin

(
θ
2

)
cos

(
θ
2

)
sinφ

= R2
(
1 + sinθ sinφ

)
.

Rearranging leads to an expression for |x − q|:

|x − q| = R
(√

1 + sin(θ) sin(φ) − 1
)
. (4)

Combining (3) and (4) gives

|x − p|
|x − q| =

2 sin
(
θ
2

)
sin

(
φ
2

)
√

1 + sin(θ) sin(φ) − 1
=

√
1 + sin(θ) sin(φ) + 1

2 cos
(
θ
2

)
cos

(
φ
2

) . (5)

Let β := |x−q|
R and γ :=

√
2β + β2. Rearranging terms in (4) yields

γ2 = 2β + β2 = sin(θ) sin(φ). (6)

This implies that γ ≥ sinφ or γ ≥ sinθ. These two possibilities are handled
in two cases. However, since (5) is symmetric in the variables φ and θ, the
argument is identical in each case. Thus, we consider only the case γ ≥ sinφ.
Then, √

1 + sin(θ) sin(φ) =
√

1 + γ2 ≤ 1 +
γ2

2
,

and

cos
(
θ
2

)
cos

(
φ

2

)
≥ cos

(
π
4

)
cos

(
sin−1 γ

2

)
≥

(
1√
2

) 1 −
(
sin−1 γ

)2

8


≥

(
1√
2

) (
1 − π

2γ2

32

)
.

26 Alexander Rand and Noel Walkington

The final inequality results from sin−1 γ ≤ π
2γ which requires that γ ≤ 1. To

ensure this, we will seek β∗τ ≤ 1
3 . Substituting these estimates into (5) gives

|x − p|
|x − q| ≤

√
2
(

1 + γ2/4
1 − γ2π2/32

)
.

Let

γ∗ = 4

√
2(τ − √2)

8
√

2 + π2τ
,

and select
β∗τ =

1
3

min
(
1, (γ∗)2

)
.

Substitution yields that if |x−q|
R ≤ β∗τ, then

|x − p|
|x − q| ≤ τ.

Proof (Theorem 3). Recall that Ĉ denotes the PSC which includes the original
input with the protecting circles around each input vertex which are split into
arcs subtending at most π

2 . Lemma 3 ensures that it is sufficient to prove the
theorem considering local feature size with respect to Ĉ rather than C. We
will show inductively that

lfs(q, Ĉ) ≤


rq if q is an input point,
C1rq if q is a segment or arc midpoint,
C2rq if q is a circumcenter.

This inequality is shown in six cases. These cases are distinguished by the
type of simplex which is processed to cause q to be inserted and the type of
point x which is the nearest neighbor to q when q is inserted.
Case 1. Let q be a midpoint of some subsegment or arc and suppose that x lies
on a disjoint feature of the PSC. Then, lfs(q) ≤ rq, so C1 ≥ 1 must be required.

Case 2. Let q be the circumcenter of poor quality triangle t which is proposed
for insertion. Let p be the newer vertex on the shortest edge of t. Then rp is
at most the length of this short edge which is less than |p−q|

τ , since t is a poor
quality triangle. Now, the Lipschitz property of the local feature size can be
applied.

lfs(q) ≤ lfs(p) + |p − q|
≤ C1rq + |p − q|
≤

(C1

τ
+ 1

)
|p − q|

≤
(C1

τ
+ 1

)
rq.

Practical Conforming Delaunay Refinement 27

This gives the requirement

C2 ≥ C1

τ
+ 1. (7)

Case 3. Let q be a midpoint of a subsegment and that x is an endpoint of this
segment. Then q must have been inserted due to an encroaching (but rejected)
circumcenter, c. Local feature size at q is estimated through this vertex c.

lfs(q) ≤ lfs(c) + |c − q|
≤ C2rc + |c − q|
≤

(
C2
√

2 + 1
)

rq.

This gives the requirement

C1 ≥ C2
√

2 + 1. (8)

Case 4. Vertex q is the midpoint of some arc and the nearest neighbor to q lies
on an input feature (in Ĉ) which is disjoint from a.

Then lfs(q, Ĉ) ≤ |q − x| = rq since this vertex must be on a disjoint fea-
ture (with respect to Ĉ because Ĉ is non-acute). This yields the (previously
required) condition that C1 ≥ 1.

Case 5. Vertex q is the midpoint of some arc and the nearest neighbor to q is
an endpoint of a.

Let p be an endpoint of the arc a and let y be a point encroaching a which
caused a to be split. Let c be the circumcenter of B(a).

If y lies on an input feature, then

lfs(q, Ĉ) ≤ |q − y| ≤ |q − c| + |c − y| ≤ 2|p − c| ≤ 2|p − q| ≤ 2rq. (9)

Thus it is sufficient to require that

C1 ≥ 2. (10)

Otherwise, y is a (possibly rejected) circumcenter of a poor quality triangle.

lfs(q) ≤ lfs(y) + |q − y|
≤ C2ry + |q − y|
≤
√

2C2|p − c| + |q − y|
≤
√

2C2|p − q| + |q − y|
≤ (
√

2C2 + 2)rq

The fact that |q − y| ≤ 2|q − p| follows from the same reasoning as in (9).
This gives a restriction that

28 Alexander Rand and Noel Walkington

Fig. 12. Diametral balls nest properly when segments are split, while chordal balls do
not.

C1 ≥
√

2C2 + 2 (11)

which is strictly stronger than (10).

Case 6. Vertex q is the midpoint of some arc and the nearest neighbor to q is
a circumcenter x in the mesh.

Let arc a lie on a circle centered at input point q0. Unlike the case of straight
line input, an arc may be encroached by a circumcenter in the mesh which
was inserted and did not yield to the (larger) arc that was protected at the
time. This can occur because the protected chordal balls do not nest when
splitting arcs as seen in Figure 12. Let aθ be the arc containing a in the mesh
when x was inserted into the mesh. So, x ∈ B(q, |q − p|) \ B(aθ) where p is an
endpoint of a. Let aθ be the nearest endpoint of aθ to x and let θ be the angle
subtended by aθ.

Let β =
|x−q|
|q−q0 | . Now consider two cases depending on the size of β. Let β∗√

2+τ
2

be the constant given in Proposition 3.
First, suppose that β > β∗√

2+τ
2

. Now, we estimate the local feature size at q

using the Lipschitz property and the associated input point q0:

lfs(q, Ĉ) ≤ |q − q0| + lfs(q0, Ĉ)
≤ 2|q − q0|
≤ 2
β∗√

2+τ
2

|x − q|

≤ 2
β∗√

2+τ
2

rq.

We must require that

C1 ≥ 2
β∗√

2+τ
2

. (12)

Next, suppose that β ≤ β∗√
2+τ
2

. We seek to apply Proposition 3 and assert

that

Practical Conforming Delaunay Refinement 29

|x − p|
|x − q| ≤

√
2 + τ
2

.

However, x is not necessarily on the boundary of B(a) and q is not necessarily
the projection of x onto a. If |x−p|

|x−q| ≤ 1 the desired estimate holds. Otherwise,

let q′ be the projection of x onto aθ, and let x′ = q′x ∩ ∂B(aθ) as shown in
Figure 13. Then,

|x − p|
|x − q| ≤

|x − p|
|x − q′| ≤

|x′ − p|
|x′ − q′| .

Moreover,
|x′ − q′|
|q′ − q0| ≤

|x − q|
|q − q0| ≤ β

∗√
2+τ
2

and thus applying Proposition 3 (using x′ and q′) implies that

|x − p|
|x − q| ≤

|x′ − p|
|x′ − q′| ≤

√
2 + τ
2

.

p

q
q′

x

x′

q0

θ

aθ

Fig. 13. Diagram for Theorem 3.

Now the local feature size can be estimated:

30 Alexander Rand and Noel Walkington

lfs(q, Ĉ) = |x − q| + lfs(x, Ĉ)
≤ |x − q| + C2rx

≤ |x − q| + C2|x − p|

≤ |x − q| + C2

√
2 + τ
2
|x − q|

=

(
1 + C2

√
2 + τ
2

)
rq.

Then, we require C1 ≥ 1 + C2

√
2+τ
2 . This restriction and several previous ones,

(8), (10), and (11), can all be satisfied if

C1 ≥ 2 + C2

√
2 + τ
2

. (13)

Thus, it remains to find constants satisfying the three remaining condi-
tions: (7), (12), and (13). A valid choice of C1 and C2 is given below:

C2 := max

 4 + 2τ

τ − √2
,

4 − 2β∗√
2+τ
2

β∗√
2+τ
2

(
√

2 + τ)


C1 := 1 + C2

√
2 + τ
2

.

This completes the proof.

Proof (Theorem 3). These properties are immediate from the definition of the
Delaunay refinement algorithm. Note that no triangles contain large angles
since all Delaunay triangles inside the protected disks are acute although they
can be arbitrarily small if the input contains small angles.

A.3 Section 4 Details

Proof (Lemma 4). Property I follows immediately from the construction. Prop-
erties II and IV result from the local feature size bound which we assume the
input satisfies. Finally, Property III results from the fact the collar in a face
is formed based only upon lengths of subsegments in the associated input
segment. Property IV follows from the assumption (H2) on the input complex.

Proof (Lemma 5). The first inequality is immediate for any refinement. For
the second inequality, consider an additional intermediate PLC, C0. Let C0 =
(P0,S0,F) where P0 contains P and all vertices of P1 which are adjacent to
some input vertex in P on a segment of S1. Recall that P1 is the refined PLC
which satisfies the assumptions H1-3. Then S0 is the refined segments of S
based on the vertices in P0. Figure 14 depicts the various intermediate PLCs

Practical Conforming Delaunay Refinement 31

which have been defined. The result will follow by arguing the following list
of inequalities.

lfs(x,C0) ≥ k0 sinα1 lfs(x,C) (14)
lfs(x,C1) ≥ k1 lfs(x,C0) (15)
lfs(x, C̄) ≥ k2 sinα2 lfs(x,C1) (16)

Lemma 9 implies (14) and Lemma 10 implies (16). Finally (15) follows from
the fact that no acutely adjacent features are refined between C0 and C1.

C

C0

C1

C̄

Fig. 14. Intermediate PLCs described in Lemma 5 for a partial example face.

We highlight two propositions which are necessary to ensure the correct-
ness of the algorithm. Both follow from the Delaunay property. The first is
given in [8] (which gave a complete description of the 3D Delaunay refinement
algorithm for non-acute input) and provides the natural analogy to the fact
that when splitting a segment, the diametral balls of the new subsegments
are contained in the diametral ball of the old segment.

Proposition 4. [8, Lemma 4.5] LetT be the Delaunay triangulation of a planar face
F such that the circumball of each bounding segment is empty. LetB1 be the union of
the circumballs of all bounding segments of F and B2 be the union of the circumballs
of all triangles in F.

Let p ∈ F \ B1. If T ′ is the Delaunay triangulation of the face resulting from the
addition of p, defineB′2 to be the union of the circumballs of triangles in the resulting
Delaunay triangulation. Then,

32 Alexander Rand and Noel Walkington

B′2 ⊂ B1 ∪ B2.

This fact is important in ensuring that when additional collar vertices are
inserted the resulting collar simplices are not encroached by other vertices
added as circumcenters of poor quality triangles. Collar simplices can be
encroached by collar vertices in adjacent faces but these encroachments are
removed once encroachment of collar segments in adjacent faces are identical
(and thus termination can be ensured).

The next proposition motivates the idea behind protecting the collar seg-
ments. This ensures that whenever a triangle in a face is processed on the
refinement queue, either the circumcenter is valid to be inserted into the
mesh or it encroaches a collar segment, which will be queued for splitting.
This is necessary for ensuring conformity of the mesh upon termination of
the algorithm.

Proposition 5. Let A be the set of vertices on the boundary of some face F and let
A′ be a set of vertices inside F. Suppose that for each boundary segment of F there
is a circle through the end points of the segment which does not contain any vertices
of A ∪ A′ in its interior. Then the Delaunay triangulation of A ∪ A′ conforms to
F. Moreover, for any Delaunay triangle t in the interior of F, the circumcenter of t
either lies inside F or inside the empty disk associated with a boundary segment.

Proof (Lemma 6). By applying Lemma 4 to the collar region of each face,
conclude that no circumcenter can encroach a collar simplex. Property I then
follows because a collar simplex can only be encroached by a vertex on
an adjacent collar segment which also encroaches the corresponding collar
segment in the face with the original simplex.

Property II results from the fact that nearly formed collar arcs meet at an
angle of at least π

2 since the original arcs were split to subtend angles of at
most π

2 .

Proof (Theorem 5). Lemma 5 ensures that it is sufficient to prove the inequality

lfs(q, C̄) ≤ Crq.

This standard proof of termination of Ruppert’s algorithm is used in
conjunction with the techniques in the proof of Theorem 3 to handle the
collar arcs around input points.

Acute angles usually cause the the standard proof to fail. This failure
occurs when a simplex (a Delaunay triangle in a face or a subsegment of
an input segment) is encroached by a vertex on an adjacent input feature.
Lemma 6 ensures that this does not occur: collar simplices are never split.
If a collar segment is split due to a vertex on another collar segment, this
vertex may lie on an adjacent input feature but these collar segments are
disjoint features in the PLC C̄ ensuring that the original proof of termination
for Delaunay refinement holds.

Practical Conforming Delaunay Refinement 33

Proof (Theorem 6). These properties are immediate from the description of the
algorithm (which ensures remaining poor quality tetrahedra failed the safety
criteria) and Lemma 6 (which ensures that collar simplices conform to the
input).

Proof (Lemma 5). This follows from Proposition 2.

Proof (Theorem 8). The important task is to verify that the Delaunay tetrahe-
dralization conforms to the input inside the intestine region. Because each
triangle on the boundary of the collar is protected, no vertex outside of the
intestine region can lie in the diametral ball of a required face. By constructing
all vertices on cylinders around concentric rings, no vertex on the boundary
of the cylinder can encroach upon the diametral ball of a required face either.

Proof (Theorem 9). This follows by construction.

