Quiz #5

1. (3 points) The vectors \vec{u} and \vec{v} are three-dimensional vectors that lie in the xy-plane. You may assume that the angle between the vectors is 150°, that $|\vec{u}| = 6$ and that $|\vec{v}| = 8$. Find the area of the parallelogram that has \vec{u} and \vec{v} as two of its sides.

Area =
$$|\vec{u} \times \vec{V}|$$
.
 $|\vec{u} \times \vec{V}| = |\vec{u}| \cdot |\vec{V}| \cdot \sin(\theta)$
= $(6)(8) \cdot \sin(150^\circ)$
= 24 .

SOLUTIONS

2. In this problem \vec{u} , \vec{v} and \vec{w} will always refer to the following vectors:

$$\vec{u} = \langle 1, 2, -3 \rangle$$
 $\vec{v} = \langle -7, -14, 21 \rangle$ $\vec{w} = \langle 0, 1, 1 \rangle$.

(a) (1 point) Calculate $\vec{v} \times \vec{w}$. Show your work and circle your final answer.

$$\vec{\nabla} \times \vec{W} = \vec{i} \quad \vec{j} = (-35, 7, -7)$$

$$-7 - 14 \quad 21 \quad -7 \quad -14$$

$$0 \quad 1 \quad 1 \quad 0 \quad 1$$

(b) (2 points) Calculate the volume of the parallelpiped whose sides are formed by the vectors \vec{u} , \vec{v} and \vec{w} . Show your work and circle your final answer.

Volume =
$$|\vec{u} \cdot (\vec{v} \times \vec{w})|$$

= $|\langle 1, 2, -3 \rangle \cdot \langle -35, 7, -7 \rangle|$
= $|-35 + 14 + 21|$
= 0.

SOLUTIONS

In this problem \vec{u} , \vec{v} and \vec{w} will always refer to the following vectors:

$$\vec{u} = \langle 1, 2, -3 \rangle$$
 $\vec{v} = \langle -7, -14, 21 \rangle$ $\vec{w} = \langle 0, 1, 1 \rangle$.

(c) (1 point) Calculate $\vec{u} \times \vec{v}$. Show your work and circle your final answer.

$$\vec{u} \times \vec{v} = \vec{i} \quad j \quad k \quad \vec{i} \quad j$$

$$1 \quad 2 \quad -3 \quad 1 \quad 2$$

$$-7 \quad -14 \quad 21 \quad -7 \quad -14$$

- (d) (1 point) What can you conclude about the vectors \vec{u} and \vec{v} ? Circle any of the statements that you believe to be true. Note that you will lose points for circling statements that are not true.
 - (i.) \vec{u} and \vec{v} are parallel (or anti-parallel).
 - (ii.) \vec{u} and \vec{v} are both perpendicular to the vector $\vec{v} \times \vec{w}$.
 - iii. \vec{u} and \vec{v} are orthogonal.
 - iv. \vec{u} and \vec{v} are unit vectors.
 - v. $\frac{\vec{u}}{|\vec{v}|}$ is a unit vector.

SOLUTIONS

3. (2 points) Find an equation of the form:

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \cdot \langle a, b, c \rangle$$

for the line that is formed by the intersection of the following planes:

$$x + y - z = 2$$

$$3x - 4y + 5z = 6$$
.

Show all work and circle your final answer.

Direction vector of line:

$$\langle 1, 1, -1 \rangle \times \langle 3, -4, 5 \rangle = i j k i j'$$

 $1 1 -1 1 1$
 $3 -4 5 3 -4$

Coordinates of point on intersection:

Assume
$$z=0$$
. $x+y=2$

$$3x - 4y = 6$$

Solution:
$$x = 2$$
 $y = 0$

Coordinates of point are (2,0,0).

<u>Vector</u> equation of line:

$$\langle x, y, z \rangle = \langle 2, 0, 0 \rangle + t \cdot \langle 9, -8, -7 \rangle$$