Quiz #5

1. (3 points) The vectors \vec{u} and \vec{v} are three-dimensional vectors that lie in the *xy*-plane. You may assume that the angle between the vectors is 150°, that $|\vec{u}| = 6$ and that $|\vec{v}| = 8$. Find the area of the parallelogram that has \vec{u} and \vec{v} as two of its sides.

2. In this problem \vec{u} , \vec{v} and \vec{w} will always refer to the following vectors:

 $\vec{u} = \langle 1, 2, -3 \rangle$ $\vec{v} = \langle -7, -14, 21 \rangle$ $\vec{w} = \langle 0, 1, 1 \rangle$.

(a) (1 point) Calculate $\vec{v} \times \vec{w}$. Show your work and circle your final answer.

(b) (2 points) Calculate the volume of the parallelpiped whose sides are formed by the vectors \vec{u} , \vec{v} and \vec{w} . Show your work and circle your final answer.

In this problem \vec{u} , \vec{v} and \vec{w} will always refer to the following vectors:

$$\vec{u} = \langle 1, 2, -3 \rangle$$
 $\vec{v} = \langle -7, -14, 21 \rangle$ $\vec{w} = \langle 0, 1, 1 \rangle$.

(c) (1 point) Calculate $\vec{u} \times \vec{v}$. Show your work and circle your final answer.

- (d) (1 point) What can you conclude about the vectors \vec{u} and \vec{v} ? Circle any of the statements that you believe to be true. Note that you will lose points for circling statements that are not true.
 - i. \vec{u} and \vec{v} are parallel (or anti-parallel).
 - ii. \vec{u} and \vec{v} are both perpendicular to the vector $\vec{v} \times \vec{w}$.
 - iii. \vec{u} and \vec{v} are orthogonal.
 - iv. \vec{u} and \vec{v} are unit vectors.
 - **v.** $\frac{\vec{u}}{|\vec{v}|}$ is a unit vector.

3. (**2 points**) Find an equation of the form:

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \cdot \langle a, b, c \rangle$$

for the line that is formed by the intersection of the following planes:

$$x + y - z = 2$$

$$3x - 4y + 5z = 6.$$

Show all work and circle your final answer.