Solutions to Homework #4

Problems from Pages 521-522 (Section 10.1)

6. (a) In \mathbb{R}^2 , $x = 4$ represents a vertical line. In \mathbb{R}^3 this represents a plane that is parallel to the *yz* plane. The sketches are shown below.

(b) In \mathbb{R}^3 , $y = 3$ is a plane (parallel to the *xz* plane) as is $z = 5$ (parallel to the *xy* plane). The intersection of the two is a line. The sketch is shown below.

8. The distance from the point (3, 7, −5) to each of the planes and axes are summarized in the table shown in the next page.

10. The equation of the sphere is:

$$
(x-2)^{2} + (y+6)^{2} + (z-4)^{2} = 25.
$$

The intersections of this sphere with each of the coordinate planes are given in the table below.

14. Completing the square gives:

$$
x^{2} + y^{2} + z^{2} = 4x - 2y
$$

$$
x^{2} - 4x + y^{2} + 2y + z^{2} = 0
$$

$$
x^{2} - 4x + 4 + y^{2} + 2y + 1 + z^{2} = 5
$$

$$
(x - 2)^{2} + (y + 1)^{2} + z^{2} = 5.
$$

Problems from Pages 529-530 (Section 10.2)

4. We will use the vectors *a* and *b* as shown below to construct the vectors sums in this problem.

18. The vector is six times a unit vector that has the same direction as the given vector.

$$
\vec{v} = \frac{6}{\sqrt{(-2)^2 + 4^2 + 2^2}} \langle -2, 4, 2 \rangle = \frac{1}{2\sqrt{6}} \langle -2, 4, 2 \rangle.
$$

(where all numbers are given in units of Newtons) and the tension in the wire that **24.** The tension in the wire that is three meters long is approximately <−23, 30> is 5 meters long is approximately <23, 19>.

Problems from Pages 535-537 (Section 10.3)

10. Note that as \vec{u} is a unit vector, so $|\vec{w}| = 1$ and $|\vec{v}| = \frac{\sqrt{2}}{2}$ 2 using the Theorem of Pythagoras. The angle between u and w is $\pi/2$ radians so that these vectors are orthogonal and:

$$
\vec{u}\bullet\vec{w}=0.
$$

The angle between u and v is $\pi/4$ radians so that:

$$
\vec{u} \bullet \vec{v} = (1) \cdot \left(\frac{\sqrt{2}}{2}\right) \cdot \cos\left(\frac{\pi}{4}\right) = \frac{1}{2}.
$$

these vectors must be zero. The values of b that we want are the solutions of the **20.** For the vectors \lt −6, *b*, 2> and \lt *b*, *b*², *b*> to be orthogonal, the dot product of equation:

$$
b^3 - 4b = b(b + 2)(b - 2) = 0.
$$

These are $b = 2$, $b = -2$ and is you consider the zero vector to be orthogonal to anything, $b = 0$.

38. We can imagine a cube with side lengths of 1 as shown in the diagram below.

The vector along the diagonal of the cube is $\langle 1, 1, 1 \rangle$ and the vector that lies across the diagonal of the adjacent face is <1, 1, 0>. The angle between these are given by:

$$
\theta = \cos^{-1}\left(\frac{\langle 1,1,1\rangle \bullet \langle 1,1,0\rangle}{\sqrt{3}\cdot\sqrt{2}}\right) = \cos^{-1}\left(\frac{2}{\sqrt{6}}\right) \approx 35^\circ.
$$