
Math 259              Winter 2009 
 

Recitation Handout 7:  Visualizing a Linear Approximation 
 

 
In calculus we have very good tools to visualize 
the tangents to functions of the form y = f(x) and z 
= f(x, y).  In the case of y = f(x) we can imagine a 
tangent line and for z = f(x, y) we can imagine a 
tangent plane. 
 
In both cases, the mathematical object that we 
create is a linear approximation of the function 
that does a pretty good job of approximating 
function values in a neighborhood of the point of 
tangency. 

 
 
Suppose we now consider a function v = f(x, 
y, z).  We can follow the analogy of the 
tangent line and tangent plane formulas to 
create an analogous formula for a higher 
dimensional function.  But how can you 
imagine what that analogous formula 
actually represents?  Answering this 
question is the subject of today’s recitation. 
 
 
 
 
Higher Dimensional Linear Approximations 
 
For the function y = f(x), the linear approximation to the function at x = x0 is the equation of the 
tangent line: 
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For the function z = f(x, y), the linear approximation to the function at (x, y) = (x0, y0) is the 
equation of the tangent plane: 
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1. Consider the function v = g(x, y, z).  Study the patterns of Equations (1) and (2) (above) 

and write a general formula for the linear approximation to the function at the point (x, y, 
z) = (x0, y0, z0). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. The linear approximation of the function v = q(x, y, z) = x⋅y⋅z at the point (x, y, z) =  

(1, 2, 3) is: 
 

v = 6 + 6⋅(x − 1) + 3⋅(y − 2) + 2⋅(z − 3). 
 

Plug the function q(x, y, z) and the point (x, y, z) = (1, 2, 3) into your general formula 
from Question 1 to see if your general formula is correct.  If it isn’t correct, try to fix your 
general formula. 

 
 



Visualizing the Linear Approximation for f(x, y) 
 
As we have noted, one way to visualize the linear approximation for a function of the form z = 
f(x, y) is to imagine a tangent plane. 
 
In this part of the recitation we will learn another way to imagine the linear approximation, a way 
that we will generalize to v = g(x, y, z) in the last part of the recitation. 
 
 
3. The graph of the function z = f(x, y) = π⋅x2⋅y is shown below.  As accurately as you can, 

draw the tangent plane to the point (x, y) = (1, 1) over the top of the graph.  
 
 

 
 
 

(Note that to make the tangent plane a little easier to draw, the graph has been 
drawn in an unusual way with the positive z-axis extending down the page.) 

 
 

Based on your sketch, do you think that the z-value of the tangent plane at a point (x, y) 
that is near (1, 1) will be larger or smaller than the value of z = f(x, y)?  Remember that 
the graph is drawn with z-values increasing as you go down the page. 

 
 



 
4. Calculate the equation of the tangent plane of z = f(x, y) = π⋅x2⋅y when the point of 

tangency is the point (x, y) = (1, 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Use the equation that you obtained for the tangent plane to complete the values in the 

table given below.  These values are all estimates of the value of f(x, y) using the tangent 
plane to approximate the value of f(x, y) near (x, y) = (1, 1). 
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Calculus Experiments with Play Doh 
 
6. If we replace the letters x and y in the formula for f(x, y) by the letters r and h, then the 

formula for f(x, y) resembles the formula for the volume of a cylinder: 
 

z = f(r, h) = π⋅r2⋅h. 
 

Imagine that you have a cylinder with radius 1 and height 1 (as shown in the diagram 
below).  Modify this diagram to show how the appearance of the cylinder would be 
different if the height of the cylinder was increased from h = 1 to h = 1.1.  Calculate the 
new volume. 
 
 

 r = 1

 h = 1

 
 
7. Now, imagine that we have the cylinder with r = 1 and h = 1 again, and that this time the 

cylinder is changed by increasing the radius from r = 1 to r = 1.1.  Modify the diagram 
(given below) to show how the appearance of the cylinder is different. 

 
 

 r = 1

 h = 1

 
 



 
8. Use the method of calculation described below to calculate the volume of Play Doh in a 

tub of Play Doh. 
 
 (a) Get a tub of Play-Doh from your recitation instructor. 
 

(b) Pack the Play-Doh around the curved side of the cylindrical tub so that it forms an 
even layer. 

 
 (c) Use a knife to slit the Play Doh vertically down one side. 
 

(d) Unroll the Play Doh from the cylinder so that it is flat and forms a rectangular 
slab. 

 
(e) Use a ruler to measure the length, width and thickness of the slab of Play Doh and 

multiply them together to get the volume. 
 
 

Quantity Value (cm or cm3) 
 

 
Length 

 

 

 
Width 

 

 

 
Thickness 

 

 

 
Volume 

 

 

 
 
 
9. How could you have estimated the length and the width of the Play Doh slab using 

measurements taken from the plastic Play Doh tub? 
 
 



 
10. Adapt your answers to Questions 8 and 9 to estimate the extra volume that you drew on 

the diagram from Question 7.  Add this extra volume to the original volume to get an 
estimate for the total volume. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11. Compare the numbers that you obtained in Question 6 and Question 10 to the numbers 

that you recorded in the table in Question 5.  What do you notice? 
 
 



Visualizing the Linear Approximation for f(x, y, z) 
 
You will probably have noticed a correspondence between the numbers when you calculated 
Question 5 and Question 11.  This is no accident, and this correspondence provides us with a 
way to visualize the meaning of the terms in a linear approximation.  The relationship between 
the volumes that you calculated and the terms in the linear approximation for f(r, h) = π⋅r2⋅h is 
illustrated below. 
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The total volume that is equal to the value of the linear approximation for f(r, h) = π⋅r2⋅h 
evaluated at the point (r, h) is the following. 
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Note that this volume is not exactly the same as the volume of the cylinder with radius r and 
height h.  The volume of the cylinder with radius r and height h includes the volume of the small 
wedge in the side and the “ring” around the cap at the top.  However, if the differences r − r0 and 
h − h0 are both small then the volumes of the wedge and the ring are also small, and the volume 
of the shape shown above is a close approximation of the value of f(r, h). 
 
 
12. Go back and read your answer to Question 3 of this recitation.  How could you have 

predicted that whatever shape that you get for the linear approximation to f(r, h) will have 
a volume that is less than the volume of the cylinder of radius r and height h? 

 



So, one way to visualize the linear approximation for a function is to imagine f(x0, y0, z0) as a 
volume, and the terms of the linear approximation as the additions to that volume when the 
length of each side is increased slightly, from x0 to x, from y0 to y and from z0 to z.  In this last 
part of the recitation we will adapt this insight to develop a way to visualize the meaning of the 
linear approximation to a higher dimensional function such as f(x, y, z). 
 
13. Consider the higher dimensional function:  

! 

v = q x,y,z( ) = x " y " z .  In Question 2, you 
verified that the linear approximation of this function at the point (x, y, z) = (1, 2, 3) is: 

 
v = 6 + 6⋅(x − 1) + 3⋅(y − 2) + 2⋅(z − 3). 

 
Use the diagrams shown below to sketch volumes that correspond to each of the terms of 
the linear approximation of q(x, y, z). 
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14. What are the areas of the three faces of the rectangular boxes from Question 13?  How 

are these areas connected with the values 6, 3 and 2 that appear in the formula for the 
linear approximation?  How do the quantities (x – 1), (y – 2) and (z – 3) from the formula 
for the linear approximation appear in the diagrams that you drew in Question 13? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15. Use the diagram shown below to draw a picture that shows the value of the linear 

approximation of q(x, y, z) evaluated at a point (x, y, z) near (1, 2, 3) visualized as a 
volume. 
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