SolLuTIONS

Math 122 ' Fall 2008

Handout 12: Review Problems for Unit Test 2

The topics that will be covered on Unit Test 2 are as follows,

Areas between curves.

Calculating volumes (non-rotation) using integrals.
Volumes of revolution — disk method.

Volumes of revolution — washer method.

Volumes of revolution — shell method.

Arc length.

Using integrals to calculate masses.

Center of mass.

Using integrals to calculate work in physics.

Using integrals to calculate hydrostatic force.
Euler’s method.

Slope fields.

Equilibrium solutions.

Separation of variables.

Integrating factors.

Second order, homogeneous differential equations with constant coefficients.

‘Method of Undetermined Coefficients.

This (roughly) covers Chapter 7 of the textbook plus the additional topics on dlfferentlai equations: that
have been covered in lecture and recitation.
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Calculate the volume of the solid whose base is the region bounded by:
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SoLULuTioNS

i for 0 = x < oo, Let R be the region bounded by:
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* The line x = 0, the line y = 0, and the curve y = ] -

2. Consider the function y =

Find the exact volume of the solid that is generated when the region R is revolved around the x-
axis. -
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3. The following graph shows the function f{x) and the points x = g and x = b {a < b)." Three
quantities are defined using this graph as follows:

y y=f(x)
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SoLUTIONS

4, The storage shed shown in the diagram below is in the shape of a half cylinder. The radius of the
cylinder is 10 feet and the Jength of the shed is 30 feet. Suppose the shed is completely filled
with sawdust. The density of the sawdust at a height of & feet above the floor is equal to (20 ~ k)
pounds per cubic foot. If sawdust is extracted through a vent in the top of the roof, calculate the
amount of work that must be done to clear the shed of sawdust when it is completely full.
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SOLUTIONS

Find solutions to the differential equations below, subject to the given initial conditions. In each
case, demonsirate that your answer is correct by providing step-by-step work to show how your

answer was obtained.
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SoLuwTION S

6. Find the formula for y(x), the solution of initial value problem given below. Your final answer
should contain no unspecified constants.

y'=5y'+6y=c ¥(0)=0 y(0)=1.
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