
Math 122                   Fall 2008 
 

Solutions to Homework #9 
 
Problems from Pages 436-437 (Section 8.3) 
 
 
10. We begin by making a guess concerning the convergence or divergence of the 

series: 

! 

n

n "1
n= 2

#

$ . 

 
My guess is that this series diverges.  I am basing this guess on the observation 
that for large values of n, 

 

! 

n

n "1
#

n

n
=
1

n
. 

 

Now, 

! 

1

n
n= 2

"

#  is a p-series with p = 0.5 < 1 so it diverges.  I guess that 

! 

n

n "1
n= 2

#

$  

does something similar (i.e. diverges also). 
 

To use the Comparison test we will set 

! 

b
n

=
n

n "1
 and build a series 

! 

a
n

n=1

"

#  that 

satisfies the following two conditions: 
 

Condition I:  an < bn 
 

Condition II:  

! 

a
n

n=1

"

#  diverges. 

 
To build an we will start with the denominator of bn and the observation that when 
n > 1: 

n − 1 < n 
so that, 

! 

1

n
<

1

n "1
. 

 
Multiplying both sides of this inequality by the positive 

! 

n  does not change the 
direction of the inequality sign and gives that: 

 

! 

1

n
<

n

n
<

n

n "1
. 



 
Setting 

! 

a
n

= 1

n
 ensures that Condition I is satisfied.  To demonstrate that 

Condition II is satisfied, note that 

! 

a
n

n= 2

"

# =
1

n
n= 2

"

#  which is a p-series with p = 0.5 

< 1 ensuring that it diverges. 
 
 

As Conditions I and II are met by 

! 

a
n

= 1

n
, we can conclude that the Comparison 

Test shows that the infinite series 

! 

n

n "1
n= 2

#

$  diverges. 

 
 

14. We begin by making a guess concerning whether the infinite series 

! 

n
2

n
3

+1
n=1

"

#  

converges or diverges.  I guess that the infinite series diverges.  I base this guess 
on the fact that for large values of n, 

 

! 

n
2

n
3

+1
"
n
2

n
3

=
1

n
. 

 

The infinite series 

! 

1

n
n=1

"

#  is a p-series with p =1 so it diverges.  Because of the 

similarity between the terms of this series and the terms of the more complicated 

series we are investigating, I guess that 

! 

n
2

n
3

+1
n=1

"

#  also diverges. 

 

To demonstrate that the infinite series 

! 

n
2

n
3

+1
n=1

"

#  actually does diverge, we will use 

the Comparison Test.  To do this we will set 

! 

b
n

=
n
2

n
3

+1
 and build a series 

! 

a
n

n=1

"

#  

that satisfies the following two conditions: 
 

Condition I:  an < bn 
 

Condition II:  

! 

a
n

n=1

"

#  diverges. 

 
To build an we will start with the denominator of bn and the observation that when 
n > 1: 

n3 + 1 < n3 + n3 = 2⋅n3. 
 
Taking reciprocals gives: 



 

! 

1

2 " n
3

<
1

n
3

+1
. 

 
Multiplying both sides of this inequality by the positive n2 preserves the direction 
of the less than sign giving, 

 

! 

1

2
"
1

n
<

n
2

2 " n
3

<
n
2

n
3

+1
. 

 
Setting 

! 

a
n

= 1

2
" 1
n
 gives that an < bn satisfying Condition I.  To demonstrate that 

Condition II is also satisfied, note that: 
 

! 

a
n

n=1

"

# =
1

2
$
1

n
n=1

"

# =
1

2

n
n=1

"

# , 

 

which is a p-series with p = 1.  As such, 

! 

a
n

n=1

"

#  diverges so by the Comparison 

Test we may conclude that 

! 

n
2

n
3

+1
n=1

"

#  also diverges. 

 
 

16. We begin with a guess as to whether the infinite series 

! 

n
2 "1

3n
4

+1
n=1

#

$  converges or 

diverges.  I guess that this series converges.  I base this on the observation that 
when n is large,  

 

! 

n
2
"1

3n
4

+1
#

n
2

3 $ n
4

=
1

3

n
2

. 

 

The infinite series 

! 

1

3

n
2

n=1

"

#  is a p-series with p = 2 > 1 so it converges.  Because of 

the similarity in behavior between the terms of this series and the more 

complicated one we are investigating here, I guess that the series 

! 

n
2 "1

3n
4

+1
n=1

#

$  also 

converges. 
 



To demonstrate the convergence of the infinite series 

! 

n
2 "1

3n
4

+1
n=1

#

$  we will use the 

Comparison Test.  To do this we will set 

! 

a
n

=
n
2
"1

3n
4

+1
 and build an infinite series 

! 

b
n

n=1

"

#  that satisfies both of the following conditions: 

 
Condition I:  an < bn 

 

Condition II:  

! 

b
n

n=1

"

#  converges. 

 
To begin this process we will start with the denominator of an and the following 
inequality: 

! 

3n
4

< 3n
4

+1. 
 

Taking reciprocals reverses the direction of the inequality and gives: 
 

! 

1

3n
4

+1
<
1

3n
4

. 

 
Now, if n > 1 then 0 < n2 − 1 < n2 so that: 

 

! 

a
n

=
n
2
"1

3n
4

+1
<

n
2

3n
4

+1
<
n
2

3n
4

=
1

3

n
2

. 

 
Setting 

! 

b
n

= 1

3
" 1

n
2
 gives us the terms of a series that satisfy Condition I.  Noting 

that: 

! 

b
n

n=1

"

# =
1

3

n
2

n=1

"

#  

 
shows that Condition II is also satisfied because this is a p-series with p = 2 > 1, 
and so convergent.  As Conditions I and II have both been satisfied with the 

choice of 

! 

b
n

= 1

3
" 1

n
2
, the Comparison Test gives that the infinite series 

! 

n
2 "1

3n
4

+1
n=1

#

$  

converges. 
 
 
20. We begin this problem with the customary guess concerning the convergence or 

divergence of the given infinite series, in this case, 

! 

1

n
3

+1n=1

"

# .  I guess that this 

infinite series converges.  The reason for this guess is the observation that for 
large values of n,  



 

! 

1

n
3

+1
"

1

n
3

=
1

n
3

2

. 

 

The infinite series 

! 

1

n
3

2

n=1

"

#  is a p-series with p = 1.5 > 1.  This series converges, and 

so I guess that 

! 

1

n
3

+1n=1

"

#  also converges because the terms in the two series are 

very similar when n is large. 
 

To formalize the demonstration that 

! 

1

n
3

+1n=1

"

#  converges, we will use the 

Comparison Test.  To do this we will set 

! 

a
n

=
1

n
3

+1
 and build an infinite series 

! 

b
n

n=1

"

#  that satisfies both of the following conditions: 

 
Condition I:  an < bn 

 

Condition II:  

! 

b
n

n=1

"

#  converges. 

 
To begin this process we will start with the contents of the square root from the 
denominator of an and the following inequality: 

 

! 

n
3

< n
3

+1. 
 

As the square root function is a monotonically increasing function, taking square 
roots of both sides does not change the direction of the inequality: 

 

! 

n
3

< n
3

+1. 
 

Taking reciprocals does change the direction of the inequality, leaving us with: 
 

! 

1

n
3

+1
<

1

n
3

=
1

n
3

2

. 

 
We will set 

! 

b
n

= 1

n
3

.  The inequality immediately above shows that an < bn so that 

Condition I is satisfied by this choice.  Furthermore, the series 

! 

1

n
3

2

n=1

"

#  is a p-series 

with p = 1.5 > 1.  This series converges, and so Condition II is satisfied by the 



choice of 

! 

b
n

= 1

n
3

.  With Conditions I and II both satisfied, the Comparison Test 

gives that the infinite series 

! 

1

n
3

+1n=1

"

#  converges. 

 
 
24. This last problem from Section 8.3 will also be approached by initially making a 

guess concerning the convergence or divergence of the infinite series, 

! 

1+ sin n( )
10

n

n= 0

"

# .  I guess that this series converges.  The reasoning behind this guess 

is:  the numerator is bounded above by 2 whereas the denominator grows rapidly 
as n increases. 

 
To demonstrate convergence formally we will use the Comparison Test.  To do 

this, set 

! 

a
n

=
1+ sin n( )
10

n
.  We will build an infinite series 

! 

b
n

n= 0

"

#  that satisfies both 

of the following conditions: 
 

Condition I:  an < bn 
 

Condition II:  

! 

b
n

n= 0

"

#  converges. 

 
To begin this process note that for any value of n, 0 ≤ 1+ sin(n) ≤ 1 so that: 

 

! 

1+ sin n( ) < 2 . 
 

For any value of n, 10n is a positive number so dividing both sides of the 
inequality show immediately above by 10n will not alter the direction of the 
inequality sign.  Doing this gives: 

 

! 

1+ sin n( )
10

n
<
2

10
n

. 

 
Setting 

! 

b
n

= 2 " 1

10( )
n , the inequality immediately above shows that this choice 

satisfies Condition I’s requirement that an < bn.  Furthermore, noting that 

! 

b
n

n= 0

"

# = 2 $ 1

10( )
n

n= 0

"

#  is a geometric series with r = 0.1 (and hence convergent) gives 

that Condition II also holds.  As both Condition I and Condition II hold, the 

Comparison Test gives that the infinite series 

! 

1+ sin n( )
10

n

n= 0

"

#  converges. 

 
 



 
Problems from Pages 446-447 (Section 8.4) 
 
 
10. Convergence of the series 
 

The series 

! 

"1( )
n

n # 5n
n=1

$

%  is an alternating series.  The factor of (−1)n produces the 

change in sign from term to term.  To establish the conditional convergence of 
this series, we can use the Alternating Series Test for Conditional Convergence.  
This particular series also happens to be absolutely convergent so for the sake of 
variety, instead of using the alternating series test, we will use the Ratio test to 
demonstrate absolute convergence (and absolute convergence implies conditional 
convergence). 

 
The Ratio Test 

 

Set 

! 

b
n

=
"1( )

n

n # 5
n

.  Then the ratio that we need to set up and simplify is: 

 

! 

b
n+1

b
n

=
"1( )

n+1

n +1( ) # 5n+1
#
n # 5

n

"1( )
n

=
"n

5n + 5
. 

 
Taking the limit of 

! 

b
n+1

b
n

 as n → ∞ gives a result of 0.2.  As the limit is less than 

one, the Ratio test gives that the infinite series 

! 

"1( )
n

n # 5n
n=1

$

%  is absolutely convergent, 

and hence also conditionally convergent. 
 
 

Number of terms to approximate the sum of the series 
 

Let SN represent the Nth partial sum of the infinite series 

! 

"1( )
n

# a
n

n=1

$

%  (that is, SN is 

the sum of the first N terms of the series added together, 

! 

S
N

= "1( )
n

# a
n

n=1

N

$ ).  Let S 

represent the sum of the infinite series, i.e. 

! 

S = "1( )
n

# a
n

n=1

$

% . 

 
 The error involved in using SN to approximate S is bounded above by aN + 1. 
 



To determine the value of N that should be used to estimate 

! 

S =
"1( )

n

n # 5n
n=1

$

%  with 

! 

S
N

=
"1( )

n

n # 5n
n=1

N

$  incurring an error of less than 0.0001, we will solve the equation: 

 

! 

a
N +1 =

1

N +1( ) " 5N +1
< 0.0001. 

 
This is a very difficult equation to solve algebraically so we will find an 
approximate solution using a graphing calculator and then round the value of N 
that we get up to the nearest whole number.  The steps involved in solving this 
problem using a graphing calculator are shown below. 

 

  Enter the two sides of 
  the inequality as two 
  separate functions into 
  the calculator.

  Set the size of the 
  graphing window so  
  that the intersection  
  point of Y1 and Y2  
  will show clearly on  
  the calculator screen.

  Display the two 
  graphs on the calcu-
  lator screen.  Make  
  sure the intersection  
  point is visible.

  Use the calculator’s  
  ability to find an  
  intersection point to  
  locate the coordinates  
  of the intersection  
  point.

  The x-coordinate of  
  the intersection point  
  is the value of N that  
  we are looking for.

 
 

In this case, the solution of the equation is x ≈ 3.75 so rounding this up gives that 

using N = 4 should give an approximation to 

! 

S =
"1( )

n

n # 5n
n=1

$

%  that has an error of less 

than 0.0001. 
 
 

16. In order to approximate the sum of the series 

! 

S =
"1( )

n

3
n # n!

n=1

$

%  by a partial sum 

! 

S
N

=
"1( )

n

3
n # n!

n=1

N

$  with an error of less than 0.000005 (which will safely guarantee 

four decimal places of accuracy), we need to determine the value of N that we 
should sum to. 

 
As noted earlier, the error involved in using SN to approximate S is bounded above 
by aN + 1, i.e. the absolute value of the (N + 1)th term of the series. 

 
Determine N for the partial sum 

 



Set 

! 

a
n

=
1

3
n
" n!

.  To determine the value of N that we need, we must solve the 

equation: 

! 

a
N +1 =

1

3
N +1

" N +1( )!
< 0.000005 = 5 #10$6 . 

 
This is a very difficult problem to solve using algebra, so we will solve it by 
making a table on a graphing calculator.  The steps involved in doing this on a TI-
84 calculator are shown in the diagram below. 

 

  Enter the left hand 
  side of the inequality
  as Y1 in the calcu-
  lator.

  Press [2nd][TBLSET]
  and set TblStart to 1 
  and ΔTbl to 1.

  Press [2nd][TABLE]
  and look down the  
  Y1 column for the 
  first value that is less  
  than 0.00001.  The  
  corresponding x-value  
  is the value of N.  

 
The calculator shows that we should use N = 5 to ensure the level of accuracy 
desired.  You can either add up the first 5 terms of the series by hand or have the 
calculator do it.  The result of this computation is given below. 

 

! 

S " S
5

=
#1( )

n

3
n $ n!

n=1

5

% = #0.2834 . 

 
 

22. To determine whether or not the infinite series 

! 

"1( )
n

#
n

n
2 +1

n=1

$

%  converges 

conditionally, we can use the Alternating Series Test for Conditional 
convergence.  This test is applicable because this infinite series has the factor of 
(−1)n which causes the terms to alternate sign. 

 

Setting 

! 

a
n

=
n

n
2

+1
, the two conditions that must be met for the Alternating Series 

Test are: 
 

Condition I:  an + 1 < an. 
 

Condition II:  The limit of an as n → ∞ must be zero. 
 
 



Demonstrating that Condition I holds: 
 

We will begin the demonstration that Condition I holds with the rather unlikely 
but nevertheless valid (when n > 1) inequality: 

 

! 

n
3

+ n
2

+ n +1< n
3

+ 2n
2

+ 2n . 
 

Factoring both sides of the above inequality gives: 
 

! 

n +1( ) " n2 +1( ) < n " n +1( )
2

+1( ). 
 

Dividing both sides by the positive quantity 

! 

n
2 +1( ) " n +1( )

2

+1( )  does not affect 
the direction of the inequality sign and gives us the inequality we require to 
establish Condition I: 

 

! 

a
n+1 =

n +1

n +1( )
2

+1
<

n

n
2 +1

= a
n
. 

 
 

Demonstrating the Condition II holds: 
 

The limit of an as n → ∞ is equal to zero because the largest power of n in the 
denominator of an is greater than the largest power of n in the numerator. 

 
Since Conditions I and II have both been met, the Alternating Series Test gives 

that the infinite series 

! 

"1( )
n

#
n

n
2 +1

n=1

$

%  converges conditionally. 

 
Absolute Convergence 

 

The infinite series 

! 

"1( )
n

#
n

n
2 +1

n=1

$

%  does not converge absolutely.  The question of 

the absolute convergence of this series is equivalent to the question of the 

convergence of the infinite series: 

! 

n

n
2

+1
n=1

"

# .  This can be investigated using the 

Integral Test. 
 

Performing the Integral Test 
 

We will set 

! 

f x( ) =
x

x
2 +1

.  In order to use the Integral Test we must first verify 

that f(x) obeys the two necessary conditions: 
 



(i) f(x) > 0     (ii) 

! 

" f x( ) < 0  
 

for x > 1. 
 

Condition (i) holds because the numerator (x) and denominator (1 + x2) of f(x) are 
both positive when x > 1. 

 
Condition (ii) hold because when we use the Quotient Rule to differentiate f(x) we 
get: 

! 

" f x( ) =
x
2 +1# 2x $ x

1+ x
2( )
2

=
1# x

2

1+ x
2( )
2

. 

 
When x > 1, the quantity 1 − x2 is negative so the numerator of 

! 

" f x( ) is negative 
while the denominator is positive.  This makes the sign of 

! 

" f x( ) negative overall. 
 

To carry out the integral test we must calculate the improper integral 

! 

x

1+ x
2
dx

1

"

# , 

which we will do with the help of the u-substitution u = 1 + x2. 
 

! 

x

1+ x
2
dx =

Lim

a"#
1

#

$
x

1+ x
2
dx

1

a

$ =
Lim

a"#
1

2
% ln 1+ x

2( )[ ]
1

a

=
Lim

a"#
1

2
% ln 1+ a2( ) & 1

2
% ln 2( ) = +#

 
The improper integral diverges so the Integral Test says that the infinite series 

! 

n

n
2

+1
n=1

"

#  diverges also.  This means that the series 

! 

"1( )
n

#
n

n
2 +1

n=1

$

%  does not 

converge absolutely. 
 
 

32. To determine whether or not the infinite series 

! 

"1( )
n

n # ln n( )
n= 2

$

%  converges 

conditionally, we can use the Alternating Series Test for Conditional 
convergence.  This test is applicable because this infinite series has the factor of 
(−1)n which causes the terms to alternate sign. 

 

Setting 

! 

a
n

=
1

n " ln n( )
, the two conditions that must be met for the Alternating 

Series Test are: 
 

Condition I:  an + 1 < an. 
 

Condition II:  The limit of an as n → ∞ must be zero. 
 



Demonstrating that Condition I holds: 
 

Note that f(x) = ln(x) is an increasing function, and that n + 1 > n.  Therefore: 
 

! 

ln n +1( ) > ln n( ), 
so that: 

! 

1

ln n +1( )
<

1

ln n( )
. 

 
Now, since n + 1 > n, we can conclude that when n > 0,

! 

1

n+1
< 1

n
.  Combining this 

with the inequality given above gives: 
 

! 

a
n+1 =

1

n +1( ) " ln n +1( )
<

1

n " ln n +1( )
<

1

n " ln n( )
= a

n
, 

 
so that Condition I is satisfied. 

 
Demonstrating the Condition II holds: 

 
When n > 2, note that ln(n) > 1 so that we have the inequality: 

 

! 

0 <
1

n " ln n( )
<
1

n
. 

 
The limits of both zero and 

! 

1

n
 are equal to zero as n → ∞ so the Squeezing 

Lemma gives that the limit of an (as n → ∞) is equal to zero.  This shows that 

Condition II holds.  By the Alternating Series Test, the infinite series 

! 

"1( )
n

n # ln n( )
n= 2

$

%  

converges conditionally. 
 

Absolute Convergence 
 

There is a possibility that the infinite series 

! 

"1( )
n

n # ln n( )
n= 2

$

%  could converge 

absolutely.  We will investigate this question by testing the infinite series 

! 

1

n " ln n( )
n= 2

#

$  to see it is converges. 

 
Noting that the technique of u-substitution (u = ln(x)) gives that: 

 

! 

1

x " ln x( )
" dx = ln ln x( )( ) + C#  



 
suggests that the Integral test might be a good test to investigate the convergence 

or divergence of the infinite series 

! 

1

n " ln n( )
n= 2

#

$ . 

 
Performing the Integral Test 

 

Set 

! 

f x( ) =
1

x " ln x( )
.  When x > 1, ln(x) > 1 so that f(x) > 0.  To verify that f(x) is 

decreasing, note that: 

! 

" f x( ) =
# ln x( ) +1( )

x $ ln x( )( )
2

. 

 
So long as ln(x) > −1, the derivative is negative and f(x) is decreasing.  Both 
conditions needed for the Integral Test are met by f(x).  All that remains is to 
compute the improper integral of f(x) to determine whether it converges or 
diverges. 

 

! 

1

x " ln x( )
" dx

2

#

$ =
Lim

a%#

1

x " ln x( )
" dx

2

a

$ =
Lim

a%#
ln ln x( )( )[ ]

2

a

= +# . 

 

The improper integral diverges, so the infinite series 

! 

1

n " ln n( )
n= 2

#

$  also diverges.  

This means that the infinite alternating series 

! 

"1( )
n

n # ln n( )
n= 2

$

%  does not converge 

absolutely. 
 
 

40. To determine the positive integers k for which the infinite series 

! 

n!( )
2

kn( )!
n=1

"

#  

converges, we will pursue the following strategy: 
 

(a) We will carry out the Ratio test to determine what the limit of 

! 

a
n+1

a
n

 is as  

n → ∞. 
 

(b) We anticipate that the result of Part (a) will be a formula involving k. 
 

(c) We will set analyze the result from Part (a) to determine when it is less 
than one (so that convergence is guaranteed by the Ratio test) and note the 
values of k for which this happens. 



Carrying out Part (a) of the plan: 
 

In this problem, 

! 

a
n

=
n!( )

2

kn( )!
 so that: 

 

  

! 

a
n+1

a
n

=
n +1( )!( )

2

kn + k( )!
"
kn( )!

n!( )
2

=
n +1( )

2

kn + k( ) " kn + k #1( ) "K " kn +1( )
. 

 
Carrying out Part (b) of the plan: 

 
Now, the limit of this ratio will depend on the value of k as it is the value of k that 
controls the number of individual linear factors that appear in the denominator. 

 
 

Carrying out Part (c) of the plan: 
 

If k = 1 then 

! 

a
n+1

a
n

= n +1 so that the limit of 

! 

a
n+1

a
n

 as n → ∞ is +∞.  Since this limit 

is greater than one, the Ratio test gives that the infinite series 

! 

n!( )
2

kn( )!
n=1

"

#  diverges 

when k = 1. 
 

If k = 2 then 

! 

a
n+1

a
n

= n+1
2" 2n+1( )

 so that the limit of 

! 

a
n+1

a
n

 as n → ∞ is 0.25. Since this limit 

is less than one, the Ratio test gives that the infinite series 

! 

n!( )
2

kn( )!
n=1

"

#  converges 

when k = 2. 
 

If k > 2, then, 

  

! 

a
n+1

a
n

=
n +1( )

k " kn + k #1( ) "K " kn +1( )
. 

 
Since the power of n in the denominator will be higher than the power of n in the 
numerator when k > 2, the limit of 

! 

a
n+1

a
n

 as n → ∞ will be zero.  Since this limit is 

less than one, the Ratio test gives that the infinite series 

! 

n!( )
2

kn( )!
n=1

"

#  converges when 

k > 2. 
 

Final Answer:  The infinite series 

! 

n!( )
2

kn( )!
n=1

"

#  converges when k > 2. 


