
Math 122                     Fall 2008 
 
Solutions for Recitation Handout 16:  Taylor Series and the Atlantic Bluefin Tuna 

 
 
The giant bluefin tuna (Thunnus thynnus) is the largest bony fish known to science.  This fish can 
grow to a length of eleven feet and weigh up to 1500 pounds1.  The bluefin tuna is a remarkably 
strong fish, and is able to retract its fins and eyes to make it more streamlined.  Bluefin tuna have 
been observed to swim at speeds of up to 55 miles per hour2. 
 
Bluefin tuna are valued as a food source, especially as sushi and sashimi.  A large tuna in 

excellent condition sell for more than 
$100,000 when auctioned at Tsukiji, the main 
fish market in Tokyo, Japan3.  Bluefin have 
been commercially fished in the western 
Atlantic since the 1960’s, with the industry 
firmly established by the 1980’s4.  Bluefin 
fishing has become such a lucrative business 
that commercial tuna fishermen routinely use 

spotter aircraft to find the fish5. 
 

Contrary to many perceptions6, most tuna fisheries, although 
heavily exploited are not seriously over fished7.  This is not the 
case for bluefin tuna.  Bluefin have been heavily overf ished for 
at least two decades8.  Based on studies conducted by the 
International Convention for the Conservation of Atlantic Tuna 
(ICCAT) and the National Research Council (NRC), the breeding 
population of Atlantic bluefin tuna fell from approximately 
235,000 in 1975 to less than 40,000 in the late 1990’s. 
 
In 1998, ICCAT proposed an historic plan to limit catch sizes of 
bluefin tuna to allow the population to recover. In this handout, 
you investigate the effects of the ICCAT plan on the population 
of Atlantic bluefin tuna. 

                                                
1 Source:  New England Aquarium (www.neaq.org).  The largest bluefin tuna on record was caught by Ken Fraser in 
Canada during 1979.  The fish that Fraser caught weighed 677 kg (1497 pounds). 
2 Source:  World Wildlife Fund.  (www.panda.org).  
3 Source:  NASA and the Smithsonian Institution Ocean Planet Project (seawifs.gsfc.nasa.gov).  
4 Source:  National Academy of Sciences, National Research Council.  An Assessment of Atlantic Bluefin Tuna.  
Washington, DC:  National Academy Press, 1994. 
5 Source:  World Wildlife Fund. 
6 For example, see:  Cole, J. N.  “The Vanishing Tuna.”  Atlantic Monthly, Volume 239, p. 50. (Dec. 1976) 
7 Source:  Environmental Protection Agency, Revised Final Enviromental Impact Statement to accompany Fisheries 
Management Plan for Highly Migratory Species, 1999. 
8 Source:  Buck, Eugene.  “Atlantic Bluefin Tuna:  International Management of a Shared Resource.”  The National 
Council for Science and the Environment, Washington DC, 1995. 



Figure 1:  Number of bluefin tuna caught by 
month, 1998. 
 

 
The commercial bluefin fishing season runs from June 
1 to May 31, or until the quota has been reached9.  As 
shown in the histogram (Figure 1, left) most fish are 
caught between July and October, with relatively few 
fish harvested during the rest of the year10.  
Regulations governing the size of tuna that can be 
caught11 mean that it is mainly sexually mature adults 
that are harvested. 
 
The curve in Figure 1 is a rough model for the rate at 
which tuna caught (in tuna caught per month)12.  The 
equation for the curve is: 
 

 
where the rate of capture has the units of thousands of tuna per month, and t represents the 
number of months since January 1998 (when the ICCAT plan went into effect). 
 
Studies are now underway to study the bluefin tuna, and particularly whether or not the plan 
proposed by ICCAT in 1991 will enable the bluefin tuna population to recover or not.  These 
studies involve attaching electronic tags to tuna.  These tags are monitored by satellites and the 
information collected about the tuna relayed to scientists in the US and Canada13.  Some of the 
data collected from these studies is shown in Figure 2.  The rates of change given in Figure 2 are 
for sexually mature bluefin tuna and do not include juveniles. 
 
The information given in Figure 2 (see next page) has been synthesized into a mathematical 
model for the Atlantic bluefin tuna population.  This model can be represented by a differential 
equation and an initial condition: 
 

! 

dP

dt
= 0.0875 " P(t) # 3.3+ 3.3 " cos $

6
(t # 2)( )   and         P(0) = 40, 

 
where P(t) is the size of the sexually mature Atlantic bluefin tuna population (in units of 
thousands of tuna) and t is the number of months since January 1998. 

 

                                                
9 Source:  U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine 
Fisheries Service.  “Small Entity Compliance Guide for the Consolidated Regulations of Atlantic Tuna, Swordfish, 
Sharks and Billfish.”  1999. 
10 Source of data:  Personal communication from the National Marine Fisheries Service, Fisheries Statistics and 
Economics Division, Silver Spring, MD. 
11 Source:  U.S. Department of Commerce, National Oceanic and Atmospheric Administration. 
12 Source of data:  National Marine Fisheries Service, Fisheries Statistics and Economics Division, and Roberta 
Holland.  "Bluefin tuna prices hit rock bottom."  Boston Business Journal (September 11, 1998). 
13 Some of this research is being carried out locally by Dr. Molly Lutcavage a marine biologist at the New England 
Aquarium. 

! 

Rate = 3.3" 3.3cos #
6
t " 2( )( )



 
Figure 2:  Rate of change of bluefin tuna breeding population (thousands of tuna per month)  
1998-2001.  (Source:  International Commission for Conservation of Atlantic Tuna). 

 
 
1. Use the axes provided below, the information that P(0) = 40 and Figure 2 to sketch a 

plausible graph for the function P(t).  Based on your sketch, did the ICCAT help the 
Atlantic bluefin tuna population to increase their numbers? 

 

 



There are several ways to come up with the graph of P(t) versus t shown above.  The method that 
was used here was to use the differential equation: 
 

! 

dP

dt
= 0.0875 " P(t) # 3.3+ 3.3 " cos $

6
(t # 2)( )  

 
and the grid provided to draw a slope field.  Once the slope field has been drawn, a solution 
curve starting at the initial point (0, 40) can be sketched. 
 
 
2. Use the differential equation and initial condition to find the formula for the tangent line 

approximation to the curve y = P(t) that is based at t = 0.  What does the tangent line 
suggest about the effectiveness of the ICCAT plan that was intended to help the Atlantic 
bluefin tuna? 

 
When t = 0 we have that P(0) = 40.  Substituting these figures into the differential equation will 
give the slope of the tangent line: 
 

! 

dP

dt
t= 0

= 0.0875 " 40( ) # 3.3+ 3.3 " cos $
6
(#2)( ) =1.85. 

 
The intercept of the tangent line can be calculated by substituting m = 1.85, P = 40 and t = 0 into 
the equation for a straight line: 

! 

P = m " t + b  
 
to calculate the intercept, b.  Doing this gives b = 40 and the equation of the tangent line is: 
 

! 

P =1.85 " t + 40 . 
 
 
3. Using the same set of axes that you used in Question 1, sketch the tangent line.  For 

which values of t does the tangent line seem to do a decent job of approximating the 
function P(t)? 

 
A graph showing both the tangent line and the sketch of the solution curve for the differential 
equation is shown on the next page.  The solution curve is shown in black and the tangent line is 
shown in blue. 
 
The solution curve and the tangent line start together and are very difficult to distinguish from 
each other initially.  It is over this interval that the two graphs are very difficult to distinguish 
that we say the blue tangent line is doing a good job of approximating the black solution curve. 
 
Based on inspection of the graph on the next page, the tangent line and the solution curve are 
difficult to tell apart between t = 0 and t = 0.66 so it is not unreasonable to say that over the 
interval [0, 0.66] the tangent line does a good job of approximating the solution curve. 
 
 



 
4. Find the formula for the second degree Taylor polynomial approximation of the function 

P(t) that is based at zero.  (That is, the anchor point is a = 0.) 
 
The second degree Taylor polynomial approximation for the function P(t) is: 
 

! 

P 0( ) + " P 0( ) # t +
" " P 0( )
2

# t
2 . 

 
We already know that P(0) = 40 and 

! 

" P 0( ) =1.85 .  In order to be able to write down the second 
degree Taylor polynomial we need to be able to calculate the second derivative of the function 
P(t).  If we take the derivative of the differential equation: 
 

! 

dP

dt
= 0.0875 " P(t) # 3.3+ 3.3 " cos $

6
(t # 2)( )  

 
then we will obtain: 
 



! 

d
2
P

dt
2

= 0.0875 " # P (t) $ 3.3 " sin %
6
(t $ 2)( ) " %6 . 

 
Substituting 

! 

" P 0( ) =1.85  and t = 0 into this expression gives the second derivative of P(t) 
evaluated at t = 0: 
 

! 

d
2
P

dt
2

t= 0

= 0.0875 " 1.85( ) # 3.3 " sin $
6
(#2)( ) " $6 =1.685259475 . 

 
So, the formula for the second degree Taylor polynomial that approximates the function P(t) 
with a = 0 is given by: 

! 

40 +1.85 " t + 0.829 " t
2 . 

 
 
5. Find the formula for the degree three Taylor polynomial approximation of the function 

P(t) that is based at zero.  (That is, the anchor point is a = 0.) 
 
The degree three Taylor polynomial approximation of P(t) with a = 0 is given by: 
 

! 

P 0( ) + " P 0( ) # t +
" " P 0( )
2

# t
2 +

" " " P 0( )
3!

# t
3 . 

 
We know the values of all of the constants in this formula with the exception of the third 
derivative of P(t) evaluated at t = 0.  To find this we will differentiate the expression for 

! 

d
2
P

dt
2

 that 
was obtained in Question 4.  Doing this gives: 
 

! 

d
3
P

dt
3

= 0.0875 " # # P (t) $ 3.3 " cos %
6
(t $ 2)( ) " %

6( )
2

. 

 
Substituting 

! 

" " P 0( ) =1.685259475 and t = 0 into this expression allows us to find the value of 

! 

" " " P 0( ): 
 

! 

d
3
P

dt
3

t= 0

= 0.0875 " (1.685259475) # 3.3 " cos $
6
(#2)( ) " $

6( )
2

= #0.3072591643. 

 
The degree three Taylor polynomial approximating the function P(t) with a = 0 is given by the 
formula: 

! 

40 +1.85 " t + 0.829 " t
2
# 0.051" t

3. 
 
 
 
 



6. Use the axes given below to sketch your version of the P(t) function from Question 1.  
Then graph your third degree Taylor polynomial on your calculator and transfer the graph 
to the set of axes given below.  Based on your sketch, over what set of t-values does the 
Taylor polynomial do a decent job of matching the graph of P(t)? 

 
A graph showing both the initial sketch of P(t) (in black) and the degree three Taylor polynomial 
approximating P(t) (in purple) is given below. 

 
The interval over which the purple curve and the black curve are difficult to distinguish is now 
quite a bit longer than the interval from Question 3 (which was [0, 0.66]).  Based on a visual 
inspection of the diagram shown above, the two curves are very close to each other between t = 0 
and t = 2.66.  It is not unreasonable to say that the degree three Taylor polynomial does a good 
job of approximating the function P(t) over the interval [0, 2.66]. 
 
 
7. Why do you think a marine biologist or fisheries researcher might want to create a Taylor 

polynomial to approximate the function P(t)?  What would be the main advantage of 
using a Taylor polynomial with a lot of terms in it? 

 
A biologist would want to know P(t) so that he or she could predict the size of the tuna 
population as t increases and determine whether or not the ICCAT regulations were helping the 
tuna population to replenish itself. 
 



The differential equation defining P(t) is very difficult (perhaps impossible) to solve to find a 
formula that will give the exact values of P(t). 
 
A Taylor polynomial is a practical way to calculate approximate values for P(t).  The advantages 
of using a Taylor polynomial with many terms to do this are: 
 
1. The values of P(t) calculated will be more accurate. 
 
2. The interval of t-values over which P(t) closely matches the solution curve will be longer, 

so the biologist will be able to make predictions for larger values of t, corresponding to 
further into the future. 


