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Math 122 | Fall 2008

Handout 14: Review Problems for Unit Test 3
The topics that will be covered on Unit Test 3 are as follows.

* Calculating formulas for partial sums (e.g. for telescoping series).

* Convergence of infinite series by definition (limit of partial sums).

*  (Geometric series (finite) and their applications.

*  (Geometric series (infinite) and their applications.

* n"™ Term test for divergence.

* Integral test.

* Ratio test.

* Comparison test (compare with p-series or infinite geometric series).

* Alternating series test.

= Absolute versus conditional convergence for alternating series.

*  Estimating the sum of an alternating series to'a given level of accuracy.

* Summing a finite series with a calculator. '

* Finding a formula for the Taylor series of f{x) with center a from the definition.
* Finding a formula for the Taylor series of f{x) with center a4 by modifying an existing series.
* Radius of convergence of a power series or Taylor series.

¢ Interval of convergence of a power series or Taylor series.

*  Accuracy of Taylor polynomial approximations for functions.

This (roughly) covers Chapter 8 of the textbook.
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SoLuTIONS
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2. Consider the series 2 5 . Does this series converge or diverge? If the series converges
k=1

determine the exact sum of the series.
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One of the two sets of fuactions fi, f5, 5 Or g1, g2, g3 is graphed in Figure A; the other set is
graphed in Figure B. The Taylor series for the functions about a point corresponding to either A
or-B are as follows:

fl(x)=a+(x—b)—(x—b)2+

fz(x)=

—(x—b)+(x—b)2+

fi(x)=a-2(x-b)+(x-b) + .

gfx)=

32(x)=

d—(x—c)~—(x-c)2+...

2

d-{x-c)+(x-c) +..

&(x)=d+(x-c)+(x-c)" +..

You may assume that a, b, ¢ and d are all positive constants.

Figure A

Figure B

Match each of the graphs shown above with the function f,, . f3, g, g, or g; that does the best job of
matching the graph. Record your answers in the table below.

Best matching function

Graph

Best matching function

Figure A, Graph 1 Figure B, Graph |

i (=) g(x)
Figure A, Graph II Figure B, Graph II

:F_L ( x) j 2 ()
Figure A, Graph Il Figure B, Graph HI
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Sol.wTiOANS

4. Determine the convergence or divergence of each of the following series. In each case, CIRCLE

either CONVERGES or DIVERGES.

In cach case, demonstrate that your answer is correct step-by-step using an appropriate convergence tesr.
Be sure to explicitly state which convergence test you have used. Be careful to show how the
convergence test justifies your answer. If you do not justify your answer, vou will get zero credit, even if

you circle the correct response.
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SOLWTIONS

around the point a = 0. Express

(a) Find the Taylor Series for the function f (x) = N
_ ' +x
your final answer using sigma (2} notation, and clearly indicate your final answer.

F(x) = i = '
L+ X I — (~x)
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n=0o :
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around the point ¢ = 3. Express your final

(b) Find the Taylor Series for the function f (x) = "
+ X

answer using sigma () notation, and clearly indicate your final answer.

Jc(?f-) =~ =
L+ x I +2 4+ > —3
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Continued on the next page.
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(c) Find the interval of convergence of the Taylor Series for the function f (x) = around the

I+x
pointa =0.

Radius of r.onuersence_: e Ratio 4est.
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