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Math 122              Fall 2008 
 

Handout 11:  Summary of Euler’s Method, Slope Fields and Symbolic 
Solutions of Differential Equations 

 
The purpose of this handout is to review the techniques that you will learn for analyzing 
the values, graphs and formulas of functions defined by rates of change (differential 
equations). 
 

• First, we will briefly review Euler’s method for approximating the values of a 
function when all that you know is the derivative and one value of the function. 

 
• Second, we will review slope fields and equilibrium solutions to remember how 

you can sketch the graph of a function when all that you know is the derivative 
and one value of the function. 

 
• Finally, we will review the idea of a symbolic solution of a differential equation 

and in particular, how you can decide if a given function is a solution of a 
differential equation or not and how you can obtain a symbolic solution. 

 
 
1. A function defined by its rate of change 
 
It is possible to define a function without giving an explicit formula for the function.  One 
way to do this is to specify a function by its rate of change.  The two pieces of 
information that must be given to unambiguously define the function are: 
 

• An equation specifying the rate of change (the derivative) of the function – this is 
called a differential equation, and, 

 
• One value of the function.  If this is given for T=0 then this one value of the 

function is called the initial value of the function. 
 
Given such a definition of a function, there are three ways that you can go about figuring 
out what the values of the function actually are (at least approximately).  These are: 
 

• A numerical approach such as Euler’s method. 
 
• A graphical approach such as sketching a slope field. 

 
• A symbolic approach in which you try to find a formula for the function. 
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2. Approximating the values of a function:  Euler’s method 
 
Sometimes we want to approximate the values of a function y(t).  However, the function 
will not always be defined by a convenient formula.  Sometimes functions are specified 
by their rate of change, as is the case for y(t), which is defined by the following 
equations: 
 

• A differential equation:   

! 

dy

dt
= "y t( ) +1. 

 
• An initial value:  y(0) = 3. 

 
• A step-size (often given implicitly in the structure of the table):  Δt = 0.5. 

 
With this information, the usual way to approximate numerical values of the function is 
to use Euler’s method to construct a table of values. 
 
t y(t) 

! 

dy

dt
 

! 

dy

dt
" #t  y(t + Δt) 

0 3 −2 −1 2 
0.5 2 −1 −0.5 1.5 
1 1.5 −0.5 −0.25 1.25 
Etc.     
 
 
Deciding Whether the Function Values from Euler’s Method are Over- or Under-
Estimates of the True Values of the Function. 
 
Second 
derivative 

Concavity of  
function 

Picture Numbers from  
Euler’s method 
are: 

Positive (+) 
 

Concave up 
  Actual  function  

  Euler’s  

  Method  

 

Under-
estimates of 
True function 
values 

Negative (−) 
 

Concave down 

  Actual  function  

  Euler’s  

  Method  

 

Over-estimates 
of 
True function 
values 
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Example:  
 
Consider a function y(t) specified by the following equations: 
 

• A differential equation:   

! 

dy

dt
= "y t( ) +1. 

 
• An initial value:  y(0) = 3. 

 
• A step-size (often given implicitly in the structure of the table):  Δt = 0.5. 

 
Is y(1) = 1.5 an over- or an under-estimate of the “true value” of y(1)? 
 
 
Solution 
Starting with the differential equation  

! 

dy

dt
= "y t( ) +1  we can calculate the second 

derivative of the function y(t) by differentiating both sides.  Taking the derivative of both 
sides of the differential equation with respect to the variable ‘t’: 
 

! 

d
2
y

dt
2

= "
dy

dt
= " "y t( ) +1( ) = y t( ) "1. 

 
The one (and only) value of the function that we know exactly is y(0) = 3.  Substituting 
this into the second derivative gives: 
 

! 

d
2
y

dt
2

= 3"1= 2 . 

 
As the second derivative is greater than zero, the function y(t) is concave up and the 
function values produced by Euler’s method will be under-estimates of the “true values” 
of the function. 
 
 
3. Sketching the graph of a function:  Slope fields and equilibrium 

solutions 
 
You can think of the slope field as a collection of guidelines that help you shape the 
graph of a function.  To draw a slope field all that you need is a differential equation. 
 
Example:  
 

Draw the slope field defined by the differential equation: 

! 

dy

dt
= "y t( ) +1. 
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Solution 

 
 
 
Equilibrium Solutions of a Differential Equation 
 
The equilibrium solutions of a differential equation are those curves (often horizontal 
lines) along which the derivative is equal to zero. 
 
There are three main types of equilibrium solution.  These are: 
 

• Stable equilibriums:  Line segments are attracted towards the equilibrium from 
above and below. 

 
• Unstable equilibriums:  Line segments are repelled away from the equilibrium 

above and below. 
 

• Semi-stable equilibriums:  Line segments are attracted from one side and 
repelled on the other side. 

 
 
Equation for  
Derivative 
 

Equilibrium  
solution(s) 

Appearance of 
Slope field 

Nature of 
Equilibrium 
solution(s) 
 

 
! y t( ) = y t( ) " 2  

 
•  y(t) = 2 

 

 
 

 
y(t) = 2 is  
an unstable 
equilibrium 
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! y t( ) = y t( ) " y t( ) # 2[ ]  

 
•  y(t) = 0 
 
•  y(t) = 2 
 

 

 
 

 
y(t) = 0 is 
a stable 
equilibrium 
 
y(t) = 2 is 
an unstable 
equilibrium 

 
! y t( ) = y t( ) " 2[ ]

2  
 
•  y(t) = 2 

 

 
 

 
y(t) = 2 is 
a semi- 
stable 
equilibrium 

 
 
4. The exact formula for the function:  Symbolic solutions 
 
A symbolic solution for a differential equation is an explicit formula for the function that 
is defined by the differential equation and initial value. 
 
To check that a given function is actually a symbolic solution of a given differential 
equation and initial value you can: 
 

i. Substitute the formula for the function into the left hand side of the differential 
equation. 

 
ii. Substitute the formula for the function into the right hand side of the differential 

equation. 
 
iii. If the results that you obtain from substituting the formula into the left and the 

right hand sides are the same, then the function is a solution of the differential 
equation. 

 
iv. If you plug t=0 into the formula for the function and you obtain the initial value as 

a result, then the function also satisfies the initial value. 
 
 
Example: 
 

Consider the differential equation and initial condition: 

! 

dy

dt
= "y t( ) +1   
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and initial condition:  y(0) = 3. 
 
Verify that the function y(t) = 1 + 2⋅e−t  is a symbolic solution of the differential equation 
and initial condition. 
 
 
Solution 
 
a.  Verifying that the Function Satisfies the Differential Equation: 
 

  Left hand side  = 

! 

dy

dt
 

 
     = −2⋅e−t. 
 
  Right hand side = −y(t) + 1 
 
     = −(1 + 2⋅e−t) + 1 
 
     = −2⋅e−t. 
 
As the left and right hand sides are equal, the given function satisfies the differential 
equation. 
 
b.  Verifying that the Function Satisfies the Initial Condition: 
 

y(0) = 1 + 2⋅e0 = 1 + 2 = 3. 
 

 
5. Generating Symbolic Solutions:  Separation of Variables 
 
A symbolic solution for a differential equation is an explicit formula for the function that 
is defined by the differential equation and initial value. 
 
The point of doing the technique of Separation of variables is always to find an explicit 
formula for a function, such as y(t). 
 

i. Rewrite the differential equation to make Separation of Variables as easy as 
possible.  Replace 

! 

" y t( )  by 

! 

dy

dt
 and y(t) by just y. 

 
ii. Rearrange the differential equation to get all of the y’s on one side and all of 

the t’s on the other side. 
 
iii. Integrate both sides of the equation with respect to the appropriate variable. 

 
iv. Rearrange to make y the subject of the equation. 
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v. Use the initial condition to find the numerical value of the constant. 

 
 
Example:  Separation of Variables   
 
Find a formula for the function y(t) defined by the following differential equation and 
initial value: 

Differential equation: 

! 

" y t( ) = 3 # y t( ) $1[ ]  
   Initial value:  y(0) = 5. 
Solution: 
 

i. Rewrite the differential equation to make Separation of Variables as easy 
as possible.  Replace 

! 

" y t( )  by 

! 

dy

dt
 and y(t) by just y. 

 

! 

dy

dt
= 3 " y #1[ ] 

 
ii. Rearrange the differential equation to get all of the y’s on one side and all 

of the t’s on the other side. 
 

! 

dy

y "1
= 3 # dt  

 
iii. Integrate both sides of the equation with respect to the appropriate 

variable. 
 

! 

dy

y "1
# = 3 $ dt#  

 

! 

ln(y "1) = 3 # t + C  
 

iv. Rearrange to make y the subject of the equation. 
 

! 

y "1= e
3t+C

= e
C
# e

3t
= A # e

3t  
 

! 

y =1+ A " e
3t  

 
v. Use the initial condition to find the numerical value of the constant. 

 

! 

5 =1+ A " e
0 

 
A = 4 
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! 

y =1+ 4 " e
3t  

 
 
Example 13-2b:  Separation of Variables   
 
Find a formula for the function P(t) defined by the following differential equation and 
initial value: 

Differential equation: 

! 

" P t( ) = 2 # 0.1$ P t( ) 
   Initial value:  P(0) = 1. 
 
Solution: 
 

i. Rewrite the differential equation to make Separation of Variables as easy as 
possible.  Replace 

! 

" y t( )  by 

! 

dy

dt
 and y(t) by just y. 

 

! 

dP

dt
= "0.1# P " 20[ ] 

 
ii. Rearrange the differential equation to get all of the y’s on one side and all 

of the t’s on the other side. 
 

! 

dP

P " 20
= "0.1# dt  

 
iii. Integrate both sides of the equation with respect to the appropriate 

variable. 
 

! 

dP

P " 20
# = "0.1$ dt#  

 

! 

ln(P " 20) = "0.1# t + C  
 

iv. Rearrange to make y the subject of the equation. 
 

! 

P " 20 = e
"0.1t+C

= e
C
# e

"0.1t
= A # e

"0.1t  
 

! 

y = 20 + A " e
#0.1t  

 
v. Use the initial condition to find the numerical value of the constant. 

 

! 

1= 20 + A " e
0 

 
A = −19 

 

! 

P = 20 "19 # e
"0.1t  


