Solutions to Homework #8

Problems from Pages 203-205 (Section 4.1)

- **4.** *a* Local maximum.
	- *b* Local minimum.
	- *c* Local minimum.
	- *d* Local minimum.
	- *e* Global (and local) maximum.
	- *r* Local minimum.
	- *s* Local maximum.
	- *t* Global (and local) minimum.
- **8.** A picture of a graph with the necessary properties is shown below.

22. The graph of the piecewise defined function $f(x)$ is shown below.

The function $f(x)$ has a local maximum at the point $(2, 3)$, a local minimum at the point $(-2, 0)$ and its global maximum at the point $(0, -1)$.

26. To find the critical numbers of $f(x)$ we need to find the *x*-coordinates of the points where the derivative is either zero or undefined. The first derivative of the function is:

$$
f'(x) = 3x^2 + 2x + 1.
$$

As the first derivative is defined for all values of *x*, the only critical numbers will be values of *x* where the derivative is equal to zero. These can be found using the quadratic formula:

$$
x = \frac{-2 \pm \sqrt{2^2 - 4(3)(1)}}{6}.
$$

|
|
| As the discriminant is negative, the equation $f'(x) = 0$ does not have any solutions and the function $f(x)$ does not have any critical numbers.

- ! **44.** The absolute maximum and absolute minimum can occur at the following kinds of points:
	- **(a)** Points where the first derivative is equal to zero,
	- **(b)** Points where the first derivative is not defined, or,
	- **(c)** The endpoints of the interval [0, 3].

The first derivative of $f(x) = \frac{x}{x^2}$ $\frac{x}{x^2+4}$ is given by:

$$
f'(x) = \frac{x^2 + 4 - 2x^2}{(x^2 + 4)^2} = \frac{-x^2 + 4}{(x^2 + 4)^2}.
$$

The first derivative is always defined and equal to zero only at $x = \pm 2$. As we are only interested in the interval [0, 3], we need only focus on $x = 2$.

To find the global maximum and global minimum, we will evaluate $f(x)$ at $x = 0$, x $= 2$ and $x = 3$. Doing this gives:

58. Acceleration is the derivative of velocity, so if the velocity is given by the equation:

$$
v(t) = 0.001302t^3 - 0.09029t^2 + 23.61t - 3.083,
$$

then the acceleration will be given by:

$$
a(t) = 0.003906t^2 - 0.18058t + 23.61.
$$

We are interested in finding the global maximum and global minimum of $a(t)$ over the interval [0, 126].

The critical number of $a(t)$ is the solution of the equation:

$$
a'(t) = 0.007812t - 0.18058 = 0,
$$

which is $t = 23.11571941$. To find the global maximum and global minimum, we will evaluate $a(x)$ at $t = 0$, $t = 23.11571941$ and $t = 126$.

Problems from Pages 217-219 (Section 4.3)

8. (a) The intervals on which $f(x)$ is increasing or decreasing are the intervals on which the first derivative is positive or negative (respectively). The derivative of $f(x)$ is:

$$
f'(x) = \ln(x) + 1.
$$

The derivative is greater than zero when $ln(x)$ is greater than -1 . This occurs for the interval (e^{-1}, ∞) . So, $f(x)$ is increasing on the interval (e^{-1}, ∞) .

The function $f(x) = x \cdot \ln(x)$ is only defined for $x > 0$ so the interval on which the first derivative is negative will be $(0, e^{-1})$. The function $f(x)$ is decreasing on the interval $(0, e^{-1})$.

(b) The local maximum and local minimum values of $f(x)$ will occur at points where the derivative is zero or undefined. The only such point is $x = e^{-1}$. The second derivative of $f(x)$ is:

$$
f''(x) = \frac{1}{x},
$$

which is positive when $x = e^{-1}$ indicating that the point $(e^{-1}, -e^{-1})$ is a local minimum.

(c) The function $f(x)$ is concave up when the second derivative is positive and concave down when the second derivative is negative. As the second derivative is given by:

$$
f''(x) = \frac{1}{x},
$$

the second derivative is always positive for $x > 0$. This means that $f(x)$ is concave up over all of its domain and (as the concavity never changes) there are no inflection points.

10. The local maximums and local minimums of the function

$$
f(x) = \frac{x}{x^2 + 4}
$$

will occur at points where the derivative is either equal to zero or undefined. The derivative of $f(x)$ is:

$$
f'(x) = \frac{x^2 + 4 - 2x^2}{(x^2 + 4)^2} = \frac{-x^2 + 4}{(x^2 + 4)^2}.
$$

with $x = -2$ and $x = +2$. This derivative is never undefined so the local maximums and minimums will only occur at points where the derivative is equal to zero, which are the points

Classifying points using the First Derivative Test

As the first derivative goes from negative to positive, the point (−2, −0.25) is a local minimum.

As the derivative goes from positive to negative, the point (2, 0.25) is a local maximum.

Classifying points using the Second Derivative Test

The second derivative of $f(x)$ is:

$$
f''(x) = \frac{-2x \cdot (x^2 + 4)^2 - (-x^2 + 4) \cdot 2(x^2 + 4) \cdot 2x}{(x^2 + 4)^4} = \frac{-2x^3 - 8x + 4x^3 - 16x}{(x^2 + 4)^3} = \frac{2x^3 - 24x}{(x^2 + 4)^3}.
$$

Evaluating this at $x = -2$ gives the second derivative value of 1, which is greater than zero, confirming that $(-2, -0.25)$ is a local minimum.

Evaluating this at $x = 2$ give the second derivative a value of -0.5 , which is less than zero, confirming that $(2, 0.25)$ is a local maximum.

12. (a) The critical numbers of $f(x)$ are the *x*-values where the derivative is either zero or undefined. The derivative of $f(x)$ is:

$$
f'(x) = 4x3 \cdot (x-1)3 + x4 \cdot 3 \cdot (x-1)2 = x3 \cdot (x-1)2 \cdot [7x-4].
$$

The critical numbers of $f(x)$ are $x = 0$, $x = 1$ and $x = 4/7$.

(b) The second derivative of $f(x)$ is:

$$
f''(x) = 3x^2 \cdot (x-1)^2 \cdot (7x-4) + x^3 \cdot 2(x-1) \cdot (7x-4) + x^3 \cdot (x-1)^2 \cdot 7.
$$

Evaluating this at each of the three critical numbers gives the values listed in the table (below).

The second derivative test tells us nothing about the behavior of $f(x)$ at the points $(0, 0)$ or $(1, 0)$. The second derivative test tells us that there is a local minimum at the point (4/7, -0.008393).

(c) We will carry out the First derivative test for each of the critical numbers and record the results in the tables shown below.

These results show that $(0, 0)$ is a local maximum, $(1, 0)$ is neither a local maximum nor a local minimum (it is a point of inflection) and (4/7, -0.008393) is a local minimum.

22. (a) The function $f(x)$ is increasing when the derivative is positive and decreasing when the derivative is negative. Between $x = 0$ and $x = 9$, the intervals on which the derivative is positive or negative are:

> $f(x)$ is increasing: (1, 6) and (8, 9). $f(x)$ is decreasing: (0, 1) and (6, 8).

(b) The function $f(x)$ will have a local minimum or local maximum at any points where the derivative is equal to zero. Between $x = 0$ and $x = 9$, the points at which the derivative is zero are:

 $x = 1$ $x = 6$ $x = 8$.

(c) The function $f(x)$ is concave up when the derivative is increasing and concave down when the derivative is decreasing. Between $x = 0$ and $x = 9$, the intervals on which the derivative is increasing or decreasing are:

> *f*(*x*) is concave up: $(0, 2)$, $(3, 5)$ and $(7, 9)$. $f(x)$ is concave down: $(2, 3)$ and $(5, 7)$.

(d) The graph of $y = f(x)$ will display an inflection point at any *x*-coordinate of a point where the derivative function has a local maximum or local minimum. The *x*-coordinates of these points are:

$$
x = 2
$$
, $x = 3$, $x = 5$ and $x = 7$.

(e) A sketch of the graph of $y = f(x)$ that passes through the point $(0, 0)$ and that incorporates all of the information given above is shown below.

