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Recitation Handout 7:  Finding the Limits of L’Hopital’s Rule 
 

 
L’Hopital’s rule is a powerful tool that can help you to 
calculate difficult limits with much greater ease.  The 
rule uses a relationship between limits of quotients and 
limits of quotients of derivatives to simplify limit 
calculations under many circumstances. 
 
L’Hopital’s rule is named for a French nobleman, the 
Marquis de l’Hôpital, who published the first calculus 
textbook in 1696.  This rule appeared (for the first time 
in print) in that textbook.  However, many historians 
believe that the Marquis de l’Hôpital) did not actually 
discover the rule.  The Marquis de l’Hôpital had hired a 
brilliant Swiss mathematician named Johann Bernoulli 
to teach him calculus.  There is historical evidence in 
some of Bernoulli’s earlier writings to suggest that he 
knew the rule some years before teaching the Marquis 
calculus, although he never published the discovery. 

 
The goals of this recitation are for you to: 
 

• Learn the statement of L’Hopital’s rule and how to apply it. 
• Learn how to manipulate and adapt limits to put them into a format that allows 

L’Hopital’s rule to be applied. 
• Recognize that L’Hopital’s rule is not a “one size fits all” tool that can be used to 

calculate every single limit. 
• Learn how to recognize when (and when not) L’Hopital’s rule applies in a limit 

calculation. 
 
 
What is L’Hoptial’s Rule? 
 
L’ Hopital’s rule can be stated very concisely.  The following theorem is the statement of the rule 
that is included in many calculus textbooks. 
 
 

THEOREM:  If f(x) and g(x) are differentiable functions and f(a) = g(a) = 0 then: 
 

! 

Lim

x " a

f x( )
g x( )

=
Lim

x " a

# f x( )
# g x( )

, 

 
provided the limit on the left exists. 

 
 

  The Marquis de l’Hopital (1661-1704).   



In this first part of the recitation we will apply the rule in its most straightforward form to 
calculate limits that are (otherwise) very difficult to compute. 
 
 
1. Earlier in the semester we used a graph on a calculator to guess that: 
 

! 

Lim

" # 0

sin "( )
"

=1. 

 
Use L’Hopital’s rule to demonstrate that this is the case. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
When you use L’Hopital’s rule, you may find that 

! 

" f a( ) = 0 and 

! 

" g a( ) = 0.  If this is the case, 
you can take derivatives a second time to calculate the limit. 
 
 
2. Calculate the value of the limit: 
 

! 

Lim

t" 0

e
t
#1# t

t
2

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
So long as you always get zero on both top and bottom when you take the limit, you can usually 
keep taking the derivative as many times as you need to in order to find the limit. 



When preparing to apply L’Hopital’s rule, it is important to remember that you may only apply it 
in circumstances where the numerator approaches zero and the denominator approaches zero at 
the same point.  Sometimes it is possible to bring this about by algebraically simplifying or 
manipulating the limit you are given. 
 
 
3. Use L’Hopital’s rule to find the value of the limit given below.  It may be helpful to 

simplify the algebraic expression before applying L’Hopital’s rule. 
 

! 

Lim

t" 0
+

1

t
#

1

e
t #1

$ 

% 
& 

' 

( 
) . 



Limits Involving Infinity 
 
Earlier in the semester, we spent quite a bit of time working with limits that involve infinity 
(including limits where x → ∞ and limits in which some part of the expression we considered 
became infinite at some finite x-value). 
 
L’Hopital’s rule can also be employed to simplify the calculation of limits involving infinity, 
although it is not directly applicable for limits where x → ∞.  The version of L’Hopital’s rule for 
limits involving infinity is summarized in the following theorem. 
 
 

THEOREM:  If f(x) and g(x) are differentiable functions, a is a finite number and 
 

! 

Lim

x" a

f x( ) = ±#
  and  

! 

Lim

x" a

g x( ) = ±#
, 

 

then 

! 

Lim

x " a

f x( )
g x( )

=
Lim

x " a

# f x( )
# g x( )

, 

 
 
Use this version of L’Hopital’s rule to calculate the limits shown below.  The following 
differentiation formulas might be helpful: 
 

! 

d

dx
tan x( )( ) = sec2 x( )    

! 

d

dx
sec x( )( ) = sec x( ) " tan x( ) . 

 
 

4. 

! 

Lim

x" #
2

sec x( )
tan x( )

 

 
 
 
 
 
 

5. 

! 

Lim

x" # $

2

tan x( )
ln cos x( )( )

 

 
 
 
 



Limits at Infinity 
 
The two versions of L’Hopital’s rule that we have used up to this point both contain limits 
expressed “as x → a.”  In each example we have considered, a has represented some finite value 
(e.g. a = π/2 in Questions 4 and 5).  The symbol “∞” can also be used in place of a so that 
L’Hopital’s rule can be used for limits in which x → ∞. 
 
Generally speaking, there is never a way of using L’Hopital’s rule to get around the problem of 
having to calculate the limit of some expression as x → ∞.  However, by carefully using 
L’Hopital’s rule you can create a limit (as x → ∞) that is easier to calculate than the one you 
started with. 
 
 
5. Calculate the value of the limit: 
 

! 

Lim

t"#

1

t
$
2

t
2

% 

& 
' 

( 

) 
* . 

 
 
 
 
 
 
 
 
 
6. Was it (or would it have been) helpful to immediately differentiate the top and the bottom 

of each fraction in the manner that L’Hopital’s rule suggests?   
 
 
 
 
 
 
7. Was this (or would it have been) even justified according to L’Hopital’s rule?  Why or 

why not? 
 
 
 
 
 
 
 
8. Is there any way that this limit could have been evaluated more easily than by using 

L’Hopital’s rule? 
 
 



We have already studied techniques that could have been used to evaluate the previous limit 
more easily.  However, the next two limits are very difficult to compute without using 
L’Hopital’s rule.  Use L’Hopital to evaluate them both. 
 
 
9. Calculate the value of the limit: 
 

! 

Lim

x"#

x

e
x

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10. Calculate the value of the limit: 
 

! 

Lim

x"#

ln x( )
x

. 

 
 
 
 
 
 



Rewriting Limits so that we can use L’Hopital’s Rule:  Indeterminant Forms 
 
The two situation that allow us to apply L’Hopital’s rule to calculate a limit are ones where the 
limit we are trying to compute resembles one of the following “fractions:” 
 

! 

0

0
  or  

! 

"

"
. 

 
These are, of course, not mathematically meaningful fractions.  Instead they are a kind of 
shorthand used to refer to the situations in which we can use L’Hopital’s rule.  These “fractions” 
are never called fractions, instead they are called indeterminant forms. 
 
If we can find a way to rewrite a limit so that we can recognize it as one of these indeterminant 
forms then we can use L’Hopital’s rule to evaluate the limit. 
 
 
Rewrite each of the following limits in a form that allows the use of L’Hopital’s rule, and then 
use L’Hopital’s rule to evaluate each limit. 
 

11. 

! 

Lim

x" 0
+

x # ln x( ). 

 
 
 
 
 
 
 
 
 
 
 
 
 

12. 

! 

Lim

x"#

x
1

x

. 

 



13. 

! 

Lim

x" 0
+

x
x

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14. 

! 

Lim

x" 0

1

x
#

1

sin x( )

$ 

% 
& 

' 

( 
) . 

 
 
 



Recognizing when L’Hopital’s Rule Does Not Apply 
 
It is easy to get trigger-happy and start trying to use L’Hopital’s rule all the time.  L’Hopital’s 
rule is not always applicable.  For example, none of the following limits can be evaluated using 
L’Hopital’s rule. 
 
 
15. Explain why L’Hopital’s rule cannot be used to evaluate each of the following limits. 
 

(a) 

! 

Lim

x"#

e
$x

sin x( )
. 

 
 
 
 
 
 
 
 
 
 
 
 

(b) 

! 

Lim

x"1

x

x #1
 

 
 
 
 
 
 
 
 
 
 
 
 

(c) 

! 

Lim

x"1

sin 2x( )
x

 



A Very Famous Application of L’Hopital’s Rule 
 
If you are already very familiar with L’Hopital’s rule and its applications, try the following 
problem.  It is a difficult but historically and practically (a lot of mathematical finance is based 
on this limit, believe it or not) important. 
 
 
16. Calculate the value of the limit: 
 

! 

Lim

x"#
1+

1

x

$ 

% 
& 

' 

( 
) 

x

. 

 
HINT: Take the natural logarithm first, then take the limit of what you get as x → 

∞.  When you have found the limit, make it the exponent of the special 
number e ≈ 2.718. 

 
 


