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Abstract

We study coarsening phenomena observed in discrete, ill-posed diffusion

equations that arise in a variety of applications, including computer

vision, population dynamics, and granular flow. Our results provide

rigorous upper bounds on the coarsening rate in any dimension. Heuris-

tic arguments and numerical experiments we perform indicate that the

bounds are in agreement with the actual rate of coarsening.

1. Introduction

We study the coarsening phenomena observed in discrete, ill-posed diffusion
equations. These equations appear in a variety of settings: in models for granu-
lar flow where they describe the formation of shear bands in a granular material
undergoing anti-plane shear [23], in image processing where they constitute one
of the most well-known models – called the Perona-Malik method – for denoising
images while preserving their edges [19, 20], and in population dynamics where
they describe the chemotactic motion of certain types of bacteria [14, 18, 11]. An
upper bound for the coarsening rate for these equations in one and two dimensions
was obtained in [7], and appeared to be optimal for the specific nonlinearity (R
in (1)) focused on there. The results of the present paper constitute a significant
improvement in two respects: The bounds are proven in any dimension and, more
importantly, the new bounds depend on the nature of the nonlinearity; in particu-
lar, we believe that the present bounds are optimal (in terms of the leading order
rate) for a large class of nonlinearities.

The specific equation we focus on is from population dynamics [14, 18, 11], and
can be viewed as a natural, spatially discrete version of the PDE

(1) vt = ∆R(v) = R′(v)∆v + R′′(v)|∇u|2

1
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However, in the applications we consider, the function R(ξ) : R → R satisfies the
property

(2) R′(ξ) < 0 for all large enough |ξ|

which makes the equation (1) backwards parabolic whenever magnitude |v| of the
solution is large enough. Consequently, there is no complete well-posedness theory
for (1). Indeed, numerical experiments with discrete versions of (1) indicate very
sensitive dependence on initial conditions [15].

In one space dimension, equation (1) is very closely related to the following ill-
posed diffusion equation that plays a prominent role in image processing [19, 20],
and appears also in models of granular flow [23]:

(3) ut =
(

R(u′)
)′

The function R in these applications also satisfies the property (2). The connection
with (1) is straightforward: Setting v = u′, we see that v satisfies (1) if u satisfies
(3). In image processing, the following two (or higher) dimensional version of
(1) was proposed by Perona and Malik [19, 20] as an image segmentation and
denoising technique:

(4) ut =
(

R′(ux)
)

x
+

(

R′(uy)
)

y

The goal of segmentation is to recognize the regions occupied by distinct objects
in the scene depicted by a given image. Perona and Malik proposed (4) as a
means to simplify this task by replacing the given image, which is taken to be
the initial condition for (4), by a crude, “cartoon-like” approximation in which
small scale details have been eliminated, and small regions have been merged to
form few larger ones. The same instability issues seen in (1) plague also (4). In
particular, there is no complete well-posedness theory for (4), either, despite a
number of important steps in that direction [12, 4, 24, 8, 9, 10]. Some studies of
(4) have therefore focused on its discrete in space version [6, 7], and others on its
regularizations [5, 16, 3, 2, 1].

Despite their unstable behavior, discrete versions of (1) and (4) find widespread
use in the aforementioned applications – the sensitive dependence on initial data
appear to be of secondary importance in these applications. In this paper we
therefore concentrate on the discrete in space, continuum in time version of (1),
which afterall are the true form of the models as they appear in applications. This
in particular allows us to avoid the well-posedness issues. The precise form of the
discretizations we work with are given in Section 3.1.
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Let us also remark that one should expect the general approach we take to be
applicable if one considers a regularized version of (1), as long as some gradient
descent structure is maintained in the regularized model. Adding a regularization
to the problem would introduce a new length scale, controlled by a regulariza-
tion parameter. Such length scale is introduced by the size of a grid cell in the
discretized version. For convenience we set this length scale to 1.
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Figure 1. Spike formation and coarsening by the discrete version of equation
(1) in one space dimension.

In numerical experiments with discretized versions of (1), initial data quickly
develop into spikes that contain most of the mass of the solution. These spikes
are supported on a single grid cell, do not move, but nevertheless interact with
each other through a background where the solution has small magnitude. To be
more specific, during this interaction, small spikes get absorbed by nearby larger
ones, leading to an overall configuration of larger but fewer spikes as the evolution
progresses; see Figure 1. This is the coarsening process that we study in this paper.
In experiments with (3), the role of the spikes is played instead by jumps separated
by “terraces” on which the solution is approximately constant. The coarsening
process merges the terraces to form fewer of them, which are then separated by
larger jumps; see Figure 2. In image processing, this behavior is known as “edge
enhancement”, because it turns a moderate transition in the image into a sharp
discontinuity.

In many applications, for example in image processing via the Perona-Malik
model, the rate at which this coarsening process takes place is of primary interest.
Indeed, in this application, the coarsening rate reflects how fast a given image
gets “simplified” by the model. Understanding this rate is crucial in automatic
selection of parameters, such as how long the diffusion process should be carried
out on a given image. On the other hand, the precise arrangement of terraces
and edges separating them, which seems to depend very sensitively on initial
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data as is to be expected from an ill-posed diffusion equation, is often not of
critical significance: Slight variations in edge locations can be tolerated by most
applications that rely on processed images.
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Figure 2. Formation and coarsening of terraces during the evolution by
the Perona-Malik model. After a long time, there is often a single jump left
separating two large terraces. This process is called “edge enhancement” in
image processing applications, in which a gradual transition is turned into a
sharp discontinuity. In applications, the precise location of the final jump within
the initial transition region is not as important as the rate at which the process
takes place.

The main result of the paper is given in Theorem 1. It roughly says that if
R = f ′ where f(z) ∼ zα for some α ∈ [0, 1) for z large, then the typical spike
height scales as

(5) h ∼

{

t
1

3−α in dimension 1

t
1

2−α in dimension d ≥ 2

The typical distance between nearby spikes scales as h1/d. Note that the coarsening
is faster if α is closer to 1.

Outline. In Section 2 we recall the previous work on the problem and the Kohn-
Otto technique. In Section 3 we introduce the precise setup. The main results on
the rate of coarsening are proved in Section 4. In Section 5 we present numerical
experiments that support the conjecture that the upper bounds obtained are opti-
mal for a large class of nonlinearities. Conclusions are briefly reviewed in Section
6.

2. Previous Work

Our approach is based on a technique of Kohn and Otto [13] for obtaining
upper bounds on the coarsening in energy-driven systems. Bound on the rate
of coarsening follows from estimates on the geometry of the energy landscape.
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In particular, in addition to the energy, E, one considers a quantity, L, which
carries information on the length scales present in a configuration. The geometric
information is contained in two inequalities relating L and E:

(1) Dissipation inequality

(L′)2 ≤ C(−E ′)

where C is a universal constant.
(2) Interpolation inequality When E ≪ 1

ELβ ≥ C

where β > 0 and C is again a universal constant.

If the equation is as gradient flow (as is the case for the systems we consider)
then the natural choice for L is the distance to a fixed configuration. The distance
on the configuration space is induced by inner product with respect to which
the equation is a gradient flow. This makes the energy dissipation inequality
immediate. Once the interpolation inequality is established, a generalized version
in [17] of the main result from [13] leads to the desired lower bound on (the time
average of) the energy.

The techique of Kohn and Otto has been used in [7] to obtain upper bounds
on coarsening rate for (1) in one and two spatial dimensions. In particular, the
coarsening rate for the discrete version of (1) obtained in [7] appears to be close
to optimal in the case of the specific nonlinearity

(6) R(ξ) =
ξ

1 + ξ2
.

which is one of the common choices in applications (certainly in image processing,
where it is the original choice of Perona & Malik in [19, 20], but also in granular
flow [23]). However other choices of R that also lead to backwards parabolic
behavior are routinely used in applications. For most of other nonlinearities R,
the bounds (and arguments) of [7] are not optimal, whereas the improved bounds
obtained in this paper appear to be. Moreover, the results of the present paper
are more general, presented in any space dimension. The practical implications of
the choice of the nonlinearity R on results had been raised often in the engineering
literature (see e.g. [21]), and has occupied researchers since the inception of the
ill-posed models treated here. The results of this paper provide a step towards a
precise, rigorous understanding of this question. In particular it is shown that for
some nonlinearities coarsening can be faster than for (6).
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3. Description of the system

3.1. Preliminaries. We consider the model on a unit-spaced lattice, L = {1, 2, . . . , N}d

where d is the dimension. We identify this lattice with Z
d on which (i1+k1N, . . . , id+

kdN) where 1 ≤ ij ≤ N and kj are integers is identified with (i1, . . . , id); in other
words, we will be using periodic boundary conditions. We denote lattice configu-
rations by L := {v : L → R}. Of particular interest later on will be nonnegative
configurations P := {v : L → [0,∞)}.

We use the following notation

v · w :=
∑

q∈L

vq wq.

We introduce the partial derivatives

(∂+
i v)q := vq+ei

− vq and (∂−
i v)q := vq − vq−ei

and the corresponding gradients

∇+v = (∂+
1 v, . . . , ∂+

d v) and ∇−v = (∂−
1 v, . . . , ∂−

d v).

Note that the following summation by parts formula holds:

∂+
i v · w = −v · ∂−

i w.

The discrete laplacian is

∆v =
d

∑

i=1

∂−
i ∂+

i v.

We denote the average value of configuration v by

v :=
∑

q∈L
vq :=

1

|L|

∑

q∈L

vq

|L| = Nd denotes the number of nodes in the lattice. In the above formula and
in the rest of the paper we use the symbols with bars to denote averages over the
lattice L.

We denote by Z the set of configurations with average zero: Z := {v ∈ L : v =
0}. On the set Z we introduce the discrete H−1 norm in the following way: Note
that given s ∈ Z there exists unique, up to constant, solution p of the discrete
Laplace equation

−∆p = s.
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We define the H−1 inner product by

(7) 〈s1, s2〉 :=
∑

q∈L

(∇+p1)q · (∇
+p2)q

Integration by parts gives 〈s1, s2〉 := s1 · p2 = p1 · s2.

For completeness we now prove a lemma that gives the, perhaps more familiar,
form of the H−1 norm.

Lemma 1. For s ∈ Z

‖s‖ = sup
ξ 6≡const.

s · ξ
√

∑

q∈L
|∇+ξq|2

.

Proof. By definition of the norm

‖s‖ = sup
w∈Z,w 6≡0

〈s, w〉

‖w‖
.

Given w ∈ Z let ξ ∈ Z be the solution of the equation −∆ξ = w. The mapping
w 7→ ξ is a bijection from Z to Z. By definition of the inner product

〈s, w〉

‖w‖
=

s · ξ
√

∑

q∈L
|∇+ξq|2

.

Taking the suprema, and noting that the right hand side does not change if we
add a constant to ξ yields the desired equality. �

3.2. Gradient flow. The evolution problem we study is

(8) v̇ = ∆R(v).

with v(0) ∈ P. Here R = f ′ where f ∈ C1([0,∞), [0,∞)) is nondecreasing
function with f(0) = f ′(0) = 0. It is important to note that the condition
f ′(0) = 0 ensures that v(t) ∈ P for all t ≥ 0; see e.g. Lemma 2 in [7].

To a lattice configuration v ∈ P we associate the energy

(9) E(v) :=
∑

q∈L

f(vq).

and the corresponding energy density E(v) := E(v)/|L|.
We claim that the evolution (8) is a gradient flow of (9) with respect to H−1

inner product (7). To verify the claim we compute for arbitrary s ∈ Z

〈v̇, s〉 = −〈−∆R(v), s〉 = −R(v) · s = −f ′(v) · s = −∇E(v) · s.
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We further assume that f(z) > µzα for some µ > 0, α ∈ [0, 1) and all z large
enough. While this is all we need for the upper bound on coarsening, f ’s that we
have in mind are convex near 0, concave for z large, and have one inflection point.
For such f we expect the coarsening on an infinite domain to persist for all time
for generic, large enough data. If f is to have large local minima, or if the data
are small the coarsening process may stop in finite time. In such cases the upper
bound provided would still hold, but would, clearly, not be optimal.

4. Upper bound on coarsening.

To a configuration v we associate a “length” scale:

(10) L :=
1

√

|L|
‖v − v‖ = sup

ξ 6≡const.

∑

q∈L
(vq − v)ξq

√

∑

q∈L
|∇+ξq|2

.

The reason that the word length is between quotation marks is that L is not, in
general, proportional to a true length scale of a system during coarsening stage.
In particular if ℓ is the typical distance between nearby spikes in a configuration
then

L ∼

{

ℓ if d = 1, 2
ℓd/2 if d ≥ 2.

This also explains the change in scaling of the rate of coarsening that occurs at
d = 2. We should also remark that the above holds when d = 2 up to a logarithmic
correction.

Heuristic arguments suggest that in one dimension, energy E, “length” scale L,
and typical spike height H satisfy

H ∼ t
1

3−α , and E
1

1−α L & const,

and in dimension d ≥ 2

H ∼ t
1

2−α , and E
1

1−α L2 & const.

We remark that in dimension 2 the above rate holds up to a logarithmic correction.

The dissipation inequality follows from the simple fact that the distance of a
moving point (v(t)) to a fixed point (v) on a manifold cannot change faster then
the speed of the point (‖v̇‖). In that sense it follows from general considerations
given in [13] and [17], but due to its simplicity we present a proof.
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Lemma 2 (Dissipation inequality). Let v be a solution of (8). Then

(11) (L̇)2 ≤ −Ė.

Proof. We compute

2LL̇ =
dL2

dt
=

2

L
〈v̇, v − v〉.

Therefore

L̇2 =
1

|L|

〈v̇, v − v〉2

‖v − v‖2
≤

1

L
〈v̇, v̇〉 = −

1

L
∇E · v̇ = −Ė.

�

4.1. Interpolation Inequality. We first introduce model potentials

(12) Fα(z) :=

{

0 if 0 ≤ z ≤ ρ
zα if z > ρ

where ρ > 0 and α ∈ [0, 1). We now prove the inequalities suggested above for
general potentials f ≥ µFα for some µ > 0.

Note that there are three length scales in the system: µ, v and ρ. To investigate
the scaling of inequalities in these quantities, we express how constants in the
inequalities depend on them.

Lemma 3 (Interpolation inequality). Assume f ≥ µFα for some µ > 0, α ∈ [0, 1).
Assume that v > ρ. Let Ef be the associated energy density and assume

(13) Ef <
1

72
µ

(v − ρ)2−α

v2(1−α)
.

If d = 1 then

Ef L1−α ≥
1

24
µ(v − ρ)

3(1−α)
2

+1 v−
3(1−α)

2

If d ≥ 2 then

Ef L2(1−α) ≥
1

24
µd−(1−α) (v − ρ)3−2α v−(1−α).

We consider systems with positive “excess height”, v − ρ; otherwise the system
could have zero energy density. The scaling of the inequalities in µ is simple: If
an interpolation inequality EFα

Lβ ≥ θ > 0 holds and f ≥ µFα then EfL
β ≥ µ θ.

Also the condition Ef < Cµ implies EFα
< C. Therefore it suffices to consider

the case f = Fα. In the remainder of the proof we write E for EFα
.

We prove the inequalities in two steps. We first prove a weak form of the

statement: Typical spike height is greater than E
−1/(1−α)

. That is we prove that
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at least 2/3 of the excess height ṽ := (v − ρ)+ is in such spikes. The statement of
the lemma and its proof are independent of the dimension.

Lemma 4. Let

h :=

(

v − ρ

3

)
1

1−α

E
−1
1−α(14)

and S := {q ∈ L : ṽq > h} .(15)

Then
∑

q∈L\S
ṽq ≤

1

3
(v − ρ)

and thus
∑

q∈S

ṽq ≥
2

3

∑

q∈L

ṽq.

Proof. Assume the statement does not hold. Then

v − ρ

3
<

∑

q∈L\S
ṽq

=
∑

{q : ρ<vq≤h+ρ}
vq − ρ

≤ max
q∈L\S

ṽ1−α
q

∑

{q : ρ<vq}
vα

q

≤ h1−α E =
v − ρ

3
.

Contradiction. �

Proof of Lemma 3. Case d = 1. Let a = ⌊v−ρ
8v2 h + 1⌋, where h was defined in (14).

Consider the test function

(16) ξq =

(

1 −
1

a
dist(q, S)

)

+

.

Recall

(17) L2 =
1

|L|
‖v − v‖2

H−1 ≥

(

∑

q∈L
(vq − v)ξq

)2

∑

q∈L
|∇+ξq|2

.

The smallness condition (13) on E implies

(18) h ≥ 241/(1−α)(v − ρ)−1v2.
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We first bound the numerator in (17) from below. To that end, first note

∑

q∈L
vqξq ≥

∑

q∈S
vqξq =

∑

q∈S
vq (since vq ≥ 0 for all q)

≥
∑

q∈S
ṽq ≥

2

3

∑

q∈L
ṽq (by Lemma 4)

≥
2

3
(v − ρ).

(19)

Then, note also

∑

q∈L
vξq ≤ v

|S|

|L|
a (by construction (16) of ξ)

≤
v2

h
a ≤

v2

h

(

(v − ρ)

8v2 h + 1

)

=
(v − ρ)

8
+

v2

h

≤
(v − ρ)

8
+

(v − ρ)

24
1

1−α

(by the bound (18) on h)

≤
(v − ρ)

6
.

(20)

Putting (19) and (20) together gives

(21)
∑

q∈L
(vq − v)ξq ≥

(v − ρ)

2
.

We next bound the denominator in (17) from above: From construction of ξ
follows

(22)
∑

q∈L
|∇+ξ|2 ≤

|S|

|L|
2a

1

a2
≤ 2

v

ah
≤ 16

v3

(v − ρ)h2
.

Therefore, putting (21) and (22) together implies

L2 ≥
1

64

(v − ρ)3h2

v3 .

Consequently, using the definition of h in terms of E,

E
1

1−α L ≥

(

v − ρ

3

)
1

1−α 1

h

1

8

(v − ρ)3/2h

v3/2
.

This implies the claimed inequality.
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Case d ≥ 2. This time, we take the characteristic function of S to be the test
function:

(23) ξ := χS.

As in the previous case, we have
∑

q∈L
(vq − v)ξq =

∑

q∈S
(vq − v) ≥

∑

q∈S
ṽq −

|S|

|L|
v

≥
2

3

∑

q∈L
ṽq −

|S|

|L|
v (by Lemma 4)

≥
2

3
(v − ρ) −

v2

h
≥

v − ρ

2
(by (18)).

Due to the construction (23) of ξ

∑

q∈L
|∇+ξ|2 ≤

|S|(1 · d + d · 1)

|L|
≤ 2d

v

h

Therefore,

L2 ≥
1

8d

(v − ρ)2h

v
.

Consequently,

E
1

1−α L2 ≥

(

v − ρ

3

)
1

1−α 1

h

1

8d

(v − ρ)2h

v
.

�

4.2. Lower bound on energy. We now establish the energy bound following
the Kohn–Otto technique. ODE considerations by Kohn and Otto imply the
following:

Proposition 1. Let E and L be differentiable functions on [0,∞). Assume that

E · Lβ ≥ θ

for some β > 0 and θ > 0 and all t such that E < 1. Furthermore assume

−Ė ≥ L̇2

for all t. Then for all σ ∈ (1, 1 + 2/β)

(24)

∫ T

0

E
σ
(t)dt &

∫ T

0

(

t−
β

β+2

)σ

dt

provided E(0) < 1 and T ≫ L(0)β+2.
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Remark 1. More precisely: Let

(25) C(β, σ, θ) = (σ − 1)
σβ

β+2

(

β + 2

β + 2 − σβ

)1− σβ

β+2

θ−
2σ

β+2 .

Given any σ ∈ (1, 1 + 2/β), for all δ ∈ (0, 1) there exists Tδ such that

(26)

∫ T

0

E
σ
(t)dt ≥ (1 − δ)C(β, σ, θ)

∫ T

0

(

t−
β

β+2

)σ

dt

for all T > Tδ L(0)β+2.

The proof is analogous to the proof of Proposition 1 in [17].

Theorem 1. Let f be a potential such that f ≥ µFα for some µ > 0. Then if

d = 1

(27)

∫ T

0

E
σ
(t)dt &

∫ T

0

(

t−
1−α
3−α

)σ

dt

for any solution of (8) for T ≫ L(v(0))3−α, provided that E(v(0)) < θ2/(3−α).

If d ≥ 2 then

(28)

∫ T

0

E
σ
(t)dt &

∫ T

0

(

t−
1−α
2−α

)σ

dt

for any solution of (8) for T ≫ L(v(0))4−2α, provided that E(v(0)) < θ1/(2−α).

The theorem follows from dissipation inequality (11) and the interpolation in-
equalities given in Lemma 3 via the Proposition 1.

Remark 2. The inequalities above and the form of the energy suggest that for
f ∼ µFα the typical spike height scales as

(29) h ∼

{

t
1

3−α if d = 1

t
1

2−α if d ≥ 2

So the coarsening is faster if α is closer to 1.
Remark 3. The α = 1 case. Note that the gradient flows of energies corre-

sponding to f(z) and f(z) − cz, for any constant c, are identical. This is due to
the fact that

∑

q∈L
vq is preserved by the evolution. Another way to see this is to

note that adding a constant to R does not change the evolution.
Thus when f(z) ∼ z for z large, to study the coarsening one should renormalize

the energy by subtracting an appropriate multiple of z. If |f(z) − cz| ∼ zγ for
all z large, for some γ ∈ [0, 1) then the renormalized energy falls in the class of
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energies studied above. A particular consequence is that in the α = 1 case any
rate of coarsening possible in the α < 1 range can be achieved. There can also be
no coarsening at all, for example if f(z) = z.

Remark 4. It may be surprising then that the rate of coarsening that we
predict increases as α → 1−. The numerical experiments we describe in Section 5
suggest that the rates in (29) are indeed optimal. Inspecting the constants in the
inequalities can help explain this “paradox”. For example consider the constant
C in (25) for σ = 1+ 1

β
. That is for 1+ 1

1−α
if d = 1 and for σ = 1+ 1

2−2α
if d ≥ 2.

With this choice of σ, the first term in the expression for the constant C in (25)
becomes

(σ − 1)
σβ

β+2 =

{

(1 − α)−
2−α
3−α if d = 1

(2(1 − α))−
3−2α
4−2α if d ≥ 2

In particular C → ∞ as α → 1−, which is consistent with potentially slower coars-
ening in the limiting case α = 1. See Figures 7 and 8 for numerical experiments
exploring this limit.

5. Numerical Results.

In this section we provide results of numerical experiments that corroborate
the theory developed in Section 4. Figures 3, 4, and 5 show experiments at
several resolutions in one, two, and three space dimensions, respectively, with the
evolution described by scheme (8) using the energy density

f(ξ) = (1 + ξ2)
1
4 .

Theorem 1 applies to this flow with α = 1
2
; the rigorous lower bound on time

average of energy given by that theorem indicates the coarsening rates

(30) K ∼ E
1

1−α ∼

{

t−
2
5 in 1D,

t−
2
3 in 2D and higher.

where K denotes the density of spikes in the solution v at any given time, i.e.

K =
#{q : vq ≥ ρ}

Nd

(recall that N is the number of grid points in each coordinate direction). The
α-independent lower bound on time average of energy given in [7] also applies to
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this flow, and indicates the rates

(31) K ∼ E
1

1−α ∼

{

t−
2
3 in 1D,

t−1 in 2D.

The dashed lines in Figures 3 and 4 represent in terms of K the coarsening rate
(31) implied by the rigorous bound from [7], whereas the solid line represents the
bound (30) implied by Theorem 1 of the present paper. The new bound (30)
appears close to being optimal in all of Figures 3, 4, and 5.

Figure 6 shows experiments in 3D with the standard Perona-Malik energy den-
sity f(ξ) = log(1 + ξ2). Theorem 1 gives the coarsening rate

K ∼ E ∼ t−
1
2

which agrees very well with the numerical results as indicated by the solid line:
The bound appears very close to being optimal once again. In 1D and 2D, with
this energy density, Theorem 1 agrees with the rigorous bounds in [7], which were
numerically demonstrated to be nearly optimal already in that paper.

Figures 7 and 8 show 1D experiments exploring the coarsening rate of scheme
(8) in the limit α → 1− in the energy density

f(ξ) =

{

ξ2 if |ξ| ≤ 1,

1 + 2(|ξ| − 1) (1 + (|ξ| − 1)2)
α−1

2 if |ξ| > 1

which behaves as |ξ|α for |ξ| large, so that f(ξ) approaches linear growth at ∞ as
α → 1−. This linear growth limit is in fact quite relevant for applications, as it
essentially corresponds to the very popular total variation based image denoising
model of Rudin, Osher, and Fatemi [22]. As we approach this limit, any possible
gains in energy through coarsening of large spikes (concentration of mass in few,
tall spikes) becomes negligible. One would therefore expect coarsening rate to
vanish. However, as discussed in Remark 4 of Section 4, the bound of Theorem 1
indicates the coarsening rate

K ∼ E
1

1−α ∼ t−
1

3−α → t−
1
2 as α → 1−,

which suggests accelerated coarsening in this limit, contradicting initial expecta-
tions. The results shown in Figure 8 help clarify this matter: Coarsening rate
indeed increases as α → 1−, but it sets in at later and later times. As noted in
the remark at the end of Section 4, this behavior is hinted in the dependence on
the parameter α of constants (25) appearing in the rigorous bound (26).
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Figure 3. One dimensional experiments with the non-linearity f(ξ) = (1 +

|ξ|2)
1

2 . Here, K denotes the spike density. The coarsening rate in terms of K

indicated by the bound from [7], namely K ∼ t−
2

3 is represented by the dashed
line, and is clearly far from optimal for this choice of R – not surprising since
that result does not take into account the power law growth of the corresponding
energy density f at infinity. The coarsening rate indicated by the new bound,
namely K ∼ t−

2

5 , is represented by the solid line and appears close to being

optimal.
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Figure 4. Experiments in two dimensions, with the nonlinearity f(ξ) =

(1 + |ξ|2)
1

4 . Once again the coarsening rate indicated by the new improved

bound, namely K ∼ t−
2

3 , represented by the solid line, seems much closer to
being optimal than the bound from [7], which indicates the rate K ∼ t−1, that
does not take into account the power law growth of the corresponding energy
density f at infinity.

6. Conclusion.

We presented rigorous upper bounds on the coarsening rate of spatially discrete
versions of ill-posed diffusion equations that appear in a variety of applications.
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Figure 5. Experiments in three dimensions, with the nonlinearity f(ξ) =

(1 + ξ2)
1

4 . The coarsening rate indicated by Theorem 1, namely K ∼ t−
2

3 , is
represented by the solid line.

Our analysis was based on the approach of Kohn and Otto [13], and in a wide
class of nonlinearities improved the bounds given in [7] for the same equations.
Numerical results show that the upper bounds we established are in fact the rates
observed in the experiments. Understanding the coarsening rate of these equations
has direct implications in applications such as image processing.
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Figure 6. Experiments in three dimensions, with the nonlinearity f(ξ) =

log(1 + ξ2). The coarsening rate predicted by Theorem 1, namely K ∼ t−
1

2 , is
indicated by the solid line.
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