LECTURE 6 EXERCISES

1: Do exercise 4.3.11 on page 140 of the Dembo and Zeitouni book. Show that these results imply

$$\lim_{M\uparrow\infty} \inf_{\{x:\phi(x)>M\}} \left(I(x) - \phi(x) \right) = \infty$$

2: Extend the results of exercise 4.3.11 to functions ϕ which can take the value $-\infty$. This is an important extension because it enables asymptotic analysis of quantities like

$$E_P\left[\Phi(Z_{\varepsilon})^{1/\varepsilon}\right] = E_P\left[\exp\left(\frac{1}{\varepsilon}\log\Phi(Z_{\varepsilon})\right)\right]$$

where the function Φ is non-negative, but may take the value 0.

2: (Theorem *III.*17 on page 34 of the Hollander book) Let \mathcal{X} be a Polish space with Borel σ -algebra $\mathcal{B}_{\mathcal{X}}$. Let the measures $(\mathbb{P}_n)_{n\in\mathbb{N}}$ satisfy a LDP on \mathcal{X} with good rate function *I*. Let $F: \mathcal{X} \to \mathbb{R}$ be a continuous function bounded from above. For each *n* define the set function

$$J_n(S) = \int_S e^{nF(x)} P_n(dx) \qquad S \in \mathcal{B}_{\mathcal{X}}$$

and the probability measures $(\mathbb{P}_n^F)_{n\in\mathbb{N}}$ via

$$\mathbb{P}_n^F(S) = \frac{J_n(S)}{J_n(X)} \qquad S \in \mathcal{B}_{\mathcal{X}}$$

Define the rate function

$$I^{F}(x) = \sup_{y \in \mathcal{X}} (F(y) - I(y)) - (F(x) - I(x))$$

Show that I^F is a good rate function and that $(\mathbb{P}_n^F)_{n\in\mathbb{N}}$ satisfy a LDP on \mathcal{X} with I^F .

4: In this exercise you will show that the Laplace Principle implies a LDP for measures on Polish spaces. Thus, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $(Z_n)_{n \in \mathbb{N}}$ be a family of Borel measurable random variables taking values in a Polish space \mathcal{X} (with Borel σ -algebra $\mathcal{B}_{\mathcal{X}}$) with distributions $(\mu_n)_{n \in \mathbb{N}}$.

Prove that if there exists a good rate function $I : \mathcal{X} \mapsto [0, \infty]$ such that for all continuous and bounded functions $\phi : \mathcal{X} \mapsto \mathbb{R}$ the following limit holds (the minus sign is for ease of notation only)

$$\lim_{n \uparrow \infty} \frac{1}{n} \log E_P \left[\exp\left(-n\phi(Z_n)\right) \right] = \inf_{x \in \mathcal{X}} \left(\phi(x) + I(x)\right)$$

Then $(\mu_n)_{n \in \mathbb{N}}$ solves the LDP with good rate function *I*.

Hints : note that $\mu_n(A) = E_P \left[\exp \left(-n\phi(X_n) \right) \right]$ for the "indicator" function

$$\phi(x) = \begin{cases} 0 & x \in A \\ \infty & x \notin A \end{cases}$$

This function is not continuous, however you can approximate it with continuous bounded functions. For the upper bound, if F is closed then set $\phi_j(x) = j (d(x, F) \wedge 1)$. Recall that the lower bound follows if for all $x \in \mathcal{X}$ with $I(x) < \infty$ there is a δ small enough so that

4

$$\liminf_{n\uparrow\infty} \frac{1}{n} \log \mu_n \left(B(x,\delta) \right) \ge -I(x)$$

To this end, let $\delta > 0$ and set $\phi_j(y) = j\left(\frac{d(x,y)}{\delta} \wedge 1\right)$.