LECTURE 6 EXERCISES

1 : Do exercise 4.3 .11 on page 140 of the Dembo and Zeitouni book. Show that these results imply

$$
\lim _{M \uparrow \infty} \inf _{\{x: \phi(x)>M\}}(I(x)-\phi(x))=\infty
$$

2 : Extend the results of exercise 4.3 .11 to functions ϕ which can take the value $-\infty$. This is an important extenxtion because it enables asymptotic analysis of quantities like

$$
E_{P}\left[\Phi\left(Z_{\varepsilon}\right)^{1 / \varepsilon}\right]=E_{P}\left[\exp \left(\frac{1}{\varepsilon} \log \Phi\left(Z_{\varepsilon}\right)\right)\right]
$$

where the function Φ is non-negative, but may take the value 0 .
2 : (Theorem $I I I .17$ on page 34 of the Hollander book) Let \mathcal{X} be a Polish space with Borel σ algebra $\mathcal{B}_{\mathcal{X}}$. Let the measures $\left(\mathbb{P}_{n}\right)_{n \in \mathbb{N}}$ satisfy a LDP on \mathcal{X} with good rate function I. Let $F: \mathcal{X} \mapsto \mathbb{R}$ be a continuous function bounded from above. For each n define the set function

$$
J_{n}(S)=\int_{S} e^{n F(x)} P_{n}(d x) \quad S \in \mathcal{B}_{\mathcal{X}}
$$

and the probability measures $\left(\mathbb{P}_{n}^{F}\right)_{n \in \mathbb{N}}$ via

$$
\mathbb{P}_{n}^{F}(S)=\frac{J_{n}(S)}{J_{n}(X)} \quad S \in \mathcal{B}_{\mathcal{X}}
$$

Define the rate function

$$
I^{F}(x)=\sup _{y \in \mathcal{X}}(F(y)-I(y))-(F(x)-I(x))
$$

Show that I^{F} is a good rate function and that $\left(\mathbb{P}_{n}^{F}\right)_{n \in \mathbb{N}}$ satisfy a LDP on \mathcal{X} with I^{F}.
4 : In this exercise you will show that the Laplace Principle implies a LDP for measures on Polish spaces. Thus, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\left(Z_{n}\right)_{n \in \mathbb{N}}$ be a family of Borel measurable random variables taking values in a Polish space \mathcal{X} (with Borel σ-algebra $\mathcal{B}_{\mathcal{X}}$) with distributions $\left(\mu_{n}\right)_{n \in \mathbb{N}}$.

Prove that if there exists a good rate function $I: \mathcal{X} \mapsto[0, \infty]$ such that for all continuous and bounded functions $\phi: \mathcal{X} \mapsto \mathbb{R}$ the following limit holds (the minus sign is for ease of notation only)

$$
\lim _{n \uparrow \infty} \frac{1}{n} \log E_{P}\left[\exp \left(-n \phi\left(Z_{n}\right)\right)\right]=\inf _{x \in \mathcal{X}}(\phi(x)+I(x))
$$

Then $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ solves the LDP with good rate function I.
Hints : note that $\mu_{n}(A)=E_{P}\left[\exp \left(-n \phi\left(X_{n}\right)\right)\right]$ for the "indicator" function

$$
\phi(x)= \begin{cases}0 & x \in A \\ \infty & x \notin A\end{cases}
$$

This function is not continuous, however you can approximate it with continuous bounded functions. For the upper bound, if F is closed then set $\phi_{j}(x)=j(d(x, F) \wedge 1)$. Recall that the lower bound
follows if for all $x \in \mathcal{X}$ with $I(x)<\infty$ there is a δ small enough so that

$$
\liminf _{n \uparrow \infty} \frac{1}{n} \log \mu_{n}(B(x, \delta)) \geq-I(x)
$$

To this end, let $\delta>0$ and set $\phi_{j}(y)=j\left(\frac{d(x, y)}{\delta} \wedge 1\right)$.

