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1. Introduction

In this chapter we present a survey of the area of set theory in which iter-
ated forcing interacts with elementary embeddings. The original plan was to
concentrate on forcing constructions which preserve large cardinal axioms,
particularly Reverse Easton iterations.

However this plan proved rather restrictive, so we have also treated con-
structions such as Baumgartner’s consistency proof for the Proper Forcing
Axiom. The common theme of the constructions which we present is that
they involve extending elementary embeddings.

We have not treated the preservation of large cardinal axioms by “Prikry-
type” forcing, for example by Radin forcing or iterated Prikry forcing. For
this we refer the reader to Gitik’s chapter in this Handbook [22].

After some preliminaries, the bulk of this chapter consists of fairly short
sections, in each of which we introduce one or two technical ideas and give
one or more examples of the ideas in action. The constructions are generally
of increasing complexity as we proceed and have more techniques at our
disposal.

Especially at the beginning, we have adopted a fairly leisurely and discur-
sive approach to the material. The impatient reader is encouraged to jump
ahead and refer back as necessary. At the end of this introduction there is a
brief description of the contents of each section.

Here is a brief review of our notation and conventions. We defer the
discussion of forcing to Section 5.

• P (X) is the power set of X. If X is a subset of a well-ordered set then
ot(X) is the order-type of X. Vα is the set of sets with rank less than
α. tc(X) is the transitive closure of X. Hθ is the set of x such that
tc({x}) has cardinality less than θ.

• For τ a term and M a model, τM or τM denotes the result of interpreting
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the set-theoretic term τ in the model M , for example V M
α or 2ω

M . When
τM = τ ∩M we sometimes write “τ ∩M” instead of “τM”, especially
when τ is a term of the form “P (X)” or “Vα”.

• f is a partial function f from X to Y (f : X  Y ) if and only if
f ⊆ X × Y and for every a ∈ X there is at most one b ∈ Y with
(a, b) ∈ f . f is a total function from X to Y (f : X → Y ) if and only if
for every a ∈ X there is exactly one b ∈ Y with (a, b) ∈ f . As usual we
write “f(a) = b” for “(a, b) ∈ f”. idX is the identity function on X.

• We use On for the class of ordinals, Card for the class of cardinals, Lim
for the class of limit ordinals, Reg for the class of regular cardinals and
Sing for the class of singular ordinals.

• If α is a limit ordinal then cf(α) is the cofinality of α. If δ is a regular
cardinal then Cof(δ) is the class of limit ordinals α such that cf(α) = δ.
Expressions like “Cof(<κ)” have the obvious meaning.

• |X| is the cardinality of X.

• XY is the set of all functions from X to Y . If κ and λ are cardinals
then κλ = |λκ|.

• We will make the following abuse of notation. When M,N are transitive
models with M ⊆ N we will write “N |= βM ⊆ M” to mean that every
β-sequence from M which lies in N actually lies in M , even in situations
where possibly M is not definable in N . A similar convention applies
when we write “N |= βOn ⊆ M”.

• [X]λ is the set of subsets of X of cardinality λ. Expressions like
[X]≤λ have the obvious meaning. If κ is regular and κ ≤ λ then
Pκλ = {a ∈ [λ]<κ : a ∩ κ ∈ κ}; this is a departure from the more
standard notation in which the terms “Pκλ” and “[λ]<κ” are synony-
mous.

• A tree is a structure (T,<T ) where <T is a well-founded strict ordering
on T , and each element of T has a linearly ordered set of predecessors.
Tα is the set of elements of height α, T �α is the set of elements of height
less than α.

• A tree is normal if and only if it is nonempty, has a unique minimal
element, and has the properties that every element has two immediate
successors and that every element of limit height is determined uniquely
by the set of its predecessors in the tree. For κ regular a κ-tree is a
normal tree of height κ, in which every level has size less than κ.

• ωα is the αth infinite cardinal.

• Throughout we use “inaccessible” to mean “strongly inaccessible” and
“Mahlo” to mean “strongly Mahlo”.
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• An ideal on X is a non-empty family of subsets of X which is downwards
closed and closed under finite unions; a filter on X is a non-empty
family of subsets of X which is upwards closed and closed under finite
intersections. An ideal I is proper if X /∈ I, and a filter F is proper if
∅ /∈ F ; most of the ideals and filters appearing in this chapter will be
proper. If I is an ideal on X then {X \ A : A ∈ I} is a filter on X,
which is called the dual filter and will often be denoted by I∗; similarly
if F is a filter then F ∗ = {X \A : A ∈ F} is an ideal.

Ideals often arise in measure theory, where the class of measure zero
sets for a (complete) measure on X is an ideal. If I is an ideal on X
then we say that A ⊆ X is positive for I or I-positive iff A /∈ I, and we
often write I+ for the class of positive sets; we also sometimes say that
A is measure one for I if A ∈ I∗. Similarly if F is a filter we say A is
F -positive iff A /∈ F ∗, and is F -measure one iff A ∈ F .

• An ultrafilter on X is a maximal proper filter on X, or equivalently a
filter U such that for all A ⊆ X exactly one of the sets A,X \A is in U .
An ultrafilter is principal if and only if it is of the form {A ⊆ X : a ∈ A}
for some a ∈ X.

• If I is an ideal and λ is a cardinal, then I is λ-complete if and only
if I is closed under unions of length less than λ; similarly a filter F is
λ-complete if and only if F is closed under intersections of length less
than λ.

If κ is a regular cardinal then a measure on κ is a κ-complete non-
principal ultrafilter on κ. The measure U is normal if and only if
it is closed under diagonal intersections, that is for every sequence
〈Xi : i < κ〉 with Xi ∈ U for all i < κ, the diagonal intersection
{β : ∀α < β β ∈ Xα} of the sequence lies in U .

The prerequisites for reading this chapter are some familiarity with iter-
ated forcing and the formulation of large cardinal axioms in terms of elemen-
tary embeddings. Knowledge of the material in Baumgartner’s survey paper
on iterated forcing [6, Sections 0, 1, 2 and 5] and Kanamori’s book on large
cardinals [43, Sections 5, 22, 23, 24 and 26] should be more than sufficient.

I learned much of what I know about elementary embeddings and forcing
from Hugh Woodin, and would like to thank him for many patient expla-
nations. I have also profited greatly from conversations with Uri Abraham,
Arthur Apter, Jim Baumgartner, Matt Foreman, Sy Friedman, Moti Gitik,
Aki Kanamori, Menachem Magidor, Adrian Mathias and Saharon Shelah.

Several people have been kind enough to read drafts of this chapter and
give me their comments. Thanks in particular to Arthur Apter, Matt Fore-
man, Sy Friedman, Radek Honzik, Aki Kanamori, John Krueger, Peter Lums-
daine and Ernest Schimmerling; apologies to anyone whom I have omitted
from this list.

We conclude this Introduction with the promised road map of the chapter.
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• Section 2 discusses basic facts about elementary embeddings.

• Section 3 describes how we approximate elementary embeddings by
ultrapowers and more generally by extenders, a special kind of limit
ultrapower.

• Section 4 reviews some basic large cardinal axioms and their formula-
tion in terms of elementary embeddings.

• Section 5 contains a discussion of the basics of forcing. Our conven-
tion (following Kunen [46]) is that a notion of forcing is a preordering
with a designated largest element; we discuss the relationship with the
other standard approaches to forcing. We review the basic closure, dis-
tributivity and chain condition properties and introduce some variants
(the Knaster property and strategic closure) which are important later.
We also introduce some basic forcing posets, Cohen forcing and the
standard cardinal collapsing posets.

• Section 6 defines four forcing posets which enable us to distinguish
different closure properties and will all play various roles later in the
chapter. These are the posets to add a Kurepa tree, a non-reflecting
stationary set, a square sequence and finally a club set disjoint from a
prescribed co-stationary set in ω1.

• Section 7 reviews iterated forcing, essentially following the approach
of Baumgartner’s survey [6]. We discuss the preservation of various
closure and chain conditions and the idea of a factor iteration.

• Section 8 describes how to build generic objects over sufficiently closed
inner models for sufficiently closed forcing posets. We apply this to
construct a variant form of Prikry forcing first isolated by Foreman
and Woodin in their work on the global failure of the GCH [21].

• Section 9 proves a key lemma of Silver’s on lifting elementary embed-
dings to generic extensions, discusses the properties of the lifted em-
beddings and gives some easy applications.

• Section 10 discusses the key idea of a generic elementary embedding,
constructs some examples and applies them to a discussion of stationary
reflection at small cardinals.

• Section 11 describes Silver’s idea of iterating forcing with Easton sup-
ports. As a first application we sketch a simpler proof of a theorem by
Kunen and Paris [47], that under GCH a measurable cardinal κ may
carry κ++ normal measures.

• Section 12 introduces another key idea of Silver’s, that of a master
condition. As a first example of a master condition argument we give
something close to Silver’s original consistency proof for the failure of
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GCH at a measurable cardinal, starting from the hypothesis that there
is a model of GCH in which some κ is κ++-supercompact.

• Section 13 describes a technique, which is due to Magidor, for doing
without a master condition under some circumstances. As an example
we redo the failure of GCH at a measurable cardinal from the hypothesis
that there is a model of GCH in which some κ is κ+-supercompact.

• Section 14 describes how we may absorb κ-closed forcing posets into a
large enough κ-closed collapsing poset, so that the quotient is also κ-
closed. We then apply this to prove a theorem of Kunen [45] about sat-
urated ideals, a theorem of the author from joint work with Džamonja
and Shelah [11] about strong non-reflection, and Magidor’s theorem [55]
that consistently every stationary set in ωω+1 reflects.

• Section 15 discusses how to transfer generic filters between models of set
theory, and sketches an application to constructing generalised versions
of Prikry forcing.

• Section 16 shows that we may apply the ideas in this chapter in the
context of weak large cardinal axioms such as weak compactness, and
sketches a proof that GCH may first fail at a weakly compact cardinal.

• Section 17 proves two theorems of Jech, Magidor, Mitchell and Prikry
[40]. The first result is that ω1 may carry a precipitous ideal, the second
is that in fact the non-stationary ideal on ω1 may be precipitous. The
argument for the second result uses the absorption idea from Section
14, and also involves iterating a natural forcing for shooting club sets
through stationary sets.

• Section 18 sketches the proof of Gitik’s result [23] that the precipitous-
ness of NSω2 is equiconsistent with a cardinal of Mitchell order two.

• Section 19 gives two more applications of iterated club shooting, Jech
and Woodin’s result [41] that NSκ�Reg can be κ+-saturated for a Mahlo
cardinal κ and Magidor’s result [55] that consistently every stationary
set of cofinality ω ordinals in ω2 may reflect at almost all points of
cofinality ω1.

• Section 20 discusses some variant collapsing posets which are often use-
ful, Kunen’s universal collapse [45] and the Silver collapse. We sketch
Kunen’s proof [45] that ω1 can carry an ω2-saturated ideal, starting
from the hypothesis of a huge cardinal.

• Section 21 sketches some results primarily due to Hamkins which put
limits on what we can achieve by Reverse Easton forcing. As a sam-
ple application we sketch an easy case of Hamkins’ superdestructibility
theorem [32].
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• Section 22 describes an idea of Laver’s for introducing a kind of univer-
sal generic object by forcing with a poset of terms. As an application we
sketch an unpublished proof by Magidor [51] of his celebrated theorem
[52] that the least measurable cardinal can be strongly compact.

• Section 23 introduces the idea of analysing iterations by term forcing.
As an example we introduce yet another collapsing poset and give a
version of Mitchell’s proof [57] that ω2 may have the tree property.

• Section 24 discusses how to build universal iterations using predic-
tion principles. We prove Laver’s theorem that supercompact cardinals
carry Laver diamonds, and use this to give Baumgartner’s proof for the
consistency of the Proper Forcing Axiom [15] and Laver’s proof that a
supercompact cardinal κ can be made indestructible under κ-directed
closed forcing [49].

• Section 25 introduces an idea due to Woodin for altering generic objects,
and then applies this to give Woodin’s consistency proof for failure of
GCH at a measurable from an optimal assumption.

2. Elementary Embeddings

We will be concerned with elementary embeddings k : M −→ N where M,N
are transitive models of ZFC and k, M, N are all classes of some universe of
set theory. It will not in general be the case that k or N are classes of M or
that N ⊆ M . In particular we will be interested in the situation of a “generic
embedding” where j : V −→ M ⊆ V [G] for V [G] a generic extension of V ,
and j, M are defined in V [G].

This notion is straightforward if M,N are sets but one needs to be a little
careful when M,N are proper classes. We refer the reader to Kanamori’s
book [43, Sections 5 and 19] for a careful discussion of the metamathematical
issues. From now on we will freely treat elementary embeddings between
proper classes as if those classes were sets, a procedure which can be justified
by the methods of [43]. We reserve the term “inner model” for a transitive
class model of ZFC which contains all the ordinals.

We start by recalling a few basic facts about elementary embeddings.

2.1 Proposition. Let M and N be transitive models of ZFC and let the map
k : M −→ N be elementary. Then

1. The pointwise image k“M is an elementary substructure of N , the
Mostowski collapse of the structure (k“M,∈) is M , and k is the in-
verse of the collapsing isomorphism from k“M to M .

2. k(α) ≥ α for all α ∈ M ∩On.

3. If k�(β + 1) = id and A ∈ M with A ⊆ β, then k(A) = A.
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Proof. Easy. a

2.2 Proposition. Let M be a transitive model of ZFC, let x ∈ M and let
M |= “x ∈ Hλ+” where λ is an infinite M -cardinal. Then there is a set A ⊆ λ
such that A ∈ M and for any transitive model N of ZF, A ∈ N implies that
x ∈ N .

Proof. Let f ∈ M be an injection from tc({x}) to λ, let G be Gödel’s pairing
function and let

A = {G(f(a), f(b)) : a, b ∈ tc({x}) and a ∈ b}.

If A ∈ N then N can compute x by forming the Mostowski collapse of the
well-founded extensional relation {(α, β) : G(α, β) ∈ A}, and then finding the
element of maximal rank in this set. a

We abbreviate the rather cumbersome assertion “A is a set of ordinals
such that {(γ, δ) : G(γ, δ) ∈ A} is a well founded relation whose transitive
collapse is tc({x})” by “A codes x”. The assertions “A codes x” and “A
codes something” are both ∆ZFC

1 and are thus absolute between transitive
models of ZFC.

2.3 Proposition. Let M and N be transitive models of ZFC and let the map
k : M −→ N be elementary. If k“(M ∩On) is cofinal in N ∩On then exactly
one of the following is true:

1. k = idM and M = N .

2. There exists an ordinal δ ∈ M ∩On such that k(δ) > δ.

Proof. Suppose the second alternative fails, so that k�(M ∩On) is the iden-
tity. Let x ∈ M and find a set of ordinals A ∈ M such that A codes x.
Then A = k(A) by Proposition 2.1, k(A) codes k(x) by elementarity, and so
k(x) = x. Since x was arbitrary, k = idM .

Since k = idM , M ∩ On = N ∩ On and V N
β = V N

k(β) = k(V M
β ) = V M

β for
all β ∈ M ∩On. So M = N . a

From now on we will say that k : M −→ N is nontrivial if k 6= idM .

2.4 Remark. It was crucial in Proposition 2.3 that k should map M ∩ On
cofinally into N ∩On. For example the theory of sharps [43, Section 9] shows
that if 0] exists then Lω1 , Lω2 are models of ZFC and Lω1 ≺ Lω2 .

2.5 Remark. Let k : M −→ N be elementary, where M is an inner model
and N is transitive. Then N is an inner model, and the hypotheses of Propo-
sition 2.3 are satisfied.
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If k : M −→ N is elementary then the least δ such that k(δ) > δ (if it
exists) is called the critical point of k and is denoted by crit(k). It is not hard
to see that crit(k) is a regular uncountable cardinal in M .

It is natural to ask how much agreement there must be between the models
M and N . The following proposition puts a lower bound on the level of
agreement.

2.6 Proposition. If k : M −→ N is an elementary embedding between tran-
sitive models of ZFC and crit(k) = δ, then HM

δ+ ⊆ N .

Proof. Let x ∈ HM
δ+ and let A ∈ M code x with A ⊆ δ. Then for α < δ we

have
α ∈ A ⇐⇒ k(α) ∈ k(A) ⇐⇒ α ∈ k(A),

so A = k(A) ∩ δ ∈ N . Therefore x ∈ N . a

In general we cannot say much more, as illustrated by the following two
examples. In Example 2.7 M = N , while in Example 2.8 M and N agree
only to the extent indicated by Proposition 2.6.

2.7 Example. Suppose that 0] exists. Then there is a nontrivial elementary
embedding k : L −→ L [43, Section 9].

2.8 Example. It is consistent (from large cardinals) that there exist inner
models M and N and an embedding k : M −→ N such that crit(k) = ωM

1

and Vω+1 ∩M ( Vω+1 ∩N . We will construct such an example in Theorem
10.2.

If the critical point is inaccessible in M we can say more:

2.9 Proposition. If k : M −→ N is an elementary embedding between tran-
sitive models of ZFC, and crit(k) = δ where δ is inaccessible in M , then
Vδ ∩M = Vδ ∩N .

Proof. For α < δ, the set Vα ∩ M is coded by a bounded subset of δ lying
in M . In particular it is fixed by k, so as α is also fixed by elementarity
Vα ∩M = Vα ∩N . a

In the theory of large cardinals we are most interested in embeddings of
the following type, where usually M will be an inner model.

2.10 Definition. An embedding k : M −→ N is definable if and only if k
and N are definable in M .

The analysis of these embeddings is due to Scott [61] and is summarised
in the following proposition.

2.11 Proposition. Let M,N be inner models and let k : M −→ N be a
nontrivial definable elementary embedding with crit(k) = δ. Let

U = {X ⊆ δ : X ∈ M, δ ∈ k(X)}.

Then
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1. U ∈ M and M |= “U is a normal measure on δ”.

2. V M
δ+1 = V N

δ+1.

3. k�V M
δ = id.

4. For all A ∈ V M
δ+1, A = k(A) ∩ V M

δ .

Proof. See [43, Section 5]. a

2.12 Remark. Neither of the embeddings from Examples 2.7 and 2.8 is
definable.

3. Ultrapowers and Extenders

It will be important for us to be able to describe embeddings between models
by ultrapowers and limit ultrapowers. We give a sketchy outline here and
refer the reader to [43, Sections 19 and 26] for the details.

Let M be a transitive model of ZFC, let X ∈ M and let U be an ultrafilter
on P (X)∩M . Then we may form Ult(M,U), the collection of U -equivalence
classes of functions f ∈ M with dom(f) = X. As usual we let [f ]U denote
the class of f , and for x ∈ M we let jU (x) = [fx]U where fx is the function
with domain X and constant value x. Ult(M,U) is made into a structure for
the language of set theory by defining

[f ]UE[g]U ⇐⇒ {x : f(x) ∈ g(x)} ∈ U,

and we make a mild abuse of notation by writing “Ult(M,U)” for the struc-
ture (Ult(M,U), E).

3.1 Remark. When M is an inner model [f ]U is typically a proper class,
which makes the definition of Ult(M,U) appear problematic. This can be
fixed by Scott’s trick in which [f ]U is redefined as the set of functions with
minimal rank which are equivalent to f modulo U . Similar remarks apply to
ultrapowers throughout this chapter.

Since M is a model of ZFC  Loś’s theorem holds, that is to say that for any
formula φ(x1, . . . , xn) and any functions F1, . . . , Fn ∈ M with domain X,

Ult(M,U) |= φ([F1]U , . . . , [Fn]U )

if and only if
{x : M |= φ(F1(x), . . . , Fn(x))} ∈ U.

In particular jU is an elementary embedding from M to Ult(M,U). When
Ult(M,U) is well-founded we will identify it with its transitive collapse. The
following propositions are standard.
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3.2 Proposition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC, let a ∈ N and let B ∈ M with a ∈ k(B). Let
Ea = {A ⊆ B : A ∈ M,a ∈ k(A)}. Then

1. Ea is an ultrafilter on P (B)∩M . For notational convenience we define
Ma = Ult(M,Ea) and ja = jEa

.

2. If we define ka : Ma −→ N by ka([f ]Ea) = k(f)(a) then ka is a well-
defined elementary embedding and ka◦ja = k. ka and Ma do not depend
on the choice of B.

3. Ma is isomorphic via ka to Xa, where

Xa = {k(F )(a) : F ∈ M, dom(F ) = B}.

4. Ma is well-founded and when we identify it with its transitive collapse
ka is the inverse of the transitive collapsing map on Xa.

5. If k is definable then Ea ∈ M and ja is definable.

3.3 Proposition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC. Let a1 ∈ k(B1), a2 ∈ k(B2) and let E1, E2

be the associated ultrafilters. Suppose that F : B2 −→ B1 is such that
k(F )(a2) = a1. Then F induces an elementary embedding

F ∗ : Ult(M,E1) −→ Ult(M,E2),

where F ∗([g]E1) = [g ◦ F ]E2 . Moreover jE2 = F ∗ ◦ jE1 .

3.4 Proposition. Let λ ∈ N ∩On be such that λ ≤ sup(k“(M ∩On)). For
each a ∈ [λ]<ω let µa be the least ordinal such that a ⊆ j(µa) and let

Ea = {A ⊆ [µa]|a| : A ∈ M,a ∈ k(A)}.

Let Ma, ja, ka, and Xa be as in Proposition 3.2. If a, b ∈ [λ]<ω and a ⊆ b
then define

Fab(x) = {γ ∈ x : ∃γ∗ ∈ a ot(x ∩ γ) = ot(b ∩ γ∗)}

for x ∈ [µb]|b|. Then

1. Fab : [µb]|b| −→ [µa]|a| and k(Fab)(b) = a. We let jab denote the
embedding from Ma to Mb induced by Fab.

2. M0 = M , k0 = k, j0a = ja.

3. The system of structures Ma and embeddings jab is a directed sys-
tem, so has a direct limit M∞. There are elementary embeddings
ja∞ : Ma −→ M∞ such that M∞ =

⋃
a ja∞[Ma] and jb∞ ◦ jab = ja∞.
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4. There is an elementary embedding l : M∞ −→ M such that l◦ja∞ = ka

for all a.

5. M∞ is isomorphic via l to X∞ =
⋃

a Xa, and l is the inverse of the
Mostowski collapsing map on X∞. In particular M∞ is well-founded.

6. If k is definable and M is an inner model then j0∞ is definable.
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If k : M −→ N is elementary where M,N are inner models then we
may make X∞ contain arbitrarily large initial segments of N by choosing
λ sufficiently large. M∞ is the transitive collapse of X∞, l is the inverse
of the collapsing map and l ◦ j0∞ = k. It follows that we may make j0∞
approximate k to any required degree of precision by a suitable choice of λ.

3.5 Definition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC with crit(k) = δ, and let λ ≤ sup(k“(M ∩On)). If

E = {Ea : a ∈ [λ]<ω}

where Ea is defined as above, then we call E the M -(δ, λ)-extender derived
from k.

It is possible [43, Section 26] to give an axiomatisation of the properties
which are enjoyed by E as in Definition 3.5, thus arriving at the concept of
an “M -(δ, λ)-extender”. Given an M -(δ, λ)-extender E we can compute the
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limit ultrapower of M by E to get a well-founded structure Ult(M,E) and
an embedding jE : M −→ Ult(M,E).

If E is the extender derived from k : M −→ N as in Proposition 3.4
then in the notation of that proposition Ult(M,E) = M∞ and jE = j0∞. If
E is an M -(δ, λ)-extender and E′ is the M -(δ, λ)-extender derived from the
ultrapower map jE : M −→ Ult(M,E) then E = E′.

When E is a V -(δ, λ)-extender lying in V we will just refer to E as a
“(δ, λ)-extender”.

3.6 Definition. An M -(δ, λ)-extender E is called short if all the measures
Ea concentrate on [δ]<ω, or equivalently if λ ≤ jE(δ).

We now make a couple of (non-standard) definitions which will give us a
convenient way of phrasing some results later. See for example Propositions
3.9 and 15.1.

3.7 Definition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC, and let µ be an ordinal. The embedding k has
width ≤ µ if and only if every element of N is of the form k(F )(a) for some
F ∈ M , a ∈ N where M |= |dom(F )| ≤ µ.

3.8 Definition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC, and let A ⊆ N . The embedding k is supported on
A if and only if every element of N is of the form k(F )(a) for some F ∈ M
and a ∈ A ∩ dom(k(F ))

The following easy Proposition will be useful later.

3.9 Proposition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC with crit(k) = κ, and let

U = {X ⊆ κ : X ∈ M,κ ∈ k(X)}.

Then k is the ultrapower map computed from M and U if and only if k is
supported on {κ}.

4. Large Cardinal Axioms

We briefly review some standard large cardinal axioms and their formulation
in terms of elementary embeddings and ultrapowers. Once again we refer the
reader to Kanamori’s book [43] for the details.

We start with the characterisations in terms of elementary embeddings.

• κ is measurable if and only if there is a definable j : V −→ M such that
crit(j) = κ.

• κ is λ-strong if and only if there is a definable j : V −→ M such that
crit(j) = κ, j(κ) > λ and Vλ ⊆ M . κ is strong if and only if it is
λ-strong for all λ.
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• κ is λ-supercompact if and only if there is a definable j : V −→ M such
that crit(j) = κ, j(κ) > λ and λM ⊆ M . κ is supercompact if and only
if it is λ-supercompact for all λ.

• κ is λ-strongly compact if and only if there is a definable j : V −→ M
such that crit(j) = κ, j(κ) > λ and there is a set X ∈ M such that
M |= |X| < j(κ) and j“λ ⊆ X. κ is strongly compact if and only if it
is λ-strongly compact for all λ.

• κ is huge with target λ if and only if there is a definable j : V −→ M
such that crit(j) = κ, j(κ) = λ and λM ⊆ M . κ is almost huge with
target λ if and only if there is a definable j : V −→ M such that
crit(j) = κ, j(κ) = λ and <λM ⊆ M .

Each of these concepts can also be characterised using ultrafilters or ex-
tenders.

• κ is measurable if and only if there is a measure on κ (that is a normal
κ-complete non-principal ultrafilter on κ).

• Assuming GCH, κ is (κ + β)-strong if and only if there is a short
(κ, κ+β)-extender E such that Vκ+β ⊆ Ult(V,E).

• For λ ≥ κ, κ is λ-supercompact if and only if there is a normal, fine
and κ-complete ultrafilter on Pκλ. We will generally refer to such an
object as a supercompactness measure on Pκλ.

• For λ ≥ κ, κ is λ-strongly compact if and only if there is a fine and
κ-complete ultrafilter on Pκλ. We will generally refer to such an object
as a strong compactness measure on Pκλ.

• For λ ≥ κ, κ is huge with target λ if and only if there is a normal, fine
and κ-complete ultrafilter on Pκλ, where Pκλ is the set of X ⊆ λ with
order type κ. Almost-hugeness has a rather technical characterisation
in terms of a direct limit system of supercompactness measures on Pκµ
for µ < λ.

4.1 Remark. If j : V −→ M is a definable embedding such that crit(j) = κ
and j“λ ∈ M , then {X ∈ Pκλ : j“λ ∈ j(X)} is a supercompactness measure.

4.2 Remark. Weak compactness may also be characterised in terms of ele-
mentary embeddings, we discuss this in Section 16.

For use later we record the definition of the Mitchell ordering C and a few
basic facts about it.

4.3 Definition. Let κ be a measurable cardinal and let U0, U1 be measures
on κ. Then U0 C U1 if and only if U0 ∈ Ult(V,U1).
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The theory of the Mitchell ordering is developed in Mitchell’s chapter
“Beginning inner model theory”. The relation C is a strict well-founded
partial ordering. If U is a measure then o(U) is defined to be the height of
U in C, and the Mitchell order o(κ) of κ is defined to be the height of C. In
the usual canonical inner models for large cardinals, C is a linear ordering.

The following propositions collect some easy but useful facts about the
behaviour of elementary embeddings.

4.4 Proposition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC, and let k have width ≤ µ. If M |= cf(α) > µ then
sup(k“α) = k(α).

If sup(k“α) = k(α) we will say that k is continuous at α.

4.5 Proposition. If U ∈ V is a countably complete ultrafilter on X, X
has cardinality κ and j : V −→ M is the associated ultrapower map then
|j(µ)| < (|µ|κ)+ for all ordinals µ.

4.6 Proposition. If E ∈ V is a short (κ, λ)-extender and j : V −→ M is
the associated ultrapower map then |j(µ)| < (λ× |µ|κ)+ for all ordinals µ.

4.7 Proposition. Let M be an inner model of V . If λM ⊆ M then the
cardinals of V and M agree up to and including λ+. If GCH holds, κ is
inaccessible and Vκ+β ⊆ M then the cardinals of V and M agree up to iβ(κ).

The following example illustrates how these ideas can be used. There are
many similar calculations in later sections, where we will generally suppress
the details.

4.8 Example. Let GCH hold and let U be a supercompactness measure on
Pκκ+, with j : V −→ M the associated ultrapower map. Then

1. j is continuous at κ++ and κ+++.

2. κ++ < j(κ).

3. j(κ+++) = κ+++.

Proof. |Pκκ+| = κ+, so by Proposition 4.4 j is continuous at κ++ and κ+++.
By the definition of a supercompactness measure κ+

M ⊆ M , and so by
Proposition 4.7 κ++ = κ++

M . By elementarity j(κ) is an M -inaccessible car-
dinal greater than κ, and so κ++ < j(κ).

For every η < κ+++, Proposition 4.5 and GCH imply that j(η) < κ+++.
Since j is continuous at κ+++ we have j(κ+++) = κ+++ as required. a

5. Forcing

We assume that the reader is familiar with forcing; in this section we establish
our forcing conventions and review some of the basic definitions and facts.
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We will essentially follow the treatment of forcing in Kunen’s text [46]. Proofs
of all the facts that we mention in this section can be found in at least one
of the texts by Kunen [46] or Jech [39].

Our approach to forcing is based on posets with a largest element. We
justify this by the sociological observation that when a set theorist writes
down a new set of forcing conditions it is almost always of this form.

For technical reasons we sometimes work with preordered sets rather than
partially ordered sets; recall that a preordering is a transitive and reflexive
relation, and that if ≤ is a preordering of P we may form the quotient by the
equivalence relation

pEq ⇐⇒ p ≤ q ≤ p

to get a partially ordered set. We refer to this as the quotient poset.
A largest element in a preordered set P is an element b such that a ≤ b

for all a. A preordering may have many largest elements, which will all be
identified when we form the quotient poset.

A notion of forcing is officially a triple (P,≤P, 1P) where ≤P is a preordering
of P and 1P is a largest element. A forcing poset is a notion of forcing where
≤P is a partial ordering; if P is a notion of forcing then the quotient poset
is a forcing poset. If p, q are conditions in a notion of forcing P then p ≤ q
means that p is stronger than q.

5.1 Remark. It might seem more natural just to use forcing posets in our
discussion of forcing. However this would cause irritating problems when we
come to discuss iterated forcing; for example in a two-step iteration P ∗ Q̇
we may have p 
 q̇1 = q̇2, in which case the conditions (p, q̇1) and (p, q̇2) are
equivalent but not identical.

For p ∈ P we denote by P/p the subset {q ∈ P : q ≤ p} with the inherited
ordering. It is a standard fact that there is a bijection between P-generic
filters G with p ∈ G, and (P/p)-generic filters, in which G corresponds to
G ∩ (P/p). If p ∈ G then V [G] = V [G ∩ (P/p)].

We say P ⊆ Q is dense if every condition in Q has an extension in P. There
is a bijection between Q-generic filters G and P-generic filters, in which G
corresponds to G ∩ P and V [G] = V [G ∩ P].

If P is a notion of forcing then the class V P of P-names is defined recursively
so that σ is a P-name if and only if every element of σ has the form (τ, p) for
some P-name τ and condition p ∈ P.

We denote by iG(σ) the result of interpreting the name σ with respect to
the filter G, that is

iG(σ) = {iG(τ) : ∃p ∈ G (τ, p) ∈ σ}.

We let x̌ denote the standard forcing name for the ground model object x,
that is x̌ = {(y̌, 1P) : y ∈ x}. Ġ = {(p̌, p) : p ∈ P} is the standard name for
the generic filter.
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A notion of forcing is non-trivial if and only if it is forced by every condition
that V [G] 6= V , or equivalently that G /∈ V . The trivial forcing is the forcing
poset with just one element; we usually denote the trivial forcing by “{1}”.

It is easy to see that p 
 q̌ ∈ Ġ if and only if every extension of p is
compatible with q; we will say that a notion of forcing is separative when
p 
 q̌ ∈ Ġ ⇐⇒ p ≤ q. It is routine to check that if P is a separative notion
of forcing then the quotient forcing poset is also separative.

It is a standard fact that for any notion of forcing P there is a separa-
tive forcing poset Q and an order and incompatibility preserving surjection
h : P → Q. The map h and forcing poset Q are unique up to isomorphism,
Q is called the separative quotient of P and forcing with Q is equivalent to
forcing with P.

If P is a separative forcing poset then the Boolean algebra ro(P) of regular
open subsets of P is complete, and P is isomorphic to a dense set in ro(P)\{0}.
It follows that there is a bijection between P-generic filters and ro(P)-generic
ultrafilters, so that forcing with the poset P is equivalent to forcing with the
complete Boolean algebra ro(P). We sometimes abuse notation and write
ro(P) for the regular open algebra of the separative quotient of a notion of
forcing P.

In general when P and Q are notions of forcing we will say that they are
equivalent if and only if for every P-generic filter G there is a Q-generic filter
H with V [G] = V [H], and symmetrically for every Q-generic filter H there
is a P-generic filter G with V [H] = V [G]. It is routine to see that this can
be formulated in a first-order way which does not mention generic filters.

Complete Boolean algebras have the advantage that they allow a straight-
forward discussion of the relationship between different forcing extensions. If
P and Q are notions of forcing then forcing with P is equivalent to forcing
with Q if and only if ro(P) is isomorphic to ro(Q). For C a complete Boolean
algebra and G a C-generic ultrafilter over V , the models of ZFC intermedi-
ate between V and V [G] are precisely the models of form V [G ∩ B] for B a
complete subalgebra of C.

In particular when B is a complete subalgebra of C then ĠC ∩ B is a C-
name for a B-generic ultrafilter. Conversely for any complete B and C, a
C-name for a B-generic ultrafilter gives a complete embedding of B into C.

Since we are wedded to an approach to forcing via posets, it is helpful to
have some sufficient conditions which guarantee that a Q-generic extension
contains a P-generic one without mentioning the regular open algebras.

5.2 Definition. If P and Q are notions of forcing then a projection from Q
to P is a map π : Q → P such that π is order-preserving, π(1Q) = 1P, and for
all q ∈ Q and all p ≤ π(q) there is q̄ ≤ q such that π(q̄) ≤ p.

The following facts are standard [2]:

1. If H is Q-generic over V then π“H generates a P-generic filter G.
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2. Conversely if G is P-generic over V and we set

Q/G = {q ∈ Q : π(q) ∈ G},

with the partial ordering inherited from Q, then any H ⊆ Q/G which
is Q/G-generic over V [G] is Q-generic over V .

5.3 Remark. In general if Q and P are forcing posets such that forcing with
Q adds a generic object for P, then there is a projection from Q to the poset
of nonzero elements of ro(P).

5.4 Definition. If P and Q are notions of forcing then a complete embedding
from P to Q is a function i : P → Q such that i(1P) = 1Q, and

p1 ≤ p2 ⇐⇒ i(p1) ≤ i(p2)

for all p1 and p2 in P, and for every q ∈ Q there is a condition p ∈ P such
that i(p̄) is compatible with q for all p̄ ≤ p.

The following facts are standard [46]:

1. If H is Q-generic over V then G = i−1“H is a P-generic filter.

2. Conversely if G is Q-generic over V and we set Q/G to be the set of
q ∈ Q which are compatible with all elements of i“G, any H which is
Q/G-generic over V [G] is P-generic over V .

5.5 Remark. In the context of projections or complete embeddings as above
Q/G may not be separative, even if P and Q both are.

5.6 Remark. We have overloaded the notation “Q/G”, defining it both in
the setting of a projection from Q to P and of a complete embedding from
P to Q. This is (we assert) harmless in the sense that if we have both a
projection π : Q → P and a complete embedding i : P → Q, and i ◦ π = idP,
then the two definitions of Q/G give equivalent notions of forcing.

We will make some use of the Maximum principle: if P is a notion of
forcing and p ∈ P forces ∃x φ(x), then there is a term τ̇ ∈ V P such that
p 
 φ(τ̇). This needs the Axiom of Choice, but that presents no obstacle for
us.

When we say that P adds some kind of object or forces some statement
to hold, we mean that this is forced by every condition in P, or equivalently
it is forced by 1P. This is important because some natural notions of forcing
are highly inhomogeneous.

We will frequently use the standard forcing posets for adding subsets to a
regular cardinal κ, and for collapsing cardinals to have cardinality κ. Each
forcing poset consists of a family of partial functions ordered by reverse in-
clusion.
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5.7 Definition. Let κ be a regular cardinal, and let λ be any ordinal.

1. (Cohen forcing) Add(κ, λ) is the set of all partial functions from κ× λ
to 2 of cardinality less than κ.

2. Col(κ, λ) is the set of all partial functions from κ to λ of cardinality
less than κ.

3. (The Lévy collapse) Col(κ, <λ) is the set of all partial functions p from
κ× λ to λ such that

(a) |p| < κ.

(b) p(α, β) < β for all (α, β) ∈ dom(p).

5.8 Definition. Let P be a notion of forcing and let κ be an uncountable
cardinal. Then

1. P is κ-chain condition (κ-c.c.) if and only if P has no antichain of size
κ.

2. P is κ-closed if and only if every decreasing sequence of conditions in P
with length less than κ has a lower bound.

3. P is (κ,∞)-distributive if and only if forcing with P adds no new <κ-
sequence of ordinals.

4. P is κ-directed closed if and only if every directed set of size less than
κ of conditions in P has a lower bound.

5.9 Remark. If P is separative, then P is (κ,∞)-distributive if and only if
every <κ-sequence of dense open subsets of P has a nonempty intersection.

The following fact is easy but crucial. See [39, Lemma 20.5] for a proof.

5.10 Fact (Easton’s Lemma). Let κ be a regular uncountable cardinal. Let
P be κ-c.c. and let Q be κ-closed. Then

1. 
P×Q “κ̌ is a regular uncountable cardinal”.

2. 
Q “P̌ is κ̌-c.c.”.

3. 
P “Q̌ is (κ̌,∞)-distributive”.

It is sometimes useful to consider a stronger form of the κ-c.c. See Kunen
and Tall’s paper [48] for more information about the following property.

5.11 Definition. Let κ be an uncountable regular cardinal. A poset P is κ-
Knaster if and only if for every κ-sequence of conditions 〈pα : α < κ〉 there is a
set X ⊆ κ unbounded such that 〈pα : α ∈ X〉 consists of pairwise compatible
conditions.
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For example the standard ∆-system proof [46, Theorem 1.6] that the Co-
hen poset Add(κ, λ) is (2<κ)+-c.c. actually shows that Add(κ, λ) is (2<κ)+-
Knaster. The following easy fact shows that the Knaster property is in some
ways better behaved than the property of being κ-c.c. It is not in general the
case that the product of two κ-c.c. posets is κ-c.c.

5.12 Fact. Let κ be regular and let P, Q be two notions of forcing. Then

1. If P and Q are κ-Knaster then P×Q is κ-Knaster.

2. If P is κ-c.c. and Q is κ-Knaster then P×Q is κ-c.c.

5.13 Remark. In general the property of being κ-Knaster is stronger than
that of being κ-c.c. For example if T is an ω1-Suslin tree then (T,≥) is ω1-
c.c. but is not ω1-Knaster, by Fact 5.12 and the easy remark that T × T is
not ω1-c.c.

We will also need some properties intermediate between κ-closure and
(κ,∞)-distributivity, involving the idea of a game on a poset. This concept
was introduced by Jech [37] and studied by Foreman [18] and Gray [30] among
others.

5.14 Definition. Let P be a notion of forcing and let α be an ordinal. We
define Gα(P), a two-player game of perfect information. Two players Odd
and Even take turns to play conditions from P for α many moves, with Odd
playing at odd stages and Even at even stages (including all limit stages).
Even must play 1P at move zero. Let pβ be the condition played at move β;
the player who played pβ loses immediately unless pβ ≤ pγ for all γ < β. If
neither player loses at any stage β < α, then player Even wins.

5.15 Definition. Let P be a notion of forcing and let κ be a regular cardinal.

1. P is <κ-strategically closed if and only if for all α < κ, player Even has
a winning strategy for Gα(P).

2. P is κ-strategically closed if and only if player Even has a winning strat-
egy for Gκ(P).

3. P is (κ + 1)-strategically closed if and only if player Even has a winning
strategy for Gκ+1(P), where we note that it is player Even who must
make the final move.

5.16 Remark. More general forms of strategic closure have been studied
[18] and are sometimes useful, but this one is sufficient for us.

5.17 Remark. It is not difficult to see that the conclusions of Lemma 5.10
remain true when we weaken the hypothesis of κ-closure to κ-strategic clo-
sure. This strategic Easton lemma is part of the folklore.
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6. Some Forcing Posets

It is easy to see that every κ-directed closed poset is κ-closed, every κ-
closed poset is κ-strategically closed, every κ-strategically closed poset is
<κ-strategically closed and every <κ-strategically closed poset is (κ,∞)-
distributive. The following examples illustrate that these concepts are dis-
tinct, and will all find some use later in this chapter.

The first example shows that κ-closure does not in general imply κ-directed
closure.

6.1 Example (Adding a Kurepa tree at an inaccessible cardinal). Recall
that if κ is inaccessible then a κ-Kurepa tree is a normal tree of height κ such
that

• |Tα| ≤ |α|+ ω for α < κ.

• T has at least κ+ cofinal branches.

Devlin’s book about constructibility [16] contains more information about
Kurepa trees, including a discussion of when such trees exist in L. We note
that if κ is ineffable (ineffability is a large cardinal axiom intermediate be-
tween weak compactness and measurability) then there is no κ-Kurepa tree,
and that in L there is such a tree for every non-ineffable inaccessible κ.

6.2 Remark. It might have seemed more natural to generalise the definition
of a Kurepa tree to inaccessible κ by simply asking for a κ-tree with more than
κ cofinal branches. But this would be uninteresting because the complete
binary tree of height κ is always such a tree.

6.3 Remark. It is very easy to see that there is no κ-Kurepa tree for κ
measurable. For if T is such a tree and j : V −→ M is elementary with
critical point κ, then the map which takes each cofinal branch b to the unique
point of j(b) on level κ is one-to-one, so in M level κ of j(T ) has more than
κ points.

Given κ inaccessible we define a forcing poset P to add a κ-Kurepa tree.
Conditions are pairs (t, f) where

1. t is a normal tree of height β + 1 for some β < κ.

2. |tα| ≤ |α|+ ω for all α ≤ β.

3. f is a function with dom(f) ⊆ κ+, ran(f) = tβ and |dom(f)| ≤ |β|+ω.

Intuitively f(δ) is supposed to be the point in which branch δ meets tβ .
Accordingly we say that (u, g) ≤ (t, f) if and only if

1. t is an initial segment of u.

2. dom(f) ⊆ dom(g).
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3. For all δ ∈ dom(f), f(δ) ≤u g(δ).

It is easy to see that P is κ-closed and κ+-c.c. and that P adds a κ-Kurepa
tree. We claim that P is not κ-directed closed. To see this let {xα : α < 2ω}
enumerate ω2 and let S be the family of conditions (t, f) such that t = nω
for some finite n, f has domain a countable subset of 2ω and f(δ) = xδ�n
for all δ ∈ dom(f). S is directed and |S| = 2ω < κ. However S cannot have
a lower bound because, if (t, g) is a lower bound for S then t must have 2ω

points on level ω.

6.4 Remark. Similar arguments show that P has no dense κ-directed closed
dense subset, and is not κ-directed closed below any condition. We will see
in Theorem 24.12 that it is consistent for there to exist a measurable cardinal
κ whose measurability is preserved by any κ-directed closed forcing, while by
contrast forcing with the κ-closed poset P always destroys the measurability
of κ.

Our next example shows that in general κ-strategic closure is a weaker
property than κ-closure.

6.5 Example (Adding a non-reflecting stationary set). Let κ = cf(κ) ≥ ω2.
We define a forcing poset P which aims to add a non-reflecting stationary set
of cofinality ω ordinals in κ, that is to say a stationary S ⊆ κ ∩Cof(ω) such
that S ∩ α is non-stationary for all α ∈ κ ∩ Cof(> ω). p ∈ P if and only if p
is a function such that

1. dom(p) < κ, ran(p) ⊆ 2.

2. If p(α) = 1, cf(α) = ω.

3. if β ≤ dom(p) and cf(β) > ω then there exists a set c ⊆ β club in β
such that ∀α ∈ c p(α) = 0.

It is easy to see that P is countably closed, and that it adds the character-
istic function of a stationary subset of κ. It is also easy to see that if we let
S be any stationary set of limit ordinals in ω1, let χS : ω1 → 2 be the charac-
teristic function of S, and define pα = χS�α for α < ω1, then 〈pα : α < ω1〉 is
a decreasing sequence of conditions in P with no lower bound and so P fails
to be ω2-closed.

We now claim that P is κ-strategically closed, which we will prove by
exhibiting a winning strategy for Even. At stage α Even will compute
γα = dom(

⋃
β<α pβ), and will then define pα by setting dom(pα) = γα + 1,

pα�γα =
⋃

β<α pβ and pα(γα) = 0. This strategy succeeds because at every
limit stage β of uncountable cofinality the set {γα : α < β} is club in γβ , and
Even has ensured that pβ is 0 at every point of this club set.

The following example shows that in general the property of <κ-strategic
closure is weaker than that of κ-strategic closure. The forcing is due to
Jensen.
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6.6 Example (Adding a square sequence). Let λ be an uncountable cardinal.
Recall that a �λ-sequence is a sequence 〈Cα : α ∈ λ+ ∩ Lim〉 such that for
all α

1. Cα is club in α.

2. ot(Cα) ≤ λ.

3. ∀β ∈ lim(Cα) Cα ∩ β = Cβ .

We define a forcing poset P to add such a sequence. Conditions are initial
segments of successor length of such a sequence and the ordering is extension.
More formally p ∈ P iff

• dom(p) = (β + 1) ∩ Lim for some β ∈ λ+ ∩ Lim.

• p(α) is club in α, ot(p(α)) ≤ λ for all α ∈ dom(p).

• If α ∈ dom(p) then ∀β ∈ lim p(α) p(α) ∩ β = p(β).

If p, q ∈ P then q ≤ p if and only if p = q�dom(p).
It can be checked that P is <λ+-strategically closed, so that P preserves

cardinals up to λ+ and adds a �λ-sequence. The author’s joint paper with
Foreman and Magidor [13] has a detailed discussion of the poset P and several
variations.

We claim that P is not in general λ+-strategically closed. To see this we
observe that if player Even can win Gλ+(P), then the union of the sequence
of the moves in a winning play is actually a �λ-sequence. So if �λ fails then
P is not λ+-strategically closed. Ishiu and Yoshinobu [36] have observed that
the principle �λ is in fact equivalent to the λ+-strategic closure of P.

6.7 Remark. The difference between the last two examples is essentially that
“S is a stationary subset of κ” is a second-order statement in the structure
(Hκ, S) while “~C is a �λ-sequence” is a first-order statement in the structure
(Hλ+ , ~C). This difference was exploited in [9].

Our final example shows that in general (κ,∞)-distributivity is weaker
than <κ-strategic closure. This forcing is due to Baumgartner, Harrington
and Kleinberg [7].

6.8 Example (Killing a stationary subset of ω1). Let S ⊆ ω1 be stationary
and co-stationary. We define a forcing P to destroy the stationarity of S. The
conditions in P are the closed bounded subsets c of ω1 such that c ∩ S = ∅.

We claim that P is (ω1,∞)-distributive. To see this let 〈Dn : n < ω〉 be
an ω-sequence of dense open sets and let c ∈ P. Fix θ some large regular
cardinal and <θ a well-ordering of Hθ. Find an elementary substructure
N ≺ (Hθ,∈, <θ) such that

1. p, P, S, ~D ∈ N .
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2. N is countable.

3. N ∩ ω1 /∈ S (this is possible because S is co-stationary).

Let δ = S ∩ ω1 and fix 〈δn : n < ω〉 an increasing and cofinal sequence in δ.
Now build a chain of conditions 〈cn : n < ω〉 as follows: c0 = c and cn+1 is
the <θ-least condition d such that d ≤ cn, d ∈ Dn and max(d) ≥ δn. An
easy induction shows that cn ∈ N , so in particular max(cn) ∈ N ∩ω1 = δ. It
follows that if c∞ =

⋃
n cn ∪ {δ} then c∞ ∈ P, and by construction c∞ ∈ Dn

for all n.
On the other hand P is not < ω1-strategically closed. To see this we show

that for any Q, if Even wins Gω+1(Q) then Q preserves stationary subsets of
ω1. Let σ be a winning strategy for Even in Gω+1(Q). Let T ⊆ ω1 be sta-
tionary. Let q 
Q “Ċ is club in ω1” and let q, Q, T, Ċ, σ ∈ N ≺ (Hθ,∈, <θ),
where N is countable with δ = N ∩ ω1 ∈ T . Let 〈En : n < ω〉 enumerate the
dense subsets of Q which lie in N .

Now consider a run 〈qn : n ≤ ω〉 of Gω+1(Q) such that

1. q0 = q.

2. Even plays according to σ.

3. For n > 0, q2n+1 is the <θ-least condition r such that r ≤ q2n and
r ∈ En−1.

It is easy to see that qn ∈ Q ∩ N for n < ω. The condition qω forces that
δ ∈ lim(Ċ), so qω 
 δ ∈ Ċ ∩ Ť and we have shown that the stationarity of T
is preserved.

6.9 Remark. The question of preservation of stationarity by forcing is one
to which we will return several times in this chapter. The argument of Exam-
ple 6.8 shows that for any ordinal λ of uncountable cofinality, any stationary
S ⊆ λ ∩ Cof(ω) and any (ω + 1)-strategically closed Q, forcing with Q pre-
serves the stationarity of S. The situation is more complex for uncountable
cofinalities, because if we build a structure N as in the last part of Example
6.8 and then try to build a suitable chain of conditions in N , we may in
general wander out of N after ω steps. We will return to this topic in Lemma
10.6 and the proof of Theorem 14.10.

It will be convenient to fix some notation for the kind of forcing poset
constructed in Example 6.8.

6.10 Definition. Let κ be a regular cardinal and let T be a stationary subset
of κ. Then CU(κ, T ) is the forcing poset whose conditions are closed bounded
subsets of T , ordered by end-extension.

The poset of Example 6.8 is CU(ω1, ω1\S). For κ > ω1 the poset CU(κ, T )
may not be well-behaved, in particular it may collapse cardinals; consider for
example the situation where κ = ω2 and T = ω2 ∩ Cof(ω1). See Section 18
for a detailed discussion of this issue.
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7. Iterated Forcing

In this section we review the definition of iterated forcing and some basic facts
about iterated forcing constructions. We will basically follow Baumgartner’s
survey paper [6] in our treatment of iterated forcing. Many readers may have
learned iterated forcing from the excellent account in Kunen’s book [46], and
for their benefit we point out that there is one rather significant difference
between the Baumgartner and Kunen treatments.

This involves the precise definition of a two-step iteration P ∗ Q̇ where P
is a notion of forcing and Q̇ is a P-name for a notion of forcing. In [46] the
elements of P ∗ Q̇ are all pairs (p, q̇) such that p ∈ P and Q̇ contains some
pair of the form (q̇, r); Baumgartner [6] adopts a more liberal definition in
which q̇ is chosen from some set X of P-names such that every P-name for
a member of Q̇ is forced to be equal to some name in X. This distinction
makes for some (essentially trivial) differences in the theory, for example
it is possible with the definition from [46] that P is countably closed and

P “Q̇ is countably closed” but P ∗ Q̇ is not countably closed.

In the interests of precision we make the following definition, which really
amounts to specifying the set of names X from the last paragraph.

7.1 Definition. Let P be a notion of forcing.

• A P-name ẋ is canonical iff there is no ẏ such that | tc(ẏ)| < | tc(ẋ)| and

P ẋ = ẏ.

• If Q̇ is a P-name for a notion of forcing then P ∗ Q̇ is the set of all pairs
such that p ∈ P, 
P q̇ ∈ Q̇ and q̇ is canonical.

The advantage of this convention will be that we get equality rather than
just isomorphism in statements like Lemma 12.10 below.

We recall the standard facts about two step iterations:

1. P ∗ Q̇ is ordered as follows: (p0, q̇0) ≤ (p1, q̇1) if and only if p0 ≤ p1 and
p0 
 q̇0 ≤ q̇1.

2. There is a bijection between V -generic filters for P∗ Q̇ and pairs (G, H)
where G is V -generic for P, and H is V [G]-generic for iG(Q̇).

As we mentioned above we will follow the treatment of iterated forcing
from Baumgartner’s survey paper [6]. We give a brief review. We make the
convention that whenever we have a P-name Q̇ for a notion of forcing, 1̇Q
names the specified largest element of Q̇.

An iteration of length α is officially an object of the form

(〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉)

where for every β ≤ α

• Pβ is a notion of forcing whose elements are β-sequences.
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• If p ∈ Pβ and γ < β then p�γ ∈ Pγ .

• If β < α then 
Pβ
“Q̇β is a notion of forcing”.

• If p ∈ Pβ and γ < β, then p(γ) is a Pγ-name for an element of Q̇γ .

• If β < α then Pβ+1 ' Pβ ∗ Q̇β , via the map which takes h ∈ Pβ+1 to
(h�β, h(β)).

• If p, q ∈ Pβ then p ≤Pβ
q iff p�γ 
Pγ p(γ) ≤Q̇γ

q(γ) for all γ < β.

• 1Pβ
(γ) = 1̇Qγ for all γ < β.

• If p ∈ Pβ , γ < β and q ≤Pγ
p�γ then q_p�[γ, β) ∈ Pβ .

In a standard abuse of notation we will sometimes use “Pα” as a shorthand
for the iteration (〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉). We usually write “
β” for
“
Pβ

”.
The key points in the definition of iteration are that if Gα is Pα-generic

over V and β < α then

• Gβ =def {p�β : p ∈ Gα} is Pβ-generic over V .

• gβ =def {iGβ
(p(β)) : p ∈ Gα} is iGβ

(Q̇β)-generic over V [Gβ ].

7.2 Remark. It is sometimes useful to weaken the conditions in the definition
of iteration, and to admit as a forcing iteration any pair (~P, ~Q) where

1. Pβ is a forcing poset whose conditions are β-sequences.

2. Q̇β is a Pβ-name for a forcing poset.

3. Pβ+1 ' Pβ ∗ Q̇β , via the map which takes h ∈ Pβ+1 to (h�β, h(β)).

4. The restriction map from Pβ to Pγ for γ < β is a projection.

Note that the “key properties” from the last paragraph will still be true in
this setting. An important example is Prikry iteration with Easton support
(see [22]) which are iterations in this more general sense,

7.3 Remark. Some arguments which we need to do subsequently work most
smoothly with forcing posets which are separative partial orderings. The
poset absorption argument of Section 14 is an example. In our definition
of iterated forcing Pα is just a notion of forcing. However it is routine to
check that if we form an iteration such that each factor Q̇i is forced to be
a separative partial ordering, then the quotient poset of Pα is separative.
We will sometimes blur the distinction between the preordering Pα and its
associated quotient partial ordering.
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If p ∈ Pα then the support of p (supp(p)) is {β < α : p(β) 6= 1̇Qβ
}.

Let λ be a limit ordinal and let an iteration of length λ be given. We
define the inverse limit lim

←−
~P�λ to be the set of sequences p of length λ such

that ∀α < λ p�α ∈ Pα. The direct limit lim
−→

~P�λ is the subset of the inverse

limit consisting of those p such that p(α) = 1̇Qα for all sufficiently large α.
The definition of a forcing iteration implies that if we have an iteration of
length greater than λ then

lim
−→

~P�λ ⊆ Pλ ⊆ lim
←−

~P�λ.

To specify a forcing iteration it will suffice to describe the names Q̇β and
to give a procedure for computing Pλ for λ limit. In many iterations the only
kinds of limit which are used are direct and inverse ones.

7.4 Remark. Let κ be inaccessible, and suppose that we have an iteration
of length κ where Q̇β ∈ Vκ for all β < κ and a direct limit is taken at stage
κ. Then

• Pβ ⊆ Vκ for all β < κ.

• While it is not literally true that Pκ ⊆ Vκ, for every p ∈ Pκ there exist
β < κ and q ∈ Pβ such that p(α) = q(α) for α < β, p(α) = 1̇Qα for
β ≤ α < κ. We will often blur the distinction between Pκ and

⋃
α Pα,

which actually is a subset of Vκ.

7.5 Definition. If κ is regular then an iteration with <κ-support is an it-
eration in which direct limits are taken at limit stages of cofinality greater
than or equal to κ, and inverse limits are taken at limit stages of cofinality
less than κ. An iteration with Easton support is an iteration in which direct
limits are taken at regular limit stages and inverse limits are taken elsewhere.

As this terminology would suggest, the support of a condition in an iter-
ation with <κ-support has size less than κ. The support of a condition in
an Easton iteration is an Easton set, that is to say a set of ordinals which is
bounded in every regular cardinal.

The following are a few key facts about two-step iterations. Proofs are
given in [6, Section 2] for 1 and 2, while the proofs for 3 are easy variations
of the proof for 2.

7.6 Proposition. Let κ = cf(κ) > ω, let P be a notion of forcing and let

P “Q̇ is a notion of forcing”.

1. P ∗ Q̇ is κ-c.c. iff P is κ-c.c. and 
P “Q̇ is κ-c.c.”

2. If P is κ-closed and 
P “Q̇ is κ-closed” then P ∗ Q̇ is κ-closed.

3. Let X be any of the properties “κ-directed closed”, “<κ-strategically
closed” or “κ-strategically closed”. If P is X and 
P “Q̇ is X” then
P ∗ Q̇ is X.
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7.7 Proposition. Let κ be inaccessible and P ∈ Vκ. If 
P Q̇ ∈ V̇κ then
P ∗ Q̇ ∈ Vκ, and if 
P Q̇ ⊆ Vκ then P ∗ Q̇ ⊆ Vκ.

In general the preservation of chain condition in iterations is a very delicate
question. See [6, Section 4] and [62] to get an idea of the difficulties surround-
ing preservation of the ω2-c.c. by countable support iterations. Fortunately
we can generally get away with some comparatively crude arguments.

The following fact is proved in [6, Section 2].

7.8 Proposition. Let α be limit and let Pα = lim
−→

~P�α. Let κ = cf(κ) > ω.
Suppose that

• For every β < α, Pβ is κ-c.c.

• If cf(α) = κ then {γ < α : Pγ = lim
−→

~P�γ} is stationary in α.

Then Pα is κ-c.c.

The following fact is proved in [6, Section 2] for the case when X equals
“κ-closed”. The proofs for the other closure properties are similar.

7.9 Proposition. Let κ = cf(κ) > ω. Let X be any of the properties
“κ-closed”, “κ-directed closed”, “<κ-strategically closed” or “κ-strategically
closed”. Suppose that

• 
β “Q̇β is X” for β < α.

• All limits are direct or inverse, and inverse limits are taken at every
limit stage with cofinality less than κ.

Then Pα is X.

7.10 Remark. The moral of Proposition 7.8 is that one should take many
direct limits to preserve chain condition properties, the moral of Proposition
7.9 is that one should take many inverse limits to preserve closure properties.

We will also need to analyse the quotient of an iteration by some initial
segment. Once again we quote from [6, Section 5].

7.11 Proposition. If β < α then there exists a term Ṙβ,α ∈ V Pβ such that

1. 
β “Rβ,α is an iteration of length α− β”.

2. There is a dense subset of Pβ ∗ Ṙβ,α which is isomorphic to Pα.

The definition of the iteration Rβ,α is simple at successor stages; we trans-
late Q̇γ in the canonical way to a Pβ-name for an Rβ,γ-name for a notion of
forcing and force with that poset at stage γ − α. Limits are trickier because
while a direct limit in V still looks like a direct limit in V Pβ the same may
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not be true in general of an inverse limit. We will usually write Pα/Gβ for
iGβ

(Ṙβ,α).
The following proposition is proved in [6, Section 5] for the case when X

equals “κ-closed”, and once again can be proved in a very similar way for the
other closure properties.

7.12 Proposition. Let κ = cf(κ) > ω. Let X be any of the properties
“κ-closed”, “κ-directed closed”, “<κ-strategically closed” or “κ-strategically
closed”. Let Pα be an iteration of length α in which all limits are inverse or
direct. Let β < α and suppose that

1. Pβ is such that every set of ordinals of size less than κ in V [Gβ ] is
covered by a set of size less than κ in V .

2. For β ≤ γ < α, 
γ “Q̇γ is X”.

3. Inverse limits are taken at all limit γ such that β ≤ γ < α and
cf(γ) < κ.

Then 
β “Ṙβ,α is X”.

The following result is easily proved by the methods of [6, Section 2].

7.13 Proposition. Let κ be inaccessible and let Pκ be an iteration of length
κ such that

1. 
α Q̇α ∈ Vκ for all α < κ.

2. A direct limit is taken at κ and on a stationary set of limit stages below
κ.

Then

• Pκ is κ-Knaster and has cardinality κ.

• If δ < κ then in V [Gδ] the quotient forcing Rδ,κ is a κ-Knaster and has
cardinality κ.

7.14 Remark. The hypothesis 2 of Proposition 7.13 will be satisfied if the
iteration is done with <λ-support for some λ < κ, and also if the iteration is
done with Easton support and κ is Mahlo.

8. Building Generic Objects

A crucial fact about forcing is that if M is a countable transitive model of
set theory and P ∈ M is a notion of forcing, then there exist filters which are
P-generic over M . We give an easy generalisation of this fact, which will be
used very frequently in the constructions to follow.
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8.1 Proposition. Let M , N be two inner models with M ⊆ N and let P ∈ M
be a non-trivial notion of forcing. Let A be the set of A ∈ M such that A is
an antichain of P, and note that A ∈ M .

Let p ∈ P and let λ be an N -cardinal. If

N |= “P is λ-strategically closed and |A| ≤ λ”

then there is a set in N of N -cardinality 2λ of filters on P, each one of which
is generic over M .

Proof. We work in N . Let 〈Aα : α < λ〉 enumerate A. Let σ be a winning
strategy for player Even in the game Gλ(P/p).

We now build a binary tree 〈ps : s ∈ <λ2〉 of conditions in P/p such that

1. p〈〉 = p.

2. If lh(s) is even, say lh(s) = 2α, then ps_0 and ps_1 are incompatible
and each of them refines some element of Aα.

3. If lh(s) = 2(1 + α), then ps is the response dictated by σ at move 2α in
the run of of the game Gλ(P/p) where ps�(2+i) is played at move i for
i < 2α.

Then every branch generates a generic filter, and any two branches contain
incompatible elements so generate distinct filters. a

The following easy propositions will be useful in applications of Proposition
8.1.

8.2 Proposition. Let M,N be inner models of ZFC such that M ⊆ N . Let
N |= “κ is a regular uncountable cardinal”. Then N |= <κM ⊆ M if and
only if N |= <κOn ⊆ M .

8.3 Proposition. Let M,N be inner models of ZFC such that M ⊆ N . Let
N |= “κ is a regular uncountable cardinal” and let N |= <κM ⊆ M . Let
P ∈ M be a notion of forcing and let X be any of the properties “κ-directed
closed”, “κ-closed”, “κ-strategically closed” and “<κ-strategically closed”.

If M |= “P is X” then N |= “P is X”.

8.4 Proposition. Let M and N be inner models of ZFC with M ⊆ N and
let P ∈ M be a notion of forcing.

1. If N |= <λM ⊆ M , N |= “P is λ-c.c.” and G is P-generic over N then
N [G] |= <λM [G] ⊆ M [G].

2. If Vλ ∩M = Vλ ∩N and

N |= “Every canonical P-name for a member of V NP

λ is in Vλ”

then Vλ ∩M [G] = Vλ ∩N [G].
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We digress from our main theme to give a sample application of Proposi-
tion 8.1, namely building a generalised version of Prikry forcing.

8.5 Lemma. Let κ be measurable with 2κ = κ+, and let U be a normal mea-
sure on κ. Let j : V −→ M = Ult(V,U) be the ultrapower map constructed
from U , and let Q = Col(κ++, <j(κ))M . Then there is a filter g ∈ V which
is Q-generic over M .

Proof. In M , Q is a forcing of size j(κ) which is j(κ)-c.c. Since j(κ) is mea-
surable in M it is surely inaccessible in M , and so

M |= “Q has j(κ) maximal antichains”.

By Proposition 4.5 V |= |j(κ)| = 2κ = κ+, so

V |= “Q has κ+ maximal antichains lying in M”.

Clearly M |= “Q is κ++-closed”, and V |= κM ⊆ M . By Proposition
8.3 it follows that V |= “Q is κ+-closed”. Applying Proposition 8.1 we may
therefore construct g ∈ V which is Q-generic over M . a

The forcing we are about to describe is essentially a special case of the
forcing Pπ from Foreman and Woodin’s paper on failure of GCH everywhere
[21], and is also implicitly present in Magidor’s work on failure of the SCH
[53]. We learned this presentation from Woodin.

8.6 Example. Let κ be measurable with 2κ = κ+. Then there is a κ+-
c.c. poset P such that 
P κ̌ = ω̇ω.

Sketch of proof. Let U , Q and g be as in Lemma 8.5. Conditions in P have
the form (p0, κ1, p1, . . . , κn, pn,H) where

• The κi are inaccessible with κ1 < . . . < κn < κ.

• – p0 ∈ Col(ω2, <κ1).

– pi ∈ Col(κ++
i , <κi+1) for 0 < i < n.

– pn ∈ Col(κn, <κ).

• H is a function such that dom(H) ∈ U , H(α) ∈ Col(α++, <κ) for
α ∈ dom(H) and [H]U ∈ g.

We refer to n as the length of this condition.
Intuitively H constrains the possibilities for adding in new objects in the

same way as the measure one set constrains new points in Prikry forcing.
Formally (q0, λ1, q1, . . . , λm, qm, I) extends (p0, κ1, p1, . . . , κn, pn,H) iff

• m ≥ n.

• For every i ≤ n, λi = κi and qi extends pi.
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• For every i with n < i ≤ m, λi ∈ dom(H) and qi ≤ H(λi).

• dom(I) ⊆ dom(H) and I(λ) extends H(λ) for every λ ∈ dom(I).

The second condition will be called a direct extension of the first if and only
if m = n.

It is easy to see that P is κ+-c.c. because any two elements in g are com-
patible. The poset P adds an increasing ω-sequence 〈κi : i < ω〉 cofinal in
κ (which is actually a Prikry-generic sequence for the measure U) and a
sequence 〈gi : i < ω〉 where gi is Col(κ++

i , <κi+1)-generic over V .
The key lemma about P is that any statement in the forcing language

can be decided by a direct extension. This is proved by an argument very
similar to that for Prikry forcing. It can then be argued as in Magidor’s
paper [53] that below κ only the cardinals in the intervals (κ++

i , κi+1) have
collapsed. Thus P is a κ+-c.c. forcing poset which makes κ into the ωω of the
extension. a

9. Lifting Elementary Embeddings

A key idea in this chapter is that it is sometimes possible to take an elemen-
tary embedding of a model of set theory and extend it to an embedding of
some generic extension of that model. This idea goes back to Silver’s con-
sistency proof for the failure of GCH at a measurable, a proof which we will
outline in Section 12.

9.1 Proposition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC. Let P ∈ M be a notion of forcing, let G be P-generic
over M and let H be k(P)-generic over N . The following are equivalent:

1. ∀p ∈ G k(p) ∈ H.

2. There exists an elementary embedding k+ : M [G] −→ N [H], such that
k+(G) = H and k+�M = k.

Proof. Clearly the second statement implies the first one. For the converse
let k“G ⊆ H and attempt to define k+ by

k+(iG(τ̇)) = iH(k(τ̇)).

To check that k+ is well-defined, let iG(σ̇) = iG(τ̇) and fix p ∈ G such
that p 
M

P σ̇ = τ̇ . Now by elementarity k(p) 
N
k(P) k(σ̇) = k(τ̇), and since

k(p) ∈ H we have iH(k(σ̇)) = iH(k(τ̇)).
A similar proof shows that k+ is elementary. If x ∈ M and x̌ is the

standard P-name for x then k(x̌) is the standard k(P)-name for k(x) and
so k+(x) = k+(iG(x̌)) = iH(k(x̌)) = k(x). Similarly if Ġ is the standard
P-name for the P-generic filter then k(Ġ) is the standard k(P)-name for the
k(P)-generic filter, and so k+(G) = H. a
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The following propositions give some useful structural information about
the lifted embedding k+. Recall that we defined the width and support of an
embedding in Definitions 3.7 and 3.8.

9.2 Proposition. Let k : M −→ N be an elementary embedding between
transitive models of ZFC and let G, H, k+ : M [G] −→ N [H] be as in Propo-
sition 9.1. Then N ∩ ran(k+) = ran(k).

Proof. Let y ∈ N with y = k+(x) for some x ∈ M [G]. If α = 1 + rk(x)
then by elementarity y ∈ V N

k(α). Since k+ extends k and k is an elementary
embedding, k+(V M

α ) = k(V M
α ) = V N

k(α). So k+(x) ∈ k+(V M
α ), and since k+

is elementary x ∈ V M
α . So x ∈ M and y = k+(x) = k(x), thus y ∈ ran(k). a

9.3 Proposition. Let k : M −→ N , G, H, k+ : M [G] −→ N [H] be as in
Proposition 9.1. If k has width ≤ µ then k+ has width ≤ µ. If k is supported
on A then k+ is supported on A.

Proof. Suppose first that k has width ≤ µ. Let y ∈ N [H], so that y = iH(τ̇)
for some k(P)-name τ̇ ∈ N . By our assumptions about k, τ̇ = k(F )(a) where
F ∈ M , a ∈ N and M |= |dom(F )| ≤ µ. Without loss of generality we may
assume that F (x) is a P-name for all x ∈ dom(F ).

Now we define a function F ∗ ∈ M [G] by setting dom(F ∗) = dom(F ) and
F ∗(x) = iG(F (x)) for all x ∈ dom(F ). By elementarity

k+(F ∗)(a) = ik+(G)(k+(F )(a)) = iH(τ̇) = y.

Therefore k+ has width ≤ µ. The argument for the property “supported on
A” is very similar. a

In Section 4 we gave characterisations of various large cardinal axioms in
terms of definable elementary embeddings. When we apply Proposition 9.1
to a definable embedding it is likely that definability will be lost; the next
section gives an example of this phenomenon.

One of our major themes is forcing iterations which preserve large cardinal
axiom, so we would like to preserve definability when applying Proposition
9.1. This motivates the following proposition, where the key hypothesis for
getting a definable embedding is that we are choosing H ∈ V [G].

9.4 Proposition. Let κ < λ and let j : V −→ M be an elementary embedding
with critical point κ. Let P ∈ V be a notion of forcing, and let G be P-
generic over V . Let H be j(P)-generic over M with j“G ⊆ H, and let
j+ : V [G] −→ M [H] be the unique embedding with j+�V = j and j+(G) = H.
Let H ∈ V [G].

1. If there is in V a short V -(κ, λ)-extender E such that j is the ultrapower
of V by E, then there is in V [G] a short V [G]−(κ, λ)-extender E∗ such
that j+ is the ultrapower of V [G] by E∗. Moreover Ea = E∗a ∩V for all
a ∈ [λ]<ω.
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2. If there is in V a supercompactness measure U on Pκλ such that j is
the ultrapower of V by U , then there is in V [G] a supercompactness
measure U∗ on Pκλ such that j+ is the ultrapower of V [G] by U∗.
Moreover U = U∗ ∩ V .

In both cases j+ is definable.

Proof. Assume first that j is the ultrapower by some (κ, λ)-extender E. For
each a ∈ [λ]<ω let µa be minimal with a ⊆ j(µa). Arguing exactly as in the
proof of Proposition 9.3,

M [H] = {j+(F )(a) : a ∈ [λ]<ω, F ∈ V [G], dom(F ) = [µa]|a|}.

If we now let E∗ be the (κ, λ)-extender derived from j+ then it follows easily
from the equation above and Proposition 3.4 that Ult(V [G], E∗) = M [H] and
jE∗ = j+. Since H ∈ V [G] we see that E∗ ∈ V [G] and so j+ is definable.
Finally if X ∈ V and X ⊆ [κ]|a| then j(X) = j+(X), so

X ∈ Ea ⇐⇒ a ∈ j(X) ⇐⇒ a ∈ j+(X) ⇐⇒ X ∈ E∗a,

that is to say Ea = E∗a ∩ V .
The argument for j arising from a supercompactness measure is similar. a

9.5 Remark. Either clause of Proposition 9.4 can be used to argue that κ is
measurable in V [G]. By Remark 4.1 we may use the second clause to conclude
without further work that κ is λ-supercompact in V [G]; preservation of some
strength witnessed by E will need some argument about the resemblance
between V [G] and M [H].

In what follows we will see a number of ways of arranging that k“G ⊆ H.
We start by proving a classic result by Lévy and Solovay (which implies in
particular that standard large cardinal hypotheses cannot resolve the Con-
tinuum Hypothesis).

9.6 Theorem (Lévy and Solovay [50]). Let κ be measurable. Let |P| < κ and
let G be P-generic. Then κ is measurable in V [G].

Proof. Let U be a measure on κ and let j : V −→ M = Ult(M,U) be the
ultrapower map. Without loss of generality P ∈ Vκ, so that j�P = idP and
j(P) = P. In particular j“G = G, and since M ⊆ V and P ∈ M we have that
G is P-generic over M . Now by Proposition 9.1 we may lift j to get a new
map j+ : V [G] −→ M [G]. By Proposition 9.4 j+ is definable in V [G]. j+

extends j and so crit(j+) = crit(j) = κ, and thus κ is measurable in V [G]. a

9.7 Remark. Usually when we lift an embedding we will denote the lifted
embedding by the same letter as the original one.
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The Lévy-Solovay result actually applies to most other popular large car-
dinal axioms, for example “κ is λ-strong” or “κ is λ-supercompact”.

9.8 Theorem. Let |P| < κ and let λ > κ. Then forcing with P preserves the
statements “κ is λ-strong” and “κ is λ-supercompact”.

Proof. Without loss of generality P ∈ Vκ. Let G be P-generic over V .
Suppose that κ is λ-strong. Let j : V −→ M be such that crit(j) = κ and

Vλ ⊆ M . Build j+ : V [G] −→ M [G] as in Theorem 9.6. By Proposition 8.4
we see that V

V [G]
λ ⊆ M [G]. By Proposition 9.4 j+ is definable in V [G]. Since

crit(j+) = κ, κ is λ-strong in V [G].
The argument for λ-supercompactness is analogous. a

9.9 Remark. Lévy and Solovay also showed that small forcing cannot create
instances of measurability. We prove a generalisation of this in Theorem
21.1. In Theorem 14.6 a forcing poset of size κ makes a non-weakly compact
cardinal κ measurable. See Section 21 for more discussion of these matters.

10. Generic Embeddings

It is a common situation that in some generic extension V [G] we are able to
define an elementary embedding j : V −→ M ⊆ V [G]. Such embeddings are
usually known as generic embeddings. Foreman’s chapter contains a wealth
of information about generic embeddings.

10.1 Example. If I is an ω2-saturated ideal on ω1 and U is generic for the
poset of I-positive sets, then in V [U ] the ultrapower Ult(V,U) is well-founded
and we get a map j : V −→ M ⊆ V [U ] with crit(j) = ω1 and j(ω1) = ω2.
See Foreman’s chapter in this Handbook for much more information.

We now honour a promise made in Section 2. The embedding that we
describe is a generic embedding with critical point ω1 and is added by a very
simple poset. See Theorems 14.6, 23.2 and 24.11 for some applications of
generic embeddings added by more elaborate posets.

10.2 Theorem. Let κ be measurable, let U be a normal measure on κ and
let j : V −→ M = Ult(V,U) be the ultrapower map. Let P = Col(ω, <κ) and
let G be P-generic. There is a forcing poset Q ∈ M such that

1. For any H a Q-generic filter over V [G], j can be lifted to an elementary
embedding jG : V [G] −→ M [G ∗H].

2. If
UG = {X ∈ P (κ) ∩ V [G] : κ ∈ jG(X)},

then UG is a V [G]-κ-complete V [G]-normal V [G]-ultrafilter on κ. Also
M [G ∗H] = Ult(V [G], UG) and jG is the ultrapower map.
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Proof. By elementarity j(P) = Col(ω, <j(κ)). Let Q be the set of finite
partial functions q from ω × (j(κ) \ κ) to j(κ) such that q(n, α) < α for all
(n, α) ∈ dom(p), ordered by reverse inclusion. Clearly the map which sends
p to (p�(ω×κ), p�(ω× (j(κ)\κ))) sets up an isomorphism in M between j(P)
and P×Q.

Now let H be Q-generic over V [G], so that by the Product Lemma G×H is
P×Q-generic over V . Let H∗ be the j(P)-generic object which is isomorphic
to G×H via the isomorphism from the last paragraph, that is

H∗ = {r ∈ j(P) : r�(ω × κ) ∈ G, r�(ω × (j(κ) \ κ)) ∈ H}.

If p ∈ G then dom(p) is a finite subset of ω × κ and p(n, α) < α < κ for
all (n, α) ∈ dom(p). It follows that dom(j(p)) = j(dom(p)) = dom(p), and
what is more if p(n, α) = β then j(p)(n, α) = j(p(n, α)) = j(β) = β. So
p = j(p) ∈ H∗.

We now work in V [G ∗ H]. By Proposition 9.1 we can lift j to get
jG : V [G] −→ M [H∗] = M [G ∗ H]. It then follows from Proposition 3.9
M [G∗H] = Ult(V [G], UG) and jG is precisely the ultrapower embedding. Of
course UG does not exist in V [G]; it is only definable in the generic extension
V [G ∗H]. a

10.3 Remark. This theorem provides an example of an elementary embed-
ding k : M1 −→ M2 with critical point ωM1

1 and P (ω) ∩ M1 ( P (ω) ∩ M2.
This shows that Proposition 2.6 is sharp.

10.4 Remark. An important feature of the last proof was the product anal-
ysis of j(P). In that proof we were careful to stress that G×H and H∗ are
isomorphic rather than identical.

In what follows we will follow the standard practice and be more cavalier
about these issues. The cavalier way of writing the main point in the last
proof is to say “p ∈ G implies that j(p) = p ∈ G×H”.

Theorem 10.2 can be generalised in a way that is important for several
later results.

10.5 Theorem. Let κ be measurable, let U be a normal measure on κ and
let j : V −→ M = Ult(V,U) be the ultrapower map. Let δ be an uncountable
regular cardinal less than κ. Let P = Col(δ,<κ) and let G be P-generic.
There is a δ-closed forcing poset Q ∈ M such that for any H a Q-generic
filter, j can be lifted to an elementary embedding jG : V [G] −→ M [G ∗H].

The proof is just like that of Theorem 10.2. It will be useful later to know
that some reflection properties of the original measurable cardinal κ survive
in V P. We need a technical lemma on the preservation of stationary sets by
forcing.

10.6 Lemma. Let δ be regular with δ<η = δ for all regular η < δ, and let
S ⊆ δ+ ∩ Cof(<δ) be stationary. Then the stationarity of S is preserved by
δ-closed forcing.
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Proof. Let P be δ-closed and let p ∈ P force that Ċ is a club set in δ+. Fix
η < δ such that S ∩ Cof(η) is stationary in δ+ and a large regular θ, then
build M ≺ (Hθ,∈) such that p, P, Ċ ∈ M , |M | = δ, M is closed under <η-
sequences and γ = M ∩ δ+ ∈ S ∩ Cof(η). Now build a decreasing sequence
pi for i < η of conditions in P ∩M , and a sequence γi of ordinals increasing
and cofinal in γ, such that pi+1 
 γi ∈ Ċ. The construction is easy, using
elementarity at successor stages and the closure of M at limit stages. Since P
is δ-closed we may choose q a lower bound for the pi and then q 
 γ ∈ Ċ. a

10.7 Remark. In general it is not true for δ > ω1 and γ > δ that every
stationary subset of γ+ ∩ Cof(<δ) is preserved by δ-closed forcing, even if
we assume GCH. Shelah has given an incisive analysis of when we may ex-
pect stationarity to be preserved; the author’s survey paper [10] contains an
exposition of the resulting “I[λ] theory”.

10.8 Theorem (Baumgartner [5]). In the model V [G] of Theorem 10.5,
where κ = δ+, every stationary S ⊆ κ ∩ Cof(<δ) reflects to a point of cofi-
nality δ.

Proof. Consider the generic embedding jG : V [G] −→ M [G ∗ H] where H
is generic for δ-closed forcing. We know that jG(S) ∩ κ = S, and since
M [G] ⊆ V [G] and V [G] |= κM [G] ⊆ M [G] the set S is a stationary subset of
κ∩Cof(<δ) in M [G]. The conditions of Lemma 10.6 apply (in fact δ<δ = δ)
so S is stationary in M [G∗H], and so by the elementarity of jG the set S has
a stationary initial segment. Finally cf(κ) = δ in M [G ∗H] and jG(δ) = δ,
so stationarity reflects to an ordinal of cofinality δ. a

10.9 Remark. Actually the conclusion of Theorem 10.8 holds if κ is only
weakly compact, and this was the hypothesis used by Baumgartner. If κ is
supercompact and we force with Col(ω1, <κ), then Shelah [5] observed that
we get a model where for every regular λ > ω1 every stationary subset of
λ ∩ Cof(ω) reflects.

Shelah [63] has also shown that it is consistent that (roughly speaking)
“all stationary sets that can reflect do reflect”. This is tricky because of the
preservation problems alluded to in Remark 10.7.

10.10 Remark. The fact that we needed Lemma 10.6 to complete the proof
of Theorem 10.8 is an example of a very typical phenomenon in the theory of
generic embeddings, where we often need to know that the forcing which adds
the embedding is in some sense “mild”. See Theorem 23.2 for an example
where the needed preservation lemmas involve not adding cofinal branches
to trees.
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11. Iteration with Easton Support

When defining an iterated forcing one of the key parameters is the type of
support which is to be used. Silver realised that iteration with Easton sup-
port (see Definition 7.5) is a very useful technique in doing iterations which
preserve large cardinal axioms. Easton [17] had already used Easton sets as
the supports in products of forcings defined in V ; the method of iteration
with Easton supports has often been called “Reverse Easton”, “Backwards
Easton” or “Upwards Easton” to distinguish it from Easton’s product con-
struction.

We give an example of forcing with Easton support which is due in a
slightly different form to Kunen and Paris [47]. The goal is to produce a
measurable cardinal κ with the maximum possible number of normal mea-
sures; if we assume GCH for simplicity, then the maximal possible number
of normal measures is 22κ

= κ++. Kunen’s work on iterated ultrapowers [44]
shows that if κ is measurable then in the canonical minimal model L[U ] in
which κ is measurable, κ carries exactly one normal measure.

The arguments of Lévy and Solovay [50] show that if κ is measurable a
forcing of size less than κ cannot increase the number of normal measures
on κ. It follows that we need to force with a forcing poset of size at least κ.
The simplest such poset which does not obviously destroy the measurability
of κ is Add(κ, 1), however it is not hard to see that if we force over L[U ] this
poset destroys the measurability of κ.

We will build an iterated forcing of size κ which adds subsets to many
cardinals less than κ. As we will see shortly, we need the initial segments
of the iteration to have a reasonable chain condition, and the final segments
to have a reasonable degree of closure. Silver realised that the right balance
between closure and chain condition could be achieved by doing an iteration
with Easton support. We will assume that GCH holds in V . Assuming GCH
is no burden because GCH is true in L[U ].

11.1 Theorem. Let κ be measurable and let GCH hold. Then there exists P
such that

1. |P| = κ.

2. P is κ-c.c.

3. GCH holds in V P.

4. κ is measurable in V P.

5. κ carries κ++ normal measures in V P.

The proof will occupy the rest of this subsection.
Let A ⊆ κ be the set of those α < κ such that α is the successor of a

singular cardinal. Let j : V −→ M = Ult(V,U) be the ultrapower map. Since
M ⊆ V we see that κ is inaccessible in M , so that κ /∈ j(A) or equivalently
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A /∈ U . In the iteration we will add subsets to cardinals lying in A. The
exact choice of A is irrelevant so long as it is a set of regular cardinals less
than κ and is a set of measure zero for U .

We will now let P = Pκ be an iteration of length κ with Easton support.
For α < κ we let Q̇α be a name for the trivial forcing unless α ∈ A, in which
case Q̇α names Add(α, 1)V Pα . By Proposition 7.13, if δ ≤ κ and δ is Mahlo
then Pδ is δ-c.c.

11.2 Lemma. Let δ ≤ κ be Mahlo and let λ = δ+ω+1. As in Proposition 7.11
let Ṙδ,κ name the canonical iteration of length κ− δ such that Pκ ' Pδ ∗ Ṙδ,κ.
Then V [Gδ] |= “Rδ,κ is λ-closed”,

Proof. If we fix δ ≤ κ a Mahlo cardinal then it follows from the chain con-
dition of Pδ that every set of ordinals of size less than δ in V [Gδ] is covered
by a set of size less than δ in V . λ = min(A \ δ) and the iteration is only
non-trivial at points of A, and so for all γ with δ ≤ γ < κ we see that

γ “Q̇γ is λ-closed”. By Proposition 7.12, Rδ,κ is λ-closed in V [Gδ]. a

11.3 Remark. We already have enough information to see that all Mahlo
cardinals δ ≤ κ are preserved by P. A more delicate analysis as in Hamkins’
paper [31] shows that in fact this iteration preserves all cardinals and cofi-
nalities.

11.4 Lemma. GCH holds in V [Gκ] above κ.

Proof. If λ ≥ κ and 
P τ̇ ⊆ λ then the interpretation of τ̇ is determined by
{(p, α) : p 
 α̌ ∈ τ̇}. There are only 2κ×λ = λ+ possibilities for this set. a

11.5 Remark. With more care we can show that GCH holds everywhere.

We now need to compare j(P) with P. Elementarity implies that from the
point of view of M , j(P) is an Easton iteration of length j(κ), with Easton
support, in which we add a Cohen subset to each α ∈ j(A).

11.6 Lemma. j(P)κ = Pκ and j(P)κ+1 = Pκ ∗ {1}.

Proof. If α < κ then Pα ∈ Vκ and so j(P)α = j(P)j(α) = j(Pα) = Pα. κ
is inaccessible in M so a direct limit is taken at stage κ in the construction
of j(P). The direct limit construction is absolute so j(P)κ = Pκ. Finally
κ /∈ j(A) and so j(P)κ+1 = Pκ ∗ {1}. a

Let G be P-generic over V . Since M ⊆ V and P ∈ M , G is P-generic over
M and M [G] ⊆ V [G].

11.7 Lemma. Let R = iG(Ṙκ,j(κ)).

V [G] |= “R is κ+-closed and has κ+ maximal antichains lying in M [G]”
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Proof. By Lemma 11.2 applied in M to j(P), if λ = κ+ω+1
M [G] then

M [G] |= “R is λ-closed”.

Since P is κ-c.c. it follows from Proposition 8.4 that V [G] |= κM [G] ⊆ M [G].
So V [G] |= “R is κ+-closed”.

P is κ-c.c. forcing poset with size κ, and in M we have j(P) ' P ∗ Ṙ. It
follows from Proposition 7.13 that in M [G], R is j(κ)-c.c. forcing with size
j(κ), so if Z is the set of maximal antichains of R which lie in M [G] then
M [G] |= |Z| = j(κ).

V is a model of GCH and so V |= |j(κ)| = 2κ = κ+. Therefore

V [G] |= “R has κ+ maximal antichains lying in M [G]”.

a

From now on we work in V [G]. Applying Proposition 8.1 we construct
a sequence 〈Hα : α < κ++〉 of κ++ distinct R-generic filters over M [G]. For
each α the set G ∗Hα is P ∗ Ṙ-generic over M , and since P ∗ Ṙ is canonically
isomorphic to j(P) in M we will regard G ∗Hα as a j(P)-generic filter over
M .

11.8 Lemma. For all p ∈ G and all α < κ++, j(p) ∈ G ∗Hα.

Proof. Pκ = lim
−→

~P�κ. Fix β < κ such that p(γ) = 1 for β ≤ γ < κ, and

observe that j(β) = β and so by elementarity j(p)(γ) = 1 for β ≤ γ < j(κ).
What is more p�β ∈ Vκ and so j(p)�β = j(p�β) = p�β. It follows that
j(p) ∈ G ∗Hα. a

Accordingly we can find κ++ extensions jα : V [G] −→ M [G ∗ Hα] with
jα�V = j and jα(G) = G ∗Hα. They are distinct because the filters Hα are
distinct. Hα ∈ V [G] and so by Proposition 9.4 jα is definable in V [G]. We
will be done if we can show that each jα is an ultrapower map computed
from some normal measure on κ in V [G].

11.9 Lemma. For every α, jα is the ultrapower of V [G] by Uα where

Uα = {X ⊆ κ : X ∈ V [G], κ ∈ jα(X)}.

Proof. j is the ultrapower of V by the normal measure U , so that by Propo-
sition 3.9 j is supported on {κ}. By Proposition 9.3 jα is also supported on
{κ}. By Proposition 3.9 again jα is the ultrapower of V [G] by Uα. a

12. Master Conditions

We are now in a position to give Silver’s proof that GCH can fail at a mea-
surable cardinal. We will need Silver’s idea of the master condition, which is
a technique for arranging the compatibility between generic filters required
to apply Proposition 9.1.
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12.1 Definition. Let k : M −→ N be elementary and let P ∈ M . A master
condition for k and P is a condition q ∈ k(P) such that for every dense set
D ⊆ P with D ∈ M , there is a condition p ∈ D such that q is compatible
with k(p).

Suppose that q is a master condition for k, and H is any N -generic filter
on Q with q ∈ H. It is routine to check that k−1“H generates an M -generic
filter G such that k“G ⊆ H, and so again Proposition 9.1 can be applied to
lift k. In general different choices of H will give different filters G.

12.2 Definition. Let k : M −→ N be elementary and let P ∈ M . A strong
master condition for k and P is a condition q ∈ k(P) such that for every dense
set D ⊆ P with D ∈ M , there is a condition p ∈ D such that q ≤ k(p).

If q is a strong master condition then let G = {p ∈ P : q ≤ k(p)}. It is
routine to check that G is an M -generic filter, and that k−1“H = G for any
N -generic filter H on Q with q ∈ H. Under these circumstances we will often
say that q is a strong master condition for k and G.

12.3 Remark. A similar distinction occurs in the theory of proper forcing.
See Remarks 24.4 and 24.5 for more on this.

12.4 Remark. Most of the master conditions which we build will be of the
strong persuasion.

For use later we record a remark on the connection between existence of
strong master conditions and distributivity.

12.5 Theorem. Let π : M −→ N be elementary, let P ∈ M , let G be P-
generic, and let q ∈ j(P) be such that q ≤ j“G. Then for every δ < crit(π),
M and M [G] have the same δ-sequences of ordinals.

Proof. Suppose not, and fix p ∈ G and τ̇ ∈ M such that p forces τ̇ to be
a new δ-sequence of ordinals. For each i < δ there is a condition pi ∈ G
such that pi determines τ̇(i). By elementarity π(pi) determines π(τ̇)(i) for
each i < π(δ) = δ, and so since q ≤ π(pi) we have that q determines π(τ̇)(i)
for all i < δ, that is q forces that π(τ̇) is equal to some element of N ; but
q ≤ π(p) and by elementarity π(p) forces that π(τ̇) is a new sequence of
ordinals, contradiction. a

It is easy to see that if U is a normal measure on κ and 2κ ≥ κ+n then
{α < κ : 2α ≥ α+n} ∈ U . In the light of this remark and the result of the last
section, a natural strategy for producing a failure of GCH at a measurable is
to start with a model of GCH with a measurable κ, and to do an iteration of
length κ + 1 violating GCH on A ∪ {κ} for some suitably large A.

This strategy can be made to work but it is necessary to use a fairly strong
large cardinal assumption. We will give here a version of Silver’s original
proof, using the hypothesis that GCH holds and there is a cardinal κ which
is κ++-supercompact. In Sections 13 and 25 we will see how to weaken this
large cardinal assumption.
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12.6 Theorem. Let GCH hold and let κ be κ++-supercompact. Then there
is a forcing poset P such that

1. |P| = κ++.

2. P is κ+-c.c.

3. κ is measurable in V P.

4. 2κ = κ++ in V P.

Proof. Let U be a κ-complete normal fine ultrafilter on Pκκ++, and define
j : V −→ M to be the associated ultrapower map. Arguing exactly as in
Example 4.8, we have

1. j(κ) > κ+++.

2. j(κ+4) = κ+4.

Let A be the set of inaccessible cardinals less than κ. As in the last
section the exact choice of A is more or less irrelevant, so long as A is a set
of inaccessible cardinals and A ∈ U0, where U0 = {X ⊆ κ : κ ∈ j(X)}.

We now let P = Pκ+1 be the iteration of length κ+1 with Easton supports
in which Q̇α names Add(α, α++)V Pα if α ∈ A ∪ {κ}, and names the trivial
forcing otherwise. Let Gκ be Pκ-generic over V , let gκ be Qκ-generic over
V [G] and let Gκ+1 = Gκ ∗ gκ.

The next lemma is similar to Lemma 11.2 from the last section, the crucial
difference being that this time δ ∈ A and so the iteration P acts at stage δ.

12.7 Lemma. Let δ < κ be Mahlo. Then

1. Pδ is δ-c.c.

2. Pδ+1 is δ+-c.c.

3. If λ is the least inaccessible greater than δ then

V [Gδ+1] |= “Rδ+1,κ is λ-closed”.

Proof. By Proposition 7.13 Pδ is δ-c.c. and has size δ. Then V [Gδ] |= δ<δ = δ,
and so 
δ “Qδ is δ+-c.c.”. By Proposition 7.6 Pδ+1 is δ+-c.c.

Since A is a set of inaccessible cardinals we are guaranteed that Q̇α names
the trivial forcing for δ < α < λ. Every set of ordinals of size less than λ
in V [Gδ+1] is covered by a such a set in V , so by Proposition 7.12 Rδ+1,κ is
λ-closed in V [Gδ+1]. a

The next lemma follows by exactly the same argument as that for Lemma
11.4 in the last section.

12.8 Lemma. Pκ is κ-c.c. with size κ, and GCH holds above κ in V Pκ .
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The standard arguments counting names also give us

12.9 Lemma. P is κ+-c.c. with size κ++, and GCH holds above κ+ in V P.

We now need to analyse the iteration j(P).

12.10 Lemma. j(P)κ+1 = Pκ+1.

Proof. We can argue exactly as in Lemma 11.6 that j(P)κ = Pκ. By Propo-
sition 8.4 we see that V [G] |= κ++

M [G] ⊆ M [G], so that

Add(κ, κ++)V [G] = Add(κ, κ++)M [G].

Every condition in Add(κ, κ++)V Pκ has a name which lies in Hκ+++ , and
Hκ+++ ⊆ M so that j(P)κ+1 = Pκ+1. a

12.11 Lemma. Let R = iGκ+1(Ṙκ+1,j(κ)). Then

V [Gκ+1] |= “R is κ+++-closed”

and

V [Gκ+1] |= “R has κ+++ maximal antichains lying in M [Gκ+1]”.

Proof. By Lemma 12.7 applied in M to j(Pκ), if λ is the least M -inaccessible
greater than κ then M [Gκ+1] |= “R is λ-closed”. Since P is κ+-c.c. it fol-
lows from Proposition 8.4 that V [Gκ+1] |= κ++

M [Gκ+1] ⊆ M [Gκ+1]. So
V [Gκ+1] |= “R is κ+++-closed”.

Pκ is κ-c.c. with size κ, and in M we have j(Pκ) ' Pκ+1 ∗ Ṙ. It fol-
lows from Proposition 7.13 that in M [Gκ+1], R is j(κ)-c.c. with size j(κ),
so if Z is the set of maximal antichains of R which lie in M [Gκ+1] then
M [Gκ+1] |= |Z| = j(κ).

By Proposition 4.5, V |= |j(κ)| = κ+++. So

V [Gκ+1] |= “R has κ+++ maximal antichains in M [Gκ+1]”.

a

Applying Proposition 8.1 we may find a filter H ∈ V [Gκ+1] such that H
is R-generic over M [Gκ+1]. Let Gj(κ) = Gκ+1 ∗ H, so that Gj(κ) is j(Pκ)-
generic over M . The argument of Lemma 11.8 shows that j“Gκ ⊆ Gj(κ), so
that by Proposition 9.1 we may lift j : V −→ M and obtain an elementary
embedding j : V [Gκ] −→ M [Gj(κ)].

To finish the proof we need to construct a filter h ∈ V [Gκ+1] such that

1. h is Add(j(κ), j(κ++))M [Gj(κ)]-generic over M [Gj(κ)].

2. j“gκ ⊆ h.

The first of these conditions can be met using methods we have seen al-
ready, once we have done some counting arguments.
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12.12 Lemma. V [Gκ+1] |= κ++
M [Gj(κ)] ⊆ M [Gj(κ)].

Proof. Pκ+1 is κ+-c.c. and so V [Gκ+1] |= κ++
On ⊆ M [Gκ+1] by Proposition

8.4. M [Gκ+1] ⊆ M [Gj(κ)] so V [Gκ+1] |= κ++
On ⊆ M [Gj(κ)]. The result

follows by Proposition 8.2. a

12.13 Lemma. Let Q = Add(j(κ), j(κ++))M [Gj(κ)]. Then

V [Gκ+1] |= “Q is κ+++-closed”

and

V [Gκ+1] |= “Q has κ+++ maximal antichains in M [Gj(κ)]”.

Proof. M [Gj(κ)] |= “Q is j(κ)-closed”, so by Proposition 8.3 it follows that
V [Gκ+1] |= “Q is κ+++-closed”.

Lemma 12.8 and an easy counting argument give that

V [Gκ] |= “Add(κ, κ++) has κ+++ maximal antichains”.

j : V [Gκ] −→ M [Gj(κ)] is elementary and so

M [Gj(κ)] |= “Q has j(κ+++) maximal antichains”.

Since V |= |j(κ+++)| = κ+++,

V [Gκ+1] |= “Q has κ+++ maximal antichains in M [Gj(κ)]”.

and we are done. a

We can now build h ∈ V [Gκ+1] which is suitably generic. To ensure that
j“gκ ⊆ h we use the “strong master condition” idea from Definition 12.2.

12.14 Lemma. There is a strong master condition for the elementary em-
bedding j : V [Gκ] −→ M [Gj(κ)] and the generic object gκ.

Proof. If p ∈ gκ then p is a partial function from κ× κ++ to 2 with size less
than κ, so in particular j(p) = j“p. gκ ∈ M [Gj(κ)] and j�(κ× κ++) ∈ M , so
that j“gκ ∈ M [Gj(κ)]. Working in M [Gj(κ)] the cardinality of j“gκ is κ++,
j“gκ is a directed subset of Q and Q is j(κ)-directed closed; it follows that
we may find a condition r ∈ Q such that r ≤ j(p) for all p ∈ gκ. a

12.15 Remark. We can give an explicit description of an r with this prop-
erty; let dom(r) = κ × j“κ++ and r(α, j(β)) = j(F (α, β)) = F (α, β) where
F : κ× κ++ −→ 2 is given by F =

⋃
gκ.

We now use Proposition 8.1 to build h which is Q-generic over M [Gj(κ)]
with r ∈ h. Let Gj(κ)+1 = Gj(κ) ∗ h. Then by construction we have j“g ⊆ h,
so that we may lift j : V [Gκ] −→ M [Gj(κ)] to j : V [Gκ+1] −→ M [Gj(κ)+1].
Gj(κ)+1 ∈ V [Gκ+1] and so by Proposition 9.4 the elementary embedding
j : V [Gκ+1] −→ M [Gj(κ)+1] is definable in V [Gκ+1], that is to say it is
a definable embedding in the sense of Definition 2.10. It follows that κ is
measurable in V [Gκ+1]. a
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12.16 Remark. By Proposition 9.4 and Remark 4.1, κ is actually κ++-
supercompact in V [Gκ+1].

12.17 Remark. If we had forced with Add(α, 1) instead of Add(α, α++) at
each stage in A ∪ {κ}, then we could have proved that the measurability of
κ was preserved assuming only that GCH holds and κ is measurable in the
ground model. Of course we would not have violated GCH this way, and
indeed it is known [59, 24] that to violate GCH at a measurable cardinal
requires the strength of a cardinal κ with Mitchell order κ++.

13. A Technique of Magidor

In this section we describe a technique due to Magidor [54] for lifting ele-
mentary embeddings in situations where we do not have enough closure to
build a strong master condition. The trick will be to build an “increasingly
masterful” sequence of conditions into our final generic filter. As an example
we will redo the result from the last section from a weaker large cardinal
hypothesis.

We assume that GCH holds and that κ is κ+-supercompact, and we let
j : V −→ M be the ultrapower map arising from some κ+-supercompactness
measure on Pκκ+. As in Example 4.8 we see that

• κ++ = κ++
M < j(κ) < j(κ+) < j(κ++) < j(κ+++) = κ+++.

• j is continuous at κ++ and κ+++.

• j is discontinuous at every limit ordinal of cofinality κ+.

We now perform exactly the same forcing construction as in the last sec-
tion, namely we perform an Easton support iteration of length κ+1 in which
we add α++ Cohen subsets to every inaccessible α ≤ κ. We let Gκ be Pκ-
generic over V and gκ be Qκ-generic over V [Gκ].

As in Lemma 12.10 from the last section we see that j(P)κ+1 = Pκ+1. As
in the last section we let R = iGκ+1(Ṙκ+1,j(κ)), that is to say R is the forcing
that one would do over M [Gκ+1] to produce a j(Pκ)-generic object extending
Gκ+1.

Modifying the proof of Lemma 12.11 we see that

V [Gκ+1] |= “R is κ++-closed”

and

V [Gκ+1] |= “R has κ++ maximal antichains lying in M [Gκ+1]”.

By Proposition 8.1 we build a filter H ∈ V [Gκ+1] which is R-generic
over M [Gκ+1], and lift j : V −→ M to get j : V [Gκ] −→ M [Gj(κ)] where
Gj(κ) = Gκ ∗ gκ ∗H. We observe that V [Gκ+1] |= κ+

M [Gj(κ)] ⊆ M [Gj(κ)].
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As in the last section we may apply Proposition 8.1 to build h ∈ V [Gκ+1]
which is j(Qκ)-generic over M [Gj(κ)], and the remaining problem is to build
h is such a way that j“gκ ⊆ h. At this point we can no longer imitate the
proof of the last section because we no longer have enough closure.

We do some analysis of an antichain A of j(Qκ) with A ∈ M [Gj(κ)].
Let A = j(F )(j“κ+) where F ∈ V [Gκ], dom(F ) = Pκκ+, and without
loss of generality F (x) is a maximal antichain in Qκ for all x. Working
in V [Gκ], for each ζ < κ++ we let Xζ = Add(κ, ζ), so that Xζ ⊆ Qκ,
|Xζ | = κ+, and Qκ =

⋃
ζ Xζ . A routine argument in the style of the

Löwenheim-Skolem theorem shows that for each x there is a club subset
Cx of κ++ such that for all α ∈ Cx ∩ Cof(κ+) the antichain F (x) ∩ Xα is
maximal in Xα. Let C be the intersection of the Cx for x ∈ Pκκ+, then
C is club and for every α ∈ C ∩ Cof(κ+) the antichain A is maximal in
j(Xα) = Add(j(κ), j(α))M [Gj(κ)].

Now we work in V [Gκ+1] to build a suitable filter h. Define Q a partial
function from j(κ)× j“κ++ by setting Q to be the union of j(p) for p ∈ gκ.
It is routine to check that dom(Q) = κ × j“κ++, and while Q is not even
in M [Gj(κ)], for all ζ < κ++ the partial function qζ = Q�(j(κ) × j(ζ)) is in
j(Xζ) and is a strong master condition for j and gκ ∩Xζ .

Working in V [Gκ+1], we may enumerate all the maximal antichains of
j(Qκ) as 〈Ai : i < κ++〉. Using the analysis of such antichains given above
we choose an increasing sequence αi ∈ κ++ ∩Cof(κ+) such that Ai ∩ j(Xαi)
is maximal in j(Xαi) for all i < κ++. Now we build a decreasing sequence of
conditions ri ∈ j(Qκ) such that for each i < κ++

1. ri ∈ j(Xαi
).

2. ri ≤ qαi
.

3. ri extends some member of Ai.

The construction of ri goes as follows. We start by forming r =
⋃

j<i rj ,
where we note that the support of r is contained in j(κ)× supj<i j(αj). We
claim that r is compatible with qαi . To see this let (δ, j(γ)) be an arbitrary
point in the domain of qαi , that is γ < αi and δ < κ. If γ < αj for some j
then since r ≤ rj ≤ qj we have

qαi
(δ, j(γ)) = Q(δ, j(γ)) = r(δ, j(γ)),

while if γ ≥ αj for all j < i then (δ, j(γ)) /∈ dom(r).
So we may take the union r ∪ qαi to get a condition in j(Xαi) and since

Ai ∩ j(Xαi
) is maximal in j(Xαi

) we may choose ri ≤ r ∪ qαi
so that

ri ∈ j(Xαi) and ri extends some condition in Ai.
It is now easy to see that the sequence of ri generates a generic filter h

with h ⊇ j“g. We may then proceed as in the previous section to lift the
embedding to V [Gκ+1].

13.1 Remark. In fact κ is still κ+-supercompact in V [Gκ+1].
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13.2 Remark. The forcing technique described here has many applications
in the theory of precipitous and saturated ideals. See sections 17 and 18, and
also Foreman’s chapter.

14. Absorption

In this section we discuss an idea which is used in many forcing constructions
(for example in building Solovay’s model in which every set is Lebesgue mea-
surable [65]) and is particularly useful for our purposes, namely the idea of
embedding a complex poset into a simple one. This is one area of the subject
where the presentation of forcing in terms of complete Boolean algebras is
very helpful.

The “simple posets” into which we typically absorb more complex ones are
Cohen forcing Add(κ, λ) and the collapsing poset Col(κ, λ). We note that for
any regular κ the forcing Col(κ, κ) is equivalent to Add(κ, 1) so we phrase
our whole discussion in terms of the collapsing poset.

The following universal property of the collapsing poset is key:

14.1 Theorem. Let κ be regular. Let λ ≥ κ and let P be a separative forcing
poset such that P is κ-closed, |P| = λ, every condition in P has λ incompatible
extensions and P adds a surjection from κ to λ.

Then P is equivalent to the collapsing poset Col(κ, λ).

Notice that if λ > κ and λ is regular, then the demand that P adds a
surjection from κ to λ implies that for no p ∈ P can P/p be λ-c.c., and so the
demand that every condition should have λ incompatible extensions follows
from the other conditions.

Proof. Let ḟ name a surjective map from κ to Ġ, where Ġ names the generic
filter on P. We will build a dense subset of ro(P) \ {0} which is isomorphic
to Col(κ, λ). Let P∗ be the canonical isomorphic copy of P in ro(P), so that
P∗ is a dense κ-closed subset of ro(P) \ {0}.

We will build a family bs indexed by s ∈ Col(κ, λ) with the following
properties:

1. b0 = 1, and bs ∈ ro(P) \ {0} for all s.

2. For all s and t, t ≤ s implies that bt ≤ bs.

3. For all α < κ, {bs : dom(s) = α} is a maximal antichain.

4. For all s with dom(s) a successor ordinal, bs ∈ P∗.

5. For all α < κ and s with domain α, bs determines ḟ�α.

6. For all s with dom(s) a limit ordinal µ, bs =
∧

i<µ bs�i.
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We will construct {bs : dom(s) = α} by recursion on α. At successor stages
we construct {bs_j : j < λ} to be a maximal antichain below bs, consisting
of conditions that lie in P∗ and determine ḟ�(dom(s) + 1).

For limit µ we define (as we are compelled to) bs as the infimum of
{bs�i : i < µ} for all s with dom(s) = µ. By κ-closure of P, bs 6= 0. Clearly
{bs : dom(s) = µ} is an antichain. To show it is maximal, it will suffice to
show that it meets every generic G. Let G be generic, and let s : µ → λ be
the unique function with bs�i ∈ G for all i < µ; by closure s ∈ V , so s is a
condition in Col(κ, λ) and by genericity bs ∈ G.

This completes the construction, and it remains to see that the set of all
bs is dense. Let p ∈ P, so that p forces p ∈ G, and find a condition q ≤ p and
an ordinal i < κ such that q 
 ḟ(i) = p. The condition q is compatible with
bs for s such that dom(s) = i + 1. Now bs determines ḟ(i), so bs forces that
ḟ(i) = p, in particular bs 
 p ∈ G and so by separativity bs ≤ p. a

In particular a separative κ-closed forcing poset of cardinality κ is equiv-
alent to Add(κ, 1) and a separative forcing poset of size λ which makes λ
countable is equivalent to Col(ω, λ). Moreover if P is κ-closed then for a
sufficiently large µ we see that P × Col(κ, µ) is equivalent to Col(κ, µ); this
is the key point in Theorems 14.2 and 14.3.

Theorem 14.1 has the following corollaries. We separate the cases of
Col(ω, <κ) and Col(δ,<κ) for uncountable δ because (as detailed below) we
may say significantly more in the former case.

14.2 Theorem. Let κ be an inaccessible cardinal and let C = Col(ω, <κ).
Let P be a separative forcing poset with |P| < κ and let Q̇ be a P-name for a
separative forcing poset of size less than κ. Then

1. There is a complete embedding i : ro(P) → ro(C).

2. For any such i and any P-generic g, C/i(g) is equivalent in V [g] to
Col(ω, <κ).

3. Any such i may be extended to a complete j : ro(P ∗ Q̇) → ro(C).

In the general case we have:

14.3 Theorem. Let κ be an inaccessible cardinal , let δ < κ be regular and
let D = Col(δ,<κ). Let |P| < κ where P is a δ-closed separative forcing poset,
and and let Q̇ be a P-name for a δ-closed separative forcing poset of size less
than κ. Then

1. There is a complete embedding i : ro(P) → ro(D) such that D/i(g) is
equivalent in V [g] to Col(δ,<κ).

2. Any such i may be extended to a complete j : ro(P ∗ Q̇) → ro(D) such
that D/i(g ∗ h) is equivalent in V [g ∗ h] to Col(δ,<κ).
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Notice that Theorem 14.2 asserts that however we embed the small poset P
in the collapse Col(ω, <κ), the quotient forcing is Col(ω, <κ). Theorem 14.3
just asserts that there is some way of embedding the small δ-closed poset P
in the collapse Col(δ,<κ), so that the quotient forcing is Col(δ,<κ).

To underline the difference between these theorems we consider the fol-
lowing example, which implies that we can find an embedding of Add(ω1, 1)
into Add(ω1, 1) where the quotient is not countably closed or even proper.

14.4 Example. Let CH hold, let P = Add(ω1, 1). If F : ω1 → 2 is the
function added by P and S = {α : F (α) = 1} then we claim that S is
stationary in V [F ]. To see this let p force that Ċ is club and build a chain
of extensions p0 = p ≥ p1 ≥ p2 ≥ . . . so that pn+1 forces some ordinal
αn > dom(pn) into Ċ. Then if p∗ =

⋃
pn and α∗ = supn αn we have that

dom(p∗) = α∗ and p∗ 
 α∗ ∈ Ċ, and may then extend to force that α∗ ∈ S.
A similar argument shows that Sc is also stationary.

Working in V [F ], we now let Q be the forcing from Example 6.8 to add a
club set D ⊆ Sc. We claim that P ∗ Q̇ has a countably closed dense subset
of size ω1, namely the set of pairs (p, č) where dom(p) = max(c) + 1 and
p(α) = 0 for all α ∈ c: the proof is just like the proof that S is stationary
from the last paragraph. So now P ∗ Q is equivalent to Add(ω1, 1), while Q
destroys the stationarity of S so is not countably closed (or even proper).

Now we give some examples of the absorption idea in action. The first one
is due to Kunen [45]. Since there is a detailed account in Foreman’s chapter
in this Handbook we shall only sketch the result.

As motivation we recall some facts about saturated ideals, weakly compact
cardinals, and stationary reflection.

1. If κ is strongly inaccessible and carries a λ-saturated ideal for some
λ < κ then κ is measurable [45].

2. If κ is weakly compact and carries a κ-saturated ideal then κ is mea-
surable [45].

3. If κ is weakly compact then every stationary subset of κ reflects.

4. If V = L then for every regular κ, κ is weakly compact if and only if
every stationary subset of κ reflects [42].

5. If P× P is κ-c.c. and κ is measurable in V P then κ is measurable in V
(see Theorem 21.1)

In the model which we present there is an inaccessible cardinal κ which
carries a κ-saturated ideal and reflects stationary sets, and there is also a
κ-Suslin tree T (so in particular κ is not weakly compact). It follows that
1 and 2 above are close to optimal, and that in general the conclusion of 4
fails. The key property of the model will be that adding a branch through
the κ-Suslin tree T resurrects the measurability of κ so that 5 is also close to
optimal.
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We will use a standard device due to Kunen [45] for manufacturing satu-
rated ideals.

14.5 Lemma. Let P be λ-c.c. and let U̇ be a P name for a V -ultrafilter on
κ. Let I be the set of those X ∈ P (κ) ∩ V such that 
P κ \X ∈ U̇ . Then

1. I is a λ-saturated ideal.

2. If U̇ is forced to be V -κ-complete then I is κ-complete, and if U̇ is
forced to be V -normal then I is normal.

Often we have a P-name for a generic embedding j : V −→ M ⊆ V [GP],
and U will be {X ∈ P (κ) ∩ V : κ ∈ j(X)}. This kind of induced ideal is
discussed at length in Foreman’s chapter in this Handbook.

We use a result by Kunen [45].

14.6 Fact. Let α be inaccessible. Then there is a forcing poset P0(α) such
that

1. P0(α) has cardinality α and adds an α-Suslin tree Tα.

2. If P1(α) ∈ V P0(α) is the forcing poset (Tα,≥Tα
), then P0(α)∗ Ṗ1(α) has

a dense subset isomorphic to the Cohen poset Add(α, 1).

We assume that κ is measurable and GCH holds. We do an iteration with
Easton support of length κ+ 1. For α < κ we let Q̇α name the trivial forcing
unless α is inaccessible, in which case Q̇α names Add(α, 1)V Pα . We let Q̇κ

name P0(κ)V Pκ where P0(κ) is the forcing from Fact 14.6.
As usual let Gκ be Pκ-generic over V and let gκ be Qκ-generic over V [Gκ].

14.7 Claim. In V [Gκ+1]

• κ is not weakly compact.

• κ carries a normal κ-saturated ideal.

• κ reflects stationary sets.

Proof. Let T be the tree added by the P0(κ)-generic filter gκ. Since T is a
κ-Suslin tree in V [Gκ+1], κ is not weakly compact in V [Gκ+1].

Let H be generic over V [Gκ+1] for P1(κ), that is to say (T,≥T ). Since
T is a κ-Suslin tree, H is generic for κ-c.c. (κ,∞)-distributive forcing over
V [Gκ+1].

Since P0(κ) ∗ P1(κ) is isomorphic to Add(κ, 1), V [Gκ+1 ∗ H] is a model
obtained by forcing with Add(α, 1)V [Gα] at every inaccessible α ≤ κ. By Re-
mark 12.17 κ is measurable in V [Gκ+1 ∗H], and we may fix U ∈ V [Gκ+1 ∗H]
which is a normal measure on κ. Let U̇ be a P1(κ)-name for U .

Working in V [Gκ+1] we now define an ideal I on κ by

X ∈ I ⇐⇒ 
P1(κ) κ \X ∈ U.
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By Lemma 14.5 this is a normal κ-saturated ideal.
Finally let V [Gκ+1] |= “S is a stationary subset of κ”. κ-c.c. forcing pre-

serves the stationarity of stationary subsets of κ and so S is stationary in
V [Gκ+1 ∗H]. Measurable cardinals reflect stationary sets and so there is an
ordinal α < κ such that V [Gκ+1 ∗H] |= “S ∩ α is a stationary subset of α”.
It follows easily that

V [Gκ+1] |= “S ∩ α is a stationary subset of α”.

a

As our second example we sketch a result from the author’s program of
joint work [11, 14] with Džamonja and Shelah on strong non-reflection. The
argument has the interesting feature that we are creating a strong master
condition by forcing.

14.8 Definition. Let κ < λ < µ be regular cardinals. Then the Strong Non
Reflection principle SNR(κ, λ, µ) is the assertion that there is a function F
from µ∩Cof(κ) to λ, such that for every δ ∈ µ∩Cof(λ) there is a set C club
in δ with F �(C ∩ Cof(κ)) strictly increasing.

It is easy to see that if F witnesses SNR(κ, λ, µ), S ⊆ µ ∩ Cof(κ) is sta-
tionary and we use Fodor’s lemma to find stationary T ⊆ S with F constant
on T , then T reflects at no point of cofinality λ. The next theorem shows
that this idea can be used to make fine distinctions between stationary reflec-
tion principles. The hypothesis can be improved to the existence of a weakly
compact cardinal with a little more work.

14.9 Theorem. Suppose that it is consistent that there exists a measurable
cardinal. Then it is consistent that every stationary subset of ω3 ∩ Cof(ω)
reflects to a point of cofinality ω2, while at the same time every stationary
subset of ω3 ∩Cof(ω1) contains a stationary set which reflects at no point of
cofinality ω2.

Proof. We start with κ a measurable cardinal. Fix U a normal measure on κ
and let j : V −→ M be the ultrapower map. We let P = Col(ω2, <κ). As we
saw in Theorem 10.8 in V P every stationary subset of ω3∩(Cof(ω)∪Cof(ω1))
reflects to a point of cofinality ω2.

Let Q be the natural poset to add a witness to SNR(ω1, ω2, ω3) by initial
segments. More precisely the elements of Q are partial functions f with
domain an initial segment of ω3∩Cof(ω1) and the property that if α ≤ dom(f)
and α ∈ Cof(ω2) then there is a set C club in α with f�(C∩Cof(ω1)) strictly
increasing. The ordering is end-extension.

It is easy to see that Q is ω2-closed and that player II wins the strategic
closure game of length ω2 + 1; to see the second claim consider a strategy
where player II moves as follows: at every stage α ∈ ω2 ∩ Cof(ω1), player II
extends the existing function fα to fα+1 = fα ∪{dom(fα), α)}. In particular
Q adds no ω2-sequences and so preserves cardinals up to and including ω3.
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We now make a suggestive false start. As usual we factor j(P) = P × R
where R is an ω2-closed forcing poset collapsing cardinals in the interval
[κ, j(κ)). If G is P-generic and g is Q-generic then by Theorem 14.3 we may
absorb P ∗ Q̇ into j(P) so that the quotient is ω2-closed, and so build an
embedding j : V [G] −→ M [G ∗ g ∗h] where h is generic for ω2-closed forcing.

If F is the function added by g then F =
⋃

g =
⋃

j“g. It is natural to
try and use F as a strong master condition. Since cf(κ) = ω2 in M [G ∗ g ∗ h]
we need to know that F is increasing on a club set to see that F ∈ j(Q), but
this is not immediately clear.

To resolve this problem we work in V [G ∗ g] and define a poset S as fol-
lows: conditions in S are closed bounded subsets c of κ such that |c| ≤ ω1

and F �(c ∩ Cof(ω1)) is strictly increasing. It is easy to see that S is count-
ably closed in V [G ∗ g]. We claim that in V [G] there is a dense ω2-closed
set of conditions in Q ∗ Ṡ, consisting of those conditions (f, č) such that
dom(f) = (max(c)+1))∩Cof(ω1) and f is strictly increasing on c∩Cof(ω1).
The proof is routine.

We now force over V [G ∗ g] with S to obtain a club set C ⊆ κ such
that C has order type ω2 and F �(C ∩ Cof(ω1)) is increasing. Since Q ∗ Ṡ
has an ω2-closed dense set we may absorb G ∗ g ∗ C into j(P) with an
ω2-closed quotient and then lift to obtain j : V [G] −→ M [G ∗ g ∗ C ∗ h]
where h is generic for ω2-closed forcing. C serves as witness that F ∈ j(Q)
so we may force with j(Q)/F to obtain a generic g+ and then lift to get
j : V [G ∗ g] −→ M [G ∗ g ∗ C ∗ h ∗ g+].

This elementary embedding exists in a generic extension of V [G ∗ g] by
countably closed forcing, so exactly as in Theorem 10.8 in V [G ∗ g] every
stationary set in κ∩Cof(ω) reflects to a point of cofinality ω2. By construction
we also have SNR(ω1, ω2, ω3) in V [G ∗ g] so we are done. a

As a third example we sketch Magidor’s proof that consistently every
stationary subset of ωω+1 reflects.

14.10 Theorem. If it is consistent that there exist ω supercompact cardinals
then it is consistent that every stationary subset of ωω+1 reflects.

Proof. We start by fixing an increasing sequence 〈κn : 0 < n < ω〉 of su-
percompact cardinals. We also fix jn : V −→ Mn witnessing that κn is
λ+-supercompact where λ = supn κn. We then define a full support iteration
of length ω by setting P1 = Q0 = Col(ω, <κ1), Qn = Col(κn, <κn+1)V Pn for
all n > 0, Pn+1 = Pn ∗Qn, Pω = lim

←
Pn.

Let Gω be Pω generic, let Gn be the Pn-generic filter induced by Gω and let
gn be the corresponding Qn-generic filter over V [Gn]. The following claims
are easy:

• κn = ωn, λ = ωω, and λ+ = ωω+1 in V [Gω].

• For every n, Pω/Gn is κn-directed-closed in V [Gn].
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• For every n > 0 let us factor Gω as Gn−1 ∗ gn−1 ∗ Hn. Then jn can
be lifted to an elementary embedding jn : V [Gn−1] −→ Mn[Gn−1], and
in V [Gn−1] we may embed Pω/Gn−1 into jn(Qn) so that the quotient
forcing is κn−1-closed.

It follows from this discussion that we may lift jn to an embedding with
domain V [Gω] in three steps:

1. Lift to jn : V [Gn−1] −→ Mn[Gn−1].

2. Lift to jn : V [Gn−1∗gn−1] −→ Mn[Gn−1∗gn−1∗Hn∗In] = Mn[jn(Gn)]
where In is generic over V [Gω] for κn−1-closed forcing.

3. Use the closure of Mn to show that jn“Hn ∈ Mn[jn(Gn)], and then use
the fact that jn(κn) > |Hn| and directedness to find a suitable strong
master condition r. Then force with jn(Pω/Gn)/r and lift once more
to jn : V [Gn ∗Hn] −→ Mn[jn(Gn) ∗ jn(Hn)].

The key points are that

1. By forcing over V [Gω] with κn−1-closed forcing we have added a generic
embedding jn : V [Gω] −→ Mn[jn(Gω)] with critical point κn.

2. jn“λ+ ∈ Mn.

It remains to argue that in V [Gω] every stationary subset of λ+ reflects. By
the completeness of the club filter, every stationary set in λ+ has a stationary
subset of ordinals with a constant cofinality, so it will suffice to show that for
all n any stationary subset S of λ+ ∩ Cof(ωn) reflects.

We consider the generic embedding jn+2 : V [Gω] −→ Mn[jn(Gω)] con-
structed above. It is easy to see that if γ = sup jn“λ+ then γ < jn(λ+)
and j“S ∩ γ is stationary in Mn[Gω], because the map jn+2 is continuous at
points of cofinality κn. The only problem is to see that S (and hence j“S∩γ)
is still stationary in Mn[jn(Gω)], so it will certainly suffice to see that the
stationarity of S is preserved by any ωn+1-closed forcing.

Unfortunately it is not true in general [10] that κ+-closed forcing preserves
stationary subsets of µ∩Cof(κ) when µ is the successor of a singular cardinal.
We address this problem using an idea of Shelah to show that in our model
V [Gω] every stationary subset of ωω+1∩Cof(ωn) is preserved by ωn+1-closed
forcing.

We start by fixing in V for every β < λ+ a decomposition β =
⋃

i<ω bβ
i

where the bβ
i are disjoint and |bβ

i | ≤ κi. We define F (α, β) to be the unique
i < ω with α ∈ bβ

i . The key technical claim is that in V [Gω] any ordinal
ρ < λ+ with uncountable cofinality contains an unbounded homogeneous set
for F .

We fix such a ρ and let n be the unique integer such that in V we have
κn ≤ cf(ρ) < κn+1. We note that if σ =def sup(jn“ρ) then σ < j(ρ), and
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so we may define in V an ultrafilter U =def {A ⊆ ρ : σ ∈ j(A)}. Clearly
ρ \ α ∈ U for all α < ρ, and U is κn-complete in V .

We now fix for each α ∈ ρ a U -large set Aα on which F (α,−) is constant.
In V [Gω] we have that cf(ρ) = κn, and we will build by recursion an increasing
and cofinal sequence 〈αi : i < κn〉 in ρ such that αj ∈ Aαi for i < j. This is
possible because 〈Aαi : i < j〉 is in V [Gn] so is covered by a subset Yj of U
which lies in V and has size less than κn; the intersection of Yj is in U , and
any element of this intersection will do as αj . It is then easy to thin out the
“tail homogeneous” sequence of αi to a cofinal homogeneous set.

To finish we show the needed stationary preservation fact. We work in
V [Gω]. Let T ⊆ λ+ ∩ Cof(κn) be stationary, let Q be κn+1-closed, let Ċ be
Q-name for a club subset of λ+. We build N ≺ Hθ for some large θ such
that N contains all the relevant parameters, |N | = λ, all bounded subsets of
λ are in N and δ = N ∩ λ+ ∈ T . Fix A ⊆ δ a cofinal set of order type κn

and i ∈ ω so that A is i-homogeneous for F . We claim that all proper initial
segments of A lie in N : for if β ∈ A then A ∩ β ⊆ bβ

i , and since bβ
i ∈ N with

|bβ
i | ≤ κi and also P (κi) ⊆ N we see easily that A ∩ β ∈ N .
The endgame of the argument is now very similar to the proof of Lemma

10.6. We enumerate the elements of A in increasing order as αi for i < κn.
We then build a decreasing sequence 〈qj : j < κn〉 of conditions in Q ∩ N ,
where qj is the least condition which both determines min(Ċ \ αj) and is
below qi for all i < j. We need to see that qj ∈ N for all j < κn; the key
point is that 〈qi : i < j〉 is definable from A∩αj , and so can be computed in
N . To finish we choose q a lower bound for 〈qi : i < κn〉, and observe that
q 
 α ∈ Ċ ∩ T . a

15. Transfer and Pullback

It is sometimes possible to transfer a generic filter over one model to another
model along an elementary embedding, and then to lift that elementary em-
bedding. The following proposition makes this precise

15.1 Proposition. Let k : M −→ N have width ≤ µ, and let P ∈ M be a
separative notion of forcing such that

M |= “P is (µ+,∞)-distributive”.

Let G be P-generic over M and let H be the filter on k(P) which is generated
by k“G. Then H is k(P)-generic over N .

Proof. Let D ∈ N be a dense open subset of k(P). Let D = k(F )(a) for
some a ∈ N and some F ∈ M such that M |= |dom(F )| ≤ µ; we may as well
assume that for every x ∈ dom(F ), F (x) is a dense open subset of P.

Now let E =
⋂

x∈dom(F ) F (x). By the distributivity assumption E is a
dense subset of P, and clearly E ∈ M , so that E ∩G 6= ∅. If p ∈ G ∩E then
k(p) ∈ k(F )(a) = D, so that H ∩D 6= ∅ and so H is generic as claimed. a
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15.2 Remark. Given the conclusion of the last Proposition, it follows from
Proposition 9.1 that k can be lifted to get k+ : M [G] −→ N [H].

As an example of this proposition in action, we prove a result reminiscent
of Lemma 8.5.

15.3 Lemma. Let GCH hold. Let E be a (κ, κ++) extender and let the map
j : V −→ M = Ult(V,E) be the ultrapower. Let Q = Col(κ+++, <j(κ))M .
Then there is a filter g ∈ V which is Q-generic over M .

Proof. Let U = {X ⊆ κ : κ ∈ j(X)} and let i : V −→ N = Ult(V,U). As
in Proposition 3.2 we may define an elementary embedding k : N −→ M by
k([F ]U ) = j(F )(κ), and j = k ◦ i.

Let λ = κ++
N . It is easy to see that

M = {j(F )(a) : a ∈ [κ++]<ω, dom(F ) = [κ]|a|}
= {k(H)(a) : a ∈ [κ++]<ω, dom(H) = [λ]|a|}

It follows that k is an embedding of width at most λ.
Now let Q0 = Col(λ+, <i(κ))N , and notice that k(Q0) = Q. By exactly

the same argument as in Lemma 8.5 there is g0 ∈ V which is Q0-generic
over N . By Proposition 15.1 k“g0 generates a filter g which is Q-generic over
M . a

15.4 Remark. This lemma can be used to construct posets along the lines
of the generalised Prikry forcing from Example 8.6, collapsing κ to become
for example ωω1 . See [8] and [27] for details.

15.5 Remark. See Sections 22 and 25 for applications of Proposition 15.1
in Reverse Easton constructions.

Proposition 15.1 admits a kind of dual in which the traffic goes the other
way:

15.6 Proposition. Let k : M −→ N have critical point δ, let P ∈ M be a
notion of forcing such that

M |= “P is δ-c.c.”.

Let H be k(P)-generic over N and let G = k−1“H. Then G is P-generic over
M .

Proof. Let A ∈ M be a maximal antichain of P. Then k(A) = k“A and it
is maximal in k(P), so k“A meets H and hence A meets G. It is routine to
check that G is a filter. a
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16. Small Large Cardinals

One of the main themes of this chapter has been preservation of large cardinal
axioms in forcing extensions, using the characterisation of those large cardinal
axioms in terms of elementary embeddings. It might seem that this method
can only work for large cardinal hypotheses at least as strong as the existence
of a measurable cardinal, because after all the critical point of any definable
j : V −→ M is always measurable (and even the existence of a generic
embedding j : V −→ M ⊆ V [G] implies the existence of an inner model with
a measurable cardinal).

However it turns out that we can get down to the level of weakly compact
cardinals by working with elementary embeddings whose domains are sets
which do not contain the full powerset of the critical point. We record a
number of equivalent characterisations of weak compactness. The last one
(which is due to Hauser [34]) has the surprising feature that the target model
of the embedding contains the embedding itself, a fact which can be used to
good effect in master condition arguments [35, 34].

16.1 Theorem. The following are equivalent for an inaccessible cardinal κ:

1. κ is weakly compact.

2. κ is Π1
1-indescribable.

3. κ has the tree property.

4. For every transitive set M with |M | = κ, κ ∈ M and <κM ⊆ M there is
an elementary embedding j : M −→ N where N is transitive, |N | = κ,
<κN ⊆ N and crit(j) = κ.

5. For every transitive set M with |M | = κ, κ ∈ M and <κM ⊆ M there is
an elementary embedding j : M −→ N where N is transitive, |N | = κ,
<κN ⊆ N , crit(j) = κ and in addition j and M are both elements of
N .

Proof. The equivalence of the first four statements is standard [43]. So we
only show that the last one follows from weak compactness. Given M a
transitive set with |M | = κ ∈ M and <κM ⊆ M we find a transitive M̄ with
the same properties so that M ∈ M̄ . We fix in M̄ a well founded relation E
on κ so that (κ, E) collapses to (M,∈).

By weak compactness we may find an embedding j : M̄ −→ N̄ with critical
point κ such that |N̄ | = κ and <κN̄ ⊆ N̄ . Let N = j(M) and i = j�M so
that i : M −→ N is elementary. Since j(E) ∈ N̄ it is easy to see that M and
i are both in N̄ ; but by elementarity N is closed under κ-sequences in N̄ so
that M and i are in N . a

16.2 Example. We show that it is consistent for the first failure of the GCH
to occur at a weakly compact cardinal. This needs a little work. For example
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if V = L and we add κ++ Cohen subsets to a weakly compact cardinal κ
then this destroys the weak compactness of κ. The point is that for X ⊆ κ
the statement “X /∈ L” is Π1

1 in (Vκ,∈, X), so that if κ is weakly compact
and X /∈ L then by Π1

1-indescribability some initial segment of X is not in
L.

We will assume that GCH holds in V and that κ is weakly compact.
We will force with Easton support to add α many Cohen subsets to each
inaccessible α < κ, and will then add κ++ many Cohen subsets to κ. Let Pκ

be the iteration up to κ and let Q = Add(κ, κ++)V Pκ . Let G be Pκ-generic
over V and let g be Q-generic over V [G].

For the sake of variety we show that κ has the tree property in V [G ∗ g].
Let T ∈ V [G∗g] be a κ-tree. T is essentially a subset of κ, and so by the κ+-
c.c. there is in V a set X ⊆ κ++ with |X| = κ such that T ∈ V [G ∗ g0] where
g0 = g�(κ×X). Without loss of generality we may as well assume that X = κ.
So now T ∈ V [G∗g0], where g0 = g�(κ×κ) and g0 is Q0 = Add(κ, κ)-generic,

Working in V we fix a suitable transitive model M such that Ṫ ∈ M , and
then choose j : M −→ N as in article 5 of Theorem 16.1. We now proceed
to lift j. We need to be slightly careful about issues of closure. Our models
are less closed than in the context of measurable cardinals, but since they
are themselves small sets this is not a problem.

Since Pκ is κ-c.c. and V |= <κN ⊆ N , we have by Proposition 8.4 that
V [G] |= <κN [G] ⊆ N [G]. Q0 adds no <κ-sequences so by Proposition 8.2
V [G ∗ g0] |= <κN [G ∗ g0] ⊆ N [G ∗ g0]. Since |N [G ∗ g0]| = κ and the fac-
tor iteration j(Pκ)/G ∗ g0 is <κ-closed in V [G ∗ g0], we may as usual build
H ∈ V [G ∗ g0] suitably generic and lift to get j : M [G] −→ N [G ∗ g0 ∗H]. As
usual V [G∗g0] |= <κN [G∗g0 ∗H] ⊆ N [G∗g0 ∗H]. Finally since j�g0 = id we
may use r =

⋃
g0 as a strong master condition, construct a suitable generic

filter for j(Q0)/R and lift the embedding onto M [G ∗ g0]. Since j(T )�κ = T ,
we may use any point on level κ of j(T ) to generate a cofinal branch of T
lying in V [G ∗ g0].

17. Precipitous Ideals I

In this section we prove some theorems about precipitous ideals due to Jech,
Magidor, Mitchell and Prikry [40]. As a warmup we show it is consistent
that there exists a precipitous ideal (precipitousness is defined below) on ω1,
then we show that the non-stationary ideal on ω1 can be precipitous. The
hypothesis used is the existence of a measurable cardinal, which is known
[40] to be optimal.

The proof has several very interesting technical features including:

• The use of the universal properties of the Lévy collapsing poset, an
idea which goes back to Solovay’s proof that every set of reals can be
measurable [65].
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• The use of forcing to add simultaneously filters G and H such that an
embedding M −→ N lifts to an embedding M [G] −→ N [H].

• The use of an iterated club-shooting forcing to make the club filter ex-
hibit properties that are characteristic of filters derived from elementary
embeddings.

17.1. A Precipitous Ideal on ω1

We refer readers to Foreman’s chapter in this Handbook for the basic theory
of precipitous ideals. We recall that if I is an ideal on κ then we may force
with the forcing poset P (κ)/I \ {0} (equivalence classes of I-positive sets
modulo I) to add a V -ultrafilter U such that U ∩ I = ∅. Working in V [U ] we
may then form Ult(V,U) using functions in V ordered modulo U . The ideal I
is said to be precipitous if and only if Ult(V,U) is forced to be well-founded.
We will follow a common practice and abuse notation by saying that the
ultrafilter U is “P (κ)/I-generic”.

The following fact is key for us: to show that an ideal I on a cardinal κ
is precipitous, it suffices to produce (typically by forcing) for every A /∈ I a
V -ultrafilter U on κ such that A ∈ U , U is P (κ)/I-generic, and Ult(V,U)
is well-founded. The point is that if I fails to be precipitous there is A /∈ I
which forces this, and for such an A no U as above can exist.

We will reuse an example from earlier in this chapter. Assume that κ is
measurable, and let j : V −→ M = Ult(V,U) be the ultrapower map from a
normal measure U on κ. Let P = Col(ω, <κ). Then as we saw in Theorem
10.2:

1. j(P) is isomorphic to P×Q where Q is the poset which adds a surjection
from ω onto each ordinal in [κ, j(κ)) with finite conditions. We will
usually be careless and identify the posets j(P) and P×Q.

2. If G is P-generic over V and H is Q-generic over V [G] then G ∗ H is
j(P)-generic over V , and j“G ⊆ G ∗H, so in V [G ∗H] we can lift our
original j to jG : V [G] −→ M [G ∗H] with jG(G) = G ∗H. So from the
point of view of V [G] the embedding jG is a generic embedding added
by forcing with Q.

3. Since M = {j(f)(κ) : f ∈ V } we have that

M [G ∗H] = {jG(f)(κ) : f ∈ V [G]},

so that M [G ∗H] is the ultrapower Ult(V [G], UG) where

UG = {X ∈ P (κ) ∩ V [G] : κ ∈ jG(X)}

Here UG is a V [G]-normal V [G]-κ-complete V [G]-ultrafilter and jG is
the associated ultrapower map.
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Foreman’s chapter in this Handbook gives a rather general framework for
defining precipitous ideals by way of generic elementary embeddings. In the
interests of being self-contained, we describe how this plays out in the setting
of the embedding from Theorem 10.2.

We caution the reader that the following arguments involve viewing the
universe V [G ∗ H] both as an extension of V by j(P) and an extension of
V [G] by Q. We are quietly identifying j(P)-names in V with Q-names in
V [G], resolving any possible confusion by making explicit which model we
are forcing over and with which poset.

Working in V [G] we define an ideal I on ω
V [G]
1 (= κ) by

I = {X ⊆ κ : 
V [G]
Q κ /∈ jG(X)}.

Equivalently I consists of those sets which are forced by Q not to be in the
ultrafilter UG.

Working in V [G] we define a Boolean algebra homomorphism from P (κ)
to ro(Q) which maps X to the truth value [X ∈ U̇G]ro(Q). The kernel of this
map is exactly I so we may induce a map ι from P (κ)/I to ro(Q).

The key point is that, as we see in a moment, the range of ι is dense. From
this it follows that for any H which is Q-generic over V [G], the ultrafilter
UG is P (κ)/I-generic over V [G]; in fact it follows from the truth lemma that
X ∈ UG ⇐⇒ ι(X) ∈ H, so that in a very explicit way forcing with Q is
equivalent to forcing with P (κ)/I.

To establish that the range of ι is dense recall that Q is densely embedded
in ro(Q). Let q ∈ Q, so that q = j(F )(κ) where F ∈ V is a function
such that F (α) ∈ Col(ω, [α, κ)) for all α < κ. Working in V [G], define
X = {α : F (α) ∈ G}. Since jG extends j, q = jG(F )(κ) and so for any H we
have that

ι(X) ∈ H ⇐⇒ κ ∈ jG(X) ⇐⇒ q ∈ jG(G) ⇐⇒ q ∈ H.

It is an immediate conclusion that I must be precipitous. For if A /∈ I
then we may choose H inducing jG such that κ ∈ jG(A). Arguing as above
we get that UG is P (κ)/I-generic with A ∈ UG, so we are done.

It is interesting to note that the ideal I is precisely the ideal generated in
V [G] by the ideal dual to the ultrafilter U . It is immediate that I contains
this ideal, so we only need to prove that I is contained in this ideal.

Let p 
V
P Ẋ ∈ İ. We claim that if we define A = {α : p 
 α /∈ Ẋ} then

A ∈ U . For if not then we may define a function F on Ac such that F (α) ≤ p
and F (α) 
 α ∈ Ẋ. But then if we let q = j(F )(κ) and force to get G ∗H
containing q, we obtain a situation in which p ∈ G and yet κ ∈ jG(X), so
that X ∈ UG and we have a contradiction.

17.1 Remark. Really we have just worked through a very special case of
Foreman’s Duality Theorem. See Foreman’s chapter in this Handbook for
more on this subject.



17. Precipitous Ideals I 59

17.2. Iterated Club Shooting

In subsection 17.1 we produced a precipitous ideal I on ω1. It is not hard
to see that this ideal is not the non-stationary ideal. For example if in V
we define S = κ ∩ cof(ω), then S is stationary in V [G] by the κ-c.c. of the
collapsing poset P. Since κ /∈ j(S) we see that 
Q Š /∈ U̇G, so that S ∈ I.

To make the non-stationary ideal precipitous, we will iteratively shoot
clubs so as to destroy the stationarity of inconvenient sets such as the set S
from the last paragraph. The argument is somewhat technical so we give an
overview before launching into the details.

Overview

Working in V [G] we build a countable support iteration R of length κ+ (that
is the ω2 of V [G]). At each stage we shoot a club set through some stationary
subset of ω1. A key point will be that this iteration adds no ω-sequences of
ordinals; from this it will follow that

1. ω1 is preserved.

2. At each stage of the iteration R, the conditions in the club shooting
forcing used at that stage (which are closed and bounded subsets of ω1)
actually lie in the model V [G].

Recall from subsection 17.1 that P = Coll(ω, < κ), j(P) = P × Q, and
for any H which is Q-generic over V [G] we may lift j : V → M and get
jG : V [G] → M [G∗H]. It is the existence of these generic embeddings which
is responsible for the precipitousness of I in V [G].

For each α we will find an embedding of P ∗Rα into j(P), and we will use
this to produce generic embeddings jα : V [G ∗ gα] → M [G ∗H ∗hα] where gα

is Rα-generic and G ∗ gα is embedded into G ∗H. From these embeddings jα

we will define normal ideals Iα ∈ V [G ∗ gα] which are analogous to the ideal
I; the construction will be organised so that

1. Iα increases with α.

2. In the final model
⋃

α Iα is the non-stationary ideal.

To finish we will use the embeddings jα to show that the non-stationary
ideal is precipitous. This argument, which is similar to but more complicated
than that of subsection 17.1, appears as Lemma 17.4 below.

Details

Working in V [G] we construct by induction on α < κ+

1. A countable support iteration Rα.
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2. An embedding iα : P ∗Rα → j(P), extending the identity embedding of
P into j(P). Our convention in what follows is that H is always some
Q-generic filter over V [G] and gα is always the Rα-generic filter induced
by H via the embedding iα.

3. A Q-name Ḋα for a strong master condition appropriate for the em-
bedding jG : V [G] → M [G ∗ H] and generic object gα; that is to say
Ḋα names a condition in j(Rα) which is a lower bound for j“gα.

4. A Q ∗ j(Rα)/Dα-name for jα : V [G ∗ gα] → M [G ∗H ∗ hα] extending
jG : V [G] → M [G ∗H].

5. An Rα-name İα for a normal ideal on κ; this is defined as a master con-
dition ideal of the sort discussed in Foreman’s chapter of this handbook,
to be more precise it is defined to be the set of those X ⊆ κ in V [G∗gα]
such that it is forced over V [G ∗ gα] by j(P)/(G ∗ gα) ∗ j(Rα)/Dα that
κ /∈ jα(X).

6. An Rα-name Ṡα for a set in the filter dual to the ideal Iα.

We will maintain the hypotheses that

1. Rα adds no ω-sequences of ordinals and has the κ+-c.c.

2. For β < γ ≤ α

(a) iγ extends iβ (from which it follows that gγ extends gβ).
(b) It is forced over V [G] (by the appropriate forcing posets) that

Dγ � j(β) = Dβ , jγ � V [G ∗ gβ ] = jβ , and Iγ ∩ V [Gβ ] = Iβ .

3. The set of flat conditions is dense in Rα, where a condition r in Rα is
flat if

(a) For every η in the support of r, r(η) is a canonical Rη-name ďη for
some dη ∈ V [G], where dη is a closed and bounded subset of κ.

(b) There is an ordinal γ < κ such that γ = max(dη) for every η in
the support of p.

We will explain why some of the hypotheses are maintained and then give
the details of the construction. Since Dα is a strong master condition for Rα

it follows from Theorem 12.5 that forcing with Rα adds no ω-sequences of
ordinals. As we see shortly Dα is flat, and since Dα ≤ j“gα it follows from
elementarity that the set of flat conditions is dense. Standard ∆-system
arguments show that the set of flat conditions has the κ+-c.c. and so since
this set is dense Rα has the κ+-c.c. The remaining “coherence” hypotheses
will be satisfied by construction.

• At successor stages we take Rα+1 ' Rα ∗ CU(κ, Sα). For α limit, Rα

is constructed as the direct limit of 〈Rβ : β < α〉 if α has uncountable
cofinality and the inverse limit if α has countable cofinality.
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• iα is defined using the universal properties of the Lévy collapse as in
Theorem 14.2.

• Recall that jα exists in the extension of V [G ∗ gα] by the forcing poset
j(P)/(G ∗ gα) ∗ j(Rα)/Dα. Working in V [G ∗ gα] we define Iα to be
the ideal of those X ⊆ κ such that it is forced over V [G ∗ gα] by
j(P)/(G ∗ gα) ∗ j(Rα)/Dα that κ /∈ jα(X).

• Let 〈Cη : η < α〉 be the sequence of club sets added by gα. We construct
Dα as follows: the support of Dα is j“α, and Dα(j(η)) is the canonical
j(Rη)-name for Cη ∪ {κ}.
Of course we need to check that Dα is a strong master condition. The
salient points are that

– Since α < κ+, j“α ∈ M .

– Since κ+ < j(κ), j“α is countable in M [G ∗H]. In particular Dα

has countable support.

– If f ∈ gα then f ∈ V [G] and the support of f has size less than
crit(jG). Hence the support of jG(f) is j“ dom(f).

– For every β < α, Dβ = Dα � j(β) is a lower bound for j“gβ . In
particular it is immediate for α limit that Dα is a strong master
condition, so we may concentrate on the case when α = β + 1.
Recall that by induction Pβ adds no ω-sequences of ordinals. Let
r ∈ gα, then it follows from the distributivity of Pβ that we may
write r = r0 _ r1 where r0 ∈ gβ and (without loss of generality)
r1 is the canonical name for Cβ ∩ (η + 1) where η ∈ Cβ . By induc-
tion Dβ ≤ j(r0). By the distributivity of Pβ again, every initial
segment of Cβ is in V [G], and is fixed by jG. So Dβ(= Dα � j(β))
forces that Dα(j(β)) is an end-extension of j(r1).
It only remains to check that Dβ forces that Cβ∪{κ} is a legitimate
condition in jβ(CU(κ, Sβ)). But this is immediate because Sβ was
chosen to lie in the filter dual to Iβ .

• Dα is flat. This is straightforward: we have already checked that it is
a condition, and by construction each entry is a canonical name for a
closed set of ordinals with maximum element κ.

• jα is defined in the standard way as a lifting of jG : V [G] → M [G ∗H].
The fact that Dα is a strong master condition ensures the necessary
compatibility of generic filters.

• The sets Sα are chosen according to a suitable book-keeping scheme so
that after κ+ steps it is forced that every element of

⋃
α Iα has become

non-stationary.
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17.2 Remark. The trick of using a dense subset of conditions which are
“flat” (in a suitable sense) is very often useful in situations when we are iter-
atively shooting clubs through stationary sets. It would have been tempting
to define Pα as the set of flat conditions with a suitable ordering, but this
raises problems of its own; in particular we would have needed to verify
that the flat poset is an iteration of club shooting forcing, which amounts to
showing that flat conditions are dense.

In several subsequent arguments that involve iterated club shooting we
have cheated (in a harmless way) by just defining the set of flat conditions,
and leaving it to the reader to check that this set is dense in the corresponding
iteration. See in particular Lemma 17.4 and the results of Sections 18 and
19.

17.3 Remark. The ideals Iα are master condition ideals of the sort discussed
at some length in Foreman’s chapter.

Precipitousness

It remains to see that the non-stationary ideal is precipitous in V [G ∗ gκ+ ].
The argument runs parallel to that for the precipitous ideal in the preceding
section, but is harder because we now need a generic elementary embedding
with domain V [G ∗ gκ+ ]. The main technical difficulties are that

1. j“κ+ /∈ M , indeed it is cofinal in j(κ+), so that we cannot hope to
cover it by any countable set in M [G ∗ H]. So there is no chance of
building a strong master condition.

2. The method for doing without a strong master condition which we
described in Section 13 uses a reasonably large amount of closure but
Pκ+ is not even countably closed.

3. Pκ+ is not sufficiently distributive to transfer a generic object as in
Section 15, nor does it obey a strong enough chain condition to pull
back a generic object as in Proposition 15.6.

Since we will use the same set of ideas again in Section 18 when we build
a model in which NSω2 is precipitous, we state a rather general lemma about
constructing precipitous ideals by iterated club-shooting. This is really just
an abstraction of an argument from [40]. In the applications which we are
making of this lemma the preparation forcing P will make κ into the successor
of some regular δ < κ.

17.4 Lemma. Suppose that κ is measurable and 2κ = κ+. Let U be a normal
measure on κ and let j : V −→ M be the associated ultrapower map. Let P
be a κ-c.c. poset with P ⊆ Vκ. As usual P is completely embedded in j(P),
so that if G is P-generic and H is j(P)/G-generic then j : V −→ M can be
lifted to an elementary embedding jG : V [G] −→ M [G ∗H].
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Let 〈Q̇α : α ≤ κ+〉 be an P-name for a sequence of forcing posets such that
in V [G]

1. Qα is a complete subposet of Qβ for α ≤ β ≤ κ+.

2. Forcing with Qα adds no < κ-sequences of ordinals.

3. Qκ+ is κ+-c.c.

4. Every condition in Qα is a partial function q such that dom(q) ⊆ α,
|dom(q)| < κ and q(η) is a closed and bounded subset of κ for all
η ∈ dom(q).

5. If g is a Qα-generic filter then
⋃

g is a sequence 〈Cβ : β < α〉 of club
subsets of κ.

Suppose further that there are sequences 〈iα : α < κ+〉 and 〈Ḋα : α < κ+〉
such that

1. iα is a complete embedding of P ∗ Q̇α into j(P), with i0 = id.

2. iβ extends iα for α ≤ β ≤ κ+.

3. Ḋα is a j(P)/P ∗ Q̇α-name for a condition Q ∈ jG(Qα) such that
dom(Q) = j“α, and for every η ∈ j“α Q(η) = Cη ∪ {κ}, where
〈Cβ : β < α〉 is the sequence of club subsets of κ added by Qα.

4. It is forced that Ḋβ extends Ḋα for α ≤ β ≤ κ+.

Let G be P-generic over V , and let H be j(P)/G-generic over V [G]. For
each α < κ+, let gα be the filter on Qα induced by iα and H (so that gα is
V [G]-generic).

For each ν < κ+ the hypotheses above imply that it is forced over V [G∗gν ]
by j(P)/G ∗ gν ∗ jG(Qν)/Dν that jG can be extended to a generic embedding
jν with domain V [G ∗ gν ]. Let Jν ∈ V [G ∗ gν ] be the ideal of those X ⊆ κ
such that it is forced that κ /∈ jν(X). Let g =

⋃
ν gν and J =

⋃
ν Jν .

Then

1. g is Qκ+-generic over V [G].

2. J is precipitous in V [G ∗ g].

17.5 Remark. In the intended applications, J will end up being the non-
stationary ideal. However it may be (as will be the case in Section 18) that
this is accomplished by a more sophisticated strategy than arranging that
every A ∈ J is disjoint from some Ci.

Proof. The induced filters gν are compatible in the sense that if ρ ≤ σ then
gρ = gσ ∩Qρ. It follows easily from the κ+-c.c that if we set g =

⋃
ρ gρ then

g is Qκ+-generic. Let Dρ be the strong master condition computed from gρ.
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We will construct K which is jG(Qκ+)-generic over M [G ∗ H], and is
compatible with g in the sense that jG“g ⊆ K. We do this as follows:
define Q∗ to be the subset of jG(Qκ+) consisting of those F such that for
some µ < κ+ we have F ∈ jG(Qµ)/Dµ. Of course Q∗ ⊆ M [G ∗ H], but
Q∗ /∈ M [G ∗H] since its definition requires a knowledge of j�κ+.

We force to get K0 which is Q∗-generic over V [G ∗ H]. Let K be the
upwards closure of K0 in jG(Qκ+), then we claim that K is jG(Qκ+)-generic
over M [G ∗H]. Let A ∈ M [G ∗H] be a maximal antichain in jG(Qκ+). We
will show that conditions extending some element of A are dense in Q∗. Let
F ∈ Q∗, and fix µ such that F ∈ jG(Qµ)/Dµ. By a familiar chain condition
argument we may fix ρ > µ such that A is a maximal antichain in jG(Qρ).
Working in M [G ∗H] we first extend F to F ′ = F ∪Dρ ∈ jG(Qρ)/Dρ, and
then extend F ′ to a condition F ′′ ∈ j(Qρ) which also extends some member
of A.

In the usual way we may now extend jG : V [G] −→ M [G ∗ H] to an
embedding j∗ : V [G∗g] −→ M [G∗H∗K]. From the point of view of the model
V [G∗g] this is a generic embedding added by forcing with j(P)/(G∗g)∗Q∗. It
is routine to check that J is the ideal on κ induced by this generic embedding;
more explicitly for every X ∈ V [G ∗ g]

X ∈ J ⇐⇒ 
V [G∗g]
j(P)/(G∗g)∗Q∗ κ /∈ j∗(X).

For any X /∈ J we may therefore force to obtain some embedding j∗ such
that κ ∈ j(X). To finish it will suffice to show that for any generic embedding
j∗ as above, if we define a V [G ∗ g] -ultrafilter U∗ by

U∗ = {Y : κ ∈ j∗(Y )}

then U∗ is P (κ)/J-generic over V [G∗g] and gives a well-founded ultrapower.
Since as in the last section we have Ult(V [G ∗ g], U∗) = M [G ∗H ∗K], the
well-foundedness is immediate.

The argument that U∗ is P (κ)/J-generic is similar to that from the last
section but there are some extra subtleties. We note in particular that the
embedding j∗ is defined in a generic extension of V by j(P) ∗ Q∗, but is a
lifting of j to a map from the extension of V by P ∗Qκ+ to the extension of
M by j(P) ∗ j(Qκ+).

Let Ȧ be a P ∗ Qκ+-name for a maximal antichain of J-positive sets and
suppose towards a contradiction that some condition (P, Ḟ ) ∈ j(P)∗Q∗ forces
that for every B ∈ A, κ /∈ j∗(B). We will find a J-positive set T which has
J-small intersection with every B ∈ A, contradicting the maximality of A.

Since Q∗ ⊆ j(Pκ+) we see that (P, Ḟ ) ∈ j(P ∗Qκ+), and so we may choose
in V a function R : κ → P ∗ Qκ+ such that j(R)(κ) = (P, Ḟ ). Let Ṫ name
the set {α : R(α) ∈ G ∗ g}, then it is easy to see that is forced by j(P) ∗Q∗
that for every B ∈ A, κ /∈ j∗(B ∩ T ); the key point is that by construction
κ ∈ j∗(T ) ⇐⇒ (P, F ) ∈ G ∗H ∗K.
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We now force to get G ∗H which is j(P)-generic over V with P ∈ G ∗H,
and from this we obtain as usual g which is Qκ+ -generic over V [G]. Moving
to V [G ∗ g] and using the fact that J is the ideal induced by j∗, we see that
B ∩ T ∈ J for all B ∈ A.

To finish the argument we show that T /∈ J . By forcing over V [G∗H] with
Q∗/F we obtain an elementary embedding j∗ : V [G ∗ g] −→ M [G ∗H ∗K]
where (P, F ) ∈ G ∗H ∗K, so that κ ∈ j∗(T ) by the construction of R and
T . Since J is the ideal induced by j∗, T /∈ J and we are done. a

17.6 Remark. The technique used in this lemma is discussed in a more
general and abstract setting in Foreman’s chapter of this Handbook.

18. Precipitous Ideals II

In this section we discuss some work of Moti Gitik in which he obtains various
results of the form “NSκ�Cof(µ) can be precipitous” from hypotheses which
are optimal or close to optimal. We will describe in some detail the proof of

18.1 Theorem (Gitik [23]). The precipitousness of NSω2 is equiconsistent
with the existence of a cardinal of Mitchell order two.

We will then give a much less detailed discussion of some of Gitik’s con-
sistency and equiconsistency results for cardinals greater than ω2, which use
many of the same ideas. Throughout this section, we will be using the general
machinery of Lemma 17.4 to construct precipitous ideals. We will focus on
the technical problems that need to be overcome to invoke this machinery,
and on their solutions.

18.2 Remark. As discussed in Foreman’s chapter, the simplest known model
[20] for the precipitousness of NSκ is obtained by taking a Woodin cardinal
δ > κ and forcing with Col(κ, <δ). The point here is to use the optimal
hypotheses, which turn out to be much weaker.

18.3 Remark. We note that NSω2 is precipitous if and only if both of the
restrictions NSω2�Cof(ω) and NSω2�Cof(ω1) are precipitous.

18.1. A Lower Bound

We start by sketching a proof of a lower bound for the strength of “NSω2

is precipitous”. Suppose for a contradiction that NSω2 is precipitous and
there is no inner model with a cardinal κ such that o(κ) = 2, and let K be
the core model for sequences of measures constructed by Mitchell [59]. Let
λ = ωV

2 and let F be the measure sequence of K. We recall the key facts
that K is definable and invariant under set forcing, and that any elementary
i : K −→ N ⊆ V is an iterated ultrapower of K by F .

By precipitousness of NSω2�Cof(ω1), we may force to get a V -ultrafilter
U which concentrates on ordinals of cofinality ω1 and has M = Ult(V,U)
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wellfounded. Let j : V −→ M ⊆ V [U ] be the ultrapower map. By the usual
arguments crit(j) = λ = [id]U , P (λ)V ⊆ M , and cfM (λ) = ωM

1 = ωV
1 . Note

also that if A is an ω-club subset of λ in V , then the same is true of A in M .
Let i = j�K, then by the properties of K mentioned above we know that

i : K −→ K ′ = KM and i is an iterated ultrapower of K with critical point
λ. In particular λ is measurable in K, and so F(λ, 0) exists. By our initial
hypotheses λ is not measurable in K ′, and so in K the only measure on λ is
F(λ, 0). Note also that P (λ)K = P (λ)K′

Let C be the ω-club filter on λ as computed in V , let A ∈ F(λ, 0) and let
W be an arbitrary V -generic ultrafilter added by forcing with C-positive sets.
Then by precipitousness of NSω2�Cof(ω), we get an elementary embedding
jW : V −→ Ult(V,W ), and if iW = jW �K then iW is an iterated ultrapower
of K with critical point λ; since in K the only measure on λ is F(λ, 0), we see
that κ ∈ jW (A), that is A ∈ W . Since it is forced that A ∈ W , we have that
A ∈ C. So F(λ, 0) ⊆ C ∩K, and since the left hand side is a K-ultrafilter in
fact F(λ, 0) = C ∩K.

Now let D be the ω-club filter on λ as computed in M . This makes sense
because cfM (λ) = ω1. We know that C ⊆ D and P (λ)K = P (λ)K′

, so
easily F(λ, 0) = D ∩K ′. Since D is a countably complete filter in M we see
that M ′ = Ult(K ′,F(λ, 0)) is wellfounded and we get in M an elementary
embedding j′ : K ′ −→ M ′ with critical point λ; since K ′ = KM this is an
iteration of K ′, but that is impossible because λ is not measurable in K ′.

18.2. Precipitousness for NSω2�Cof(ω1)

We have established that if NSω2 is precipitous then there is an inner model
with a cardinal κ such that o(κ) = 2. We will prove that this is an equiconsis-
tency, but before we do that we warm up with a sketch of the easier argument
that starting from a measurable cardinal NSω2�Cof(ω1) can be precipitous
[40].

We have already introduced in Section 17 most of the ideas needed to show
that NSω2�Cof(ω1) can be precipitous. What is still missing is a discussion
of how we should shoot club sets through stationary subsets of ω2. The
arguments of Lemmas 18.5 and 18.6 are due to Stavi (see [3]).

As we saw in Section 6 if S is a stationary subset of ω1 then it is possible
to add a club set C with C ⊆ S, using a forcing poset which does not add any
ω-sequences of ordinals. Suppose now that instead S is a stationary subset
of ω2. In general we may not be able to shoot a club set through S without
collapsing cardinals, for example if S = ω2 ∩ Cof(ω1).

In a way the rather trivial example from the last paragraph is misleading.
If we aim to make NSω2�Cof(ω1) precipitous then we need to take a stationary
S ⊆ ω2 ∩ Cof(ω1) and add, without collapsing ω1 or ω2, a club subset C of
ω2 such that C ∩ Cof(ω1) ⊆ S. This is fairly easy.

We recall that CU(δ,A) is the forcing poset whose conditions are closed
bounded subsets of δ which are contained in A, ordered by end-extension. We
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will need a technical lemma on the existence of countably closed structures.

18.4 Lemma. Let CH hold and let S ⊆ ω2 ∩Cof(ω1) be stationary. Let θ be
a large regular cardinal and let x ∈ Hθ. Then there exists N ≺ Hθ such that
ω1 ∪ {x} ⊆ N , |N | = ω1, ωN ⊆ N and N ∩ ω2 ∈ S.

Proof. We build an increasing and continuous chain 〈Nj : j < ω2〉 such that
Nj ≺ Hθ, ω1 ∪ {x} ⊆ N0, |Nj | = ω1 and ωNj ⊆ Nj+1. Since ω1 ⊆ Nj we
see that Nj ∩ ω2 ∈ ω2, and so by continuity and the stationarity of S we
may choose j such that cf(j) = ω1 and Nj ∩ ω2 ∈ S; it is easy to see that
ωNj ⊆ Nj . a

18.5 Lemma. Let CH hold, and let S ⊆ ω2 ∩ Cof(ω1) be stationary. Let
P = CU(ω2, (ω2 ∩ Cof(ω)) ∪ S). Then P is countably closed and adds no
ω1-sequences of ordinals.

Proof. Countable closure is immediate, so suppose that c forces that τ̇ is a
function from ω1 to On. By Lemma 18.4 we may find N ≺ Hθ for some
large θ so that N contains everything relevant, |N | = ω1, ωN ⊆ N , and
δ =def N ∩ ω2 lies in S. Now we build a decreasing chain of conditions
〈ci : i < ω1〉 so that ci ∈ N , ci+1 decides τ(i) and the sequence 〈δi : i < ω1〉
where δi =def max(ci) is cofinal in δ. If λ < ω1 is a limit stage there is
no problem because ωN ⊆ N , and we may safely choose δλ = supi<λ δi,
cλ =

⋃
i<λ ci ∪ {δλ}. To finish we choose d =

⋃
i<ω1

ci ∪ {δ}, which is legal
since δ ∈ S, and then d is a condition which refines c and determines τ̇ . a

An equivalent formulation would be that we are shooting an ω1-club set
through S by forcing with bounded ω1-closed subsets of S. Using the forcing
of Lemma 18.5 and the ideas of Section 17, it is now fairly straightforward
to show that starting with a measurable cardinal κ we may produce a model
where NSω2�Cof(ω1) is precipitous. We force first with Col(ω1, <κ) and
then iterate club shooting, absorb forcing posets and construct strong master
conditions more or less exactly as in Section 17.

If we are interested in the full ideal NSω2 then we need to shoot club sets
rather than ω1-club sets. This is more subtle; a little thought shows that
if S ⊆ ω2 and we wish to shoot a club set through S without adding ω1-
sequences, then there must be stationarily many α ∈ S ∩ Cof(ω1) such that
S ∩ α contains a closed cofinal set of order type ω1. The next result shows
that (at least under CH) this is the only obstacle.

18.6 Lemma. Let CH hold, and let S ⊆ ω2 be such that for stationarily
many α ∈ S ∩ Cof(ω1) there exists a set C ⊆ S ∩ α with C club in α. Let
P = CU(ω2, S). Then P adds no ω1-sequences of ordinals.

Proof. The proof is similar to that of Lemma 18.5. Let T be the stationary
set of α ∈ S∩Cof(ω1) such that there exists a set C ⊆ S∩α with C club in α.
Suppose that c forces that τ̇ is a function from ω1 to On. Build an elementary
N ≺ Hθ for some large θ so that N contains everything relevant, |N | = ω1,
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ωN ⊆ N , α =def N ∩ω2 ∈ T . By hypothesis there is a set C ⊆ S ∩α with C
club in α. We build a strictly decreasing chain of conditions 〈ci : i < ω1〉 so
that ci ∈ N , ci+1 decides τ(i) and δi ∈ C where δi =def max(ci). To finish
we choose d =

⋃
i<ω1

ci ∪ {α}, so that d is a condition which refines c and
determines τ̇ . a

18.3. Outline of the Proof and Main Technical Issues

We will use measures U0 C U1 of Mitchell orders zero and one respectively.
We let B be the set of α < κ with o(α) = 1, so that B ∈ U1 and B /∈ U0. We
fix measures Wi for i ∈ B so that Wi is a measure of order zero on i (so in
particular B ∩ i /∈ Wi) and 〈Wi : i ∈ B〉 represents U0 in Ult(V,U1), or more
concretely for X ⊆ κ

X ∈ U0 ⇐⇒ {i : X ∩ i ∈ Wi} ∈ U1.

The rough idea is this: we start with some preparation forcing which adds
no reals, makes κ into ω2, makes all inaccessible α lying in B into ordinals
of cofinality ω1, and makes all inaccessible α not lying in B into ordinals
of cofinality ω. We then iterate shooting club sets so that U0 extends to
the ω-club filter and U1 extends to the ω1-club filter. Roughly speaking U0

will be responsible for the precipitousness of NSω2�Cof(ω) and U1 will be
responsible for the precipitousness of NSω2�Cof(ω1).

There are several technical obstacles to be overcome.

• In the proof sketched above that NSω2�Cof(ω1) can be precipitous,
the forcing which is being iterated to shoot ω1-club subsets of ω2 is
countably closed. In particular it can be absorbed into any sufficiently
large countably closed collapsing poset. This means that the “prepa-
ration stage” of the preceding construction can be the simple forcing
Col(ω1, <κ). In the construction to follow we will be shooting club sub-
sets of ω2 in a way which destroys stationary subsets of ω2∩Cof(ω), so
that the forcing can not be embedded into any countably closed forcing
(or even any proper forcing). This is one reason why the preparation
stage for the construction to follow has to be more complicated.

• The measure U0 will be extended to become the ω-club filter. So we
need to shoot ω-club sets through (at least) all A ∈ U0, and we will
therefore need to shoot closed sets of order type ω1 through many initial
segments of A, in order to appeal to a suitable version of Lemma 18.6.
We need some way of organising the construction so that all A ∈ U0

are anticipated.

Recall that if A ∈ U0 then there are many i ∈ B such that A ∩ i ∈ Wi.
At many i ∈ B we will add a club subset of i which has order type ω1,
and is eventually contained in every member of Wi.
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• To build the preparation forcing, we need some way of iterating forc-
ings which change cofinality without adding reals. This will require an
appeal to Shelah’s machinery of revised countable support iteration.

• In the arguments for the precipitousness of NSω1 and NSω2�Cof(ω1), we
iterated to shoot club sets through stationary sets which were measure
one for certain “master condition ideals” (in the sense of Foreman’s
chapter) arising along the way. In the current setting it is not clear
that we can do this in a distributive way, so we finesse the question and
shoot club sets through some more tractable sets, then argue that this
is enough.

To be a bit more precise, suppose that V [Gκ] is the result of the prepa-
ration stage. We will build a κ+-c.c. iteration Qκ+ , shooting club sets
through subsets of κ. At successor stages we will shoot club sets through
certain sets of inaccessibles from the ground model of the form X ∪ Y
where X ∈ U0, Y ∈ U1, X ⊆ Bc and Y ⊆ B.

As the construction proceeds we will show, by induction on ν, that
the embeddings ji can be lifted onto the extension of V [Gκ] by Qν .
For limit ν we will write Qν as the union

⋃
α<κ Qα

ν of a continuous
sequence of subsets each of size less than κ. The existence of the lifted
embeddings implies that if Hν is Qν-generic over V [Gκ], then there are
many α < κ such that Hν∩Qα

ν is Qα
ν -generic over V [Gα]; we will ensure

that a club set is shot through each such set of “generic points”.

We then argue that using the club sets which are added in this process,
for each set in one of the relevant master condition ideals we may define
a club set which is disjoint from it. Below, at the end of subsection 18.6,
we will work through a toy example which illustrates this central idea.

• In order to realise the idea of the last item, we need that the closed
sets of order type ω1 added to points of B during the preparation stage
have an additional property. Namely if i ∈ B and c is the club set in i
which is added at stage i during the preparation, then we require that
for every β ∈ lim(c) the set c ∩ β must intersect every club subset of β
which lies in V [Gβ ].

• Let ji : V −→ Mi be the ultrapower by Ui for i = 0, 1. We will need to
embed Pκ ∗ Qν into both j0(Pκ) and j1(Pκ). Naturally the iterations
j0(Pκ) and j1(Pκ) differ at stage κ; the forcing at stage κ will change
the cofinality of κ to the values ω and ω1 respectively.

18.4. Namba Forcing, RCS Iteration and the S and I Con-
ditions

Several important ingredients in the proof come from Shelah’s work [64] on
iterated forcing. The technical issue is that in the preparation stage we need
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to iterate forcing posets which change cofinalities to ω and add no reals, in
such a way that the whole iteration adds no reals. A detailed discussion of
Shelah’s techniques would take us too far afield, so we content ourselves with
a very brief overview.

The preparation iteration will be done using Shelah’s Revised Countable
Support (RCS) technology. This is a version of countable support iteration in
which (very roughly speaking) we allow the supports of conditions used in the
iteration to be countable sets which are not in the ground model, but arise in
the course of the iteration: the point of doing this is to cope gracefully with
iteration stages δ such that cf(δ) > ω in V but the cofinality of δ is changed
to ω in the course of the iteration.

For motivation, consider the case of Namba forcing. The conditions are
trees T ⊆ <ωω2 with a unique stem element stem(T ), such that every element
of T is comparable with stem(T ) and every element extending stem(T ) has ω2

immediate successors in T . Forcing with these conditions adds an ω-sequence
cofinal in ω2.

Namba [60] showed that under CH this forcing poset adds no reals; we
sketch an argument for this which is due to Shelah. Let ṙ be a name for
a real and let S be a condition. We first find a refinement T ≤ S such
that stem(T ) = stem(S), and T forces that ṙ(n) is determined by the first n
points of the generic branch. We then appeal to a partition theorem for trees
(proved from CH, by applying Borel determinacy to each of a family of ω1

“cut and choose” games played on T ) to find a refinement U ⊆ S such that
stem(U) = stem(S) and every branch through U determines the same real r,
so that U 
 ṙ = ř.

The decisive points for the arguments of the last paragraph were that
Namba forcing satisfies a version of the fusion lemma and that (under CH)
the ideal of bounded subsets of ω2 is (2ω)+-complete. Motivated by these
ideas Shelah formulated a technical condition on forcing posets known as the
S-condition, where S is some set of regular cardinals; this is an abstract form
of fusion, saying very roughly that a tree of conditions which has cofinally
many λ-branching points for each λ ∈ S can be fused. Shelah also showed
that under the right circumstances an RCS iteration of S-condition forcing
does not add reals. The variant of Namba forcing in which conditions are
subtrees of <ωω2 such that cofinally many points have ω2 successors satisfies
the S-condition for S = {ω2}.

An important ingredient in the proof we are describing that NSω2 can
be precipitous is a variant Nm′ of Namba forcing. Conditions in Nm′ are
subtrees T of <ωω3, such that for i ∈ {2, 3} there are cofinally many points
t ∈ T with {α : t_α ∈ T} an unbounded subset of ωi.

The salient facts about Nm′ are encapsulated in the following result. The
first fact in this list is quite hard, but the remaining ones follow easily.

18.7 Lemma. Let CH hold. Then

1. Nm′ satisfies Shelah’s S-condition for S = {ω2, ω3}, in particular it
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adds no reals (and so preserves ω1).

2. Nm′ adds cofinal ω-sequences in ωV
2 and ωV

3 .

3. In the generic extension ωV
3 can be written as the union of ω many sets

which each lie in V and have V -cardinality ω1.

4. Assuming that 2ω2 = ω3 in V , in the generic extension by Nm′ there is
an ω-sequence 〈En〉 such that

(a) En ∈ V and V |= “En is a club subset of ω2” for each n < ω.

(b) For every E ∈ V such that V |= “E is a club subset of ω2” there
is an integer n such that En ⊆ E.

5. Assuming that 2ω2 = ω3 in V , if R is any forcing poset of size ω2 which
adds no ω1-sequences then forcing with Nm′ adds a generic filter for
the poset R.

For use later we note that Gitik and Shelah defined a generalised version
of the S-condition known as the I-condition, where I is a family of ideals on
some set S of regular cardinals. The I-condition is just like the S-condition
except that the branching in the fusion trees now has to be positive cofi-
nally often with respect to every ideal in I. Gitik and Shelah extended the
iteration theorems for RCS iteration which we mentioned above to cover the
I-condition, subject to additional technical conditions.

18.5. The Preparation Iteration

We will start by forcing with an RCS iteration Pκ. Among the important
features of this forcing poset will be that

1. Pκ adds no reals.

2. For every inaccessible α ≤ κ

(a) Pα is isomorphic to the direct limit of 〈Pβ : β < α}.
(b) Pα ⊆ Vα.

(c) Pα is α-c.c.

(d) Pα collapses α to become ω
V [Gα]
2 .

(e) After forcing with Pα+1, α is an ordinal of cardinality ω1, which
has cofinality ω for α /∈ B and cofinality ω1 for α ∈ B.

(f) For α ∈ B, V [Gα] and V [Gα+1] have the same ω-sequences of
ordinals.

18.8 Remark. It follows from the properties of Pκ we just listed that

1. All bounded subsets of κ in V [Gκ] appear in V [Gβ ] for some β < κ.
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2. All elements of ωα which are in V [Gκ] already appear in V [Gα+1], and
if α ∈ B then such ω-sequences are actually in V [Gα] .

As usual it suffices to define the poset which is used at each stage i of the
iteration.

• Case 1: If i is not inaccessible we force with Col(ω1, 2ω1)V [Gi].

• Case 2: If i is inaccessible and i /∈ B then we force with (Nm′)V [Gi]

(where we note that in V [Gi] we will have i = ω2 and i+ = ω3).

• Case 3: If i is inaccessible and i ∈ B then we force with P∗[Wi] defined
as follows: conditions are pairs (c, A) such that c is a countable closed
subset of Bc ∩ i consisting of V -inaccessibles, A ⊆ Bc ∩ i with A ∈ Wi,
and for every β ∈ lim(c) the set c∩β meets every club subset of β lying
in the model V [Gβ ]. The condition (c′, A′) extends (c, A) if and only if
c′ end-extends c, A′ ⊆ A and c′ − c ⊆ A.

18.9 Remark. Let i fall under case 3, let g be a V [Gi]-generic subset of
P∗[Wi] and let e =

⋃
{c : ∃A (c, A) ∈ g}. Then e is a club subset of i with

order type ω1, e is eventually contained in every element of Wi, and every
element of e falls under case 2.

18.10 Remark. The definition of P∗[Wi] can be simplified by the observation
that (by the β-c.c.) every club subset of β in V [Gβ ] contains a club subset
of β in V .

A key technical point (which we are glossing over here) is that the poset
P∗[Wi] satisfies a suitable version of Gitik and Shelah’s I-condition [28]. In
fact the argument we are describing was one of the main motivations for the
development of the I-condition. Once it is has been checked that Nm′ has
the S-condition and P∗[Wi] satisfies the I-condition for suitable S and I, an
appeal to standard facts about RCS iterations lets us conclude that Pκ has
the properties listed above.

18.11 Lemma. If i ∈ B then forcing with P∗[Wi] adds no ω-sequences of
ordinals to V [Gi].

Sketch of proof. Take a Pi- name for a sequence 〈Dn : n < ω〉 ∈ V [Gi] of
dense open subsets of P∗[Wi]. Working in V we fix an elementary chain
of models Mβ for β ∈ i such that Mβ ≺ (Hθ, . . .), M0 contains everything
relevant and Mβ ∩ i ∈ i. Now we choose an inaccessible β /∈ B such that
Mβ ∩ i = β and β ∈ A for every A ∈ Mβ ∩ Wi. Since Pβ is β-c.c. and
Pβ ⊆ Mβ , routine arguments as in the theory of proper forcing show that
Mβ [Gβ ] ≺ Hθ[Gκ] and Mβ [Gβ ] ∩ V = Mβ .

As we observed already β must fall under case 2 in the definition of the
preparation iteration Pκ, so that by Lemma 18.7 there is in V [Gi] an ω-
sequence 〈Em : m < ω〉 which “diagonalises” the club subsets of β lying



18. Precipitous Ideals II 73

in V [Gβ ]. We may now construct a sequence 〈(cn, An) : n < ω〉 of condi-
tions in P∗[Wi] ∩Mβ [Gβ ] such that c2n+1 ∈ Dn and max(c2n+2) ∈ En. Let
d =def

⋃
n cn ∪ {β} and A∗ =

⋂
(Mβ ∩ Wi), then (d, A∗) is a condition in

P∗[Wi] which lies in the intersection of the Dn. a

18.6. A Warmup for the Main Iteration

Throughout the discussion that follows we are working in V [Gκ], in particular
κ = ω2 and κ+ = ω3. We will eventually describe an iteration of length κ+

in which we shoot club sets through subsets of κ without adding bounded
subsets of κ. Before we do that, for purposes of motivation we will describe
a much simpler three step iteration R0 ∗ Ṙ1 ∗ Ṙ2 of club-shooting forcing, and
sketch proofs of its salient properties which contain most of the ideas needed
for the full iteration.

To describe R0 we fix sets of inaccessibles X ∈ U0 and Y ∈ U1 such that
X ⊆ Bc and Y ⊆ B. Let A = X ∪ Y and define R0 = CU(κ, A), the poset of
closed and bounded subsets of A ordered by end-extension.

18.12 Lemma. Forcing with R0 over V [Gκ] adds no ω1-sequences of ordi-
nals.

Proof. Working in V , let T = {β ∈ Y : X ∩ β ∈ Wβ}. Then T ∈ U1, because
X ∈ U0 and U0 is represented by 〈Wi : i ∈ B〉 in Ult(V,U1). In particular
T is stationary in κ. The poset Pκ is κ-c.c. and so T is stationary in V [Gκ].
For each β ∈ T , the preparation forcing added a closed set of order type ω1

which is contained in X ∩ β, and we are done by Lemma 18.6. a

One of the key ideas in Gitik’s arguments is that of a “local master con-
dition”. We give a more precise formulation in a moment, but the rough
idea is to look at conditions which induce generic filters over a submodel of
the universe for subposets of a forcing poset. The idea is similar to that
of a strongly generic condition in proper forcing (see Remark 24.5) but the
relevant submodels here are the classes V [Gβ ] for β < κ. We will construct
our iterations so that there are many local master conditions; as we see at
the end of this section, this is vital when it comes to lifting the elementary
embeddings j0 and j1 in the required way.

The set T defined in the proof of Lemma 18.12 is stationary, so by the
usual reflection arguments the set of points where T reflects is a measure one
set for any normal measure. We let A′ = X ′ ∪ Y ′, where

X ′ = {β ∈ X : T ∩ β is stationary in β},

Y ′ = {β ∈ Y : T ∩ β is stationary in β}.
For β < κ we define R0,β to be the set of d ∈ R0 such that max(d) < β and
d ∈ V [Gβ ]. It is easy to see that R0 =

⋃
β<κ R0,β , and that

R0,γ =
⋃

β<γ

R0,β = R0 ∩ Vγ [Gγ ]
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when γ is V -inaccessible.

18.13 Remark. By the usual conventions, for λ an uncountable regular
cardinal and X a set with |X| = λ, a filtration of X is an increasing and
continuous sequence 〈Xi : i < λ〉 such that Xi ⊆ X, X =

⋃
i Xi, and

|Xi| < λ. The key property is that given filtrations Xi, X
′
i we have Xj = X ′j

for a club set of j.
Technically the sequence of posets R0,β is not a filtration of R0 because it

is only continuous at V -inaccessible points. Until the end of this section we
will abuse notation and refer to such sequences as filtrations.

A local version of the argument of Lemma 18.12 shows immediately that

18.14 Lemma. For every β ∈ A′, forcing with R0,β over V [Gβ ] adds no
ω1-sequences of ordinals.

The next lemma can be seen as a more refined version of this result. Let
β ∈ A′. We will say that c ∈ R0 is a β-master condition for R0 if max(c) = β,
and {c ∩ (α + 1) : α ∈ β ∩ lim(c)} is a V [Gβ ]-generic subset of R0,β .

18.15 Lemma. For every β ∈ A′ and every d ∈ R0,β there is a β-master
condition c ≤ d with c ∈ V [Gβ+2].

Proof. In V [Gβ ] we have β = ω2 and (β+)V = ω3. By the previous lemma,
R0,β is (ω1,∞)-distributive in V [Gβ ]. We distinguish the cases β ∈ X ′ and
β ∈ Y ′.

β ∈ X ′: At stage β in the preparation forcing we forced with Nm′. So we
are done by an appeal to clause 5 of Lemma 18.7, and in fact we can build a
suitable c in V [Gβ+1].

β ∈ Y ′: Again R0,β is (ω1,∞)-distributive in V [Gβ ]. In V [Gβ+2] we have
cf(β) = cf(β+) = ω1; so if D is the set of dense open subsets of R0,β which lie
in V [Gβ ], working in V [Gβ+2] we may write D =

⋃
i<ω1

Di where Di ∈ V [Gβ ]
and V [Gβ ] |= |Di| = ω1.

We fix D ∈ V [Gβ+2] such that D is a club subset of β of order type ω1

and D ⊆ X ∩ β. Now we build a chain of conditions ci ∈ R0,β such that
max(ci) ∈ D and ci+1 ∈

⋂
Di for all i. Since V [Gβ+2] and V [Gβ ] have the

same ωβ, there is no problem at limit stages. As usual we may now set
c =

⋃
i ci ∪ {β} to finish. a

We now define R1. Let E be the generic club subset of κ added by R0.
Then R1 is the set of those closed bounded sets d such that d ⊆ E ∩A′, and
E ∩ (β + 1) is a β-master condition for every β ∈ d.

18.16 Remark. We remind the reader of the discussion of the “flat condition
trick” in Remark 17.2. We will be using that trick heavily in what follows.
In particular when we get to the main construction in Section 18.7 we will
just define the set of flat conditions and leave all the details to the reader.
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We define a suitable concept of flatness for conditions in the two-step
iteration R =def R0 ∗ Ṙ1. The flat conditions are pairs (c, ď) where c ∈ R0,
c 
 ď ∈ R1 and max(c) = max(d). We define Rγ = R∩Vγ [Gγ ] for inaccessible
γ < κ.

18.17 Lemma. Forcing with R over V [Gκ] adds no ω1-sequences of ordinals,
and the set of flat conditions is dense in R.

Proof. Working in V we fix a Pκ-name Ḋ for an ω1-sequence of dense subsets
of R, where we may as well assume that Ḋ ⊆ Vκ. By routine arguments there
is a club set F ⊆ κ in V such that for every inaccessible γ ∈ F , Ḋ ∩ Vγ is a
Pγ-name for a sequence of dense sets in Rγ .

Now we choose γ ∈ Y ′ such that F ∩X ′∩γ ∈ Wγ . By the definition of the
preparation forcing there is a club set e ⊆ γ in V [Gγ+1] such that ot(e) = ω1,
e ⊆ F ∩X ′, and for every β ∈ lim(e) the set e∩ β meets every club subset of
β lying in V [Gβ ].

We will now work in V [Gκ]. Let r be an arbitrary condition in R; we will
show that r can be extended to a flat condition which lies in the intersection
of the dense sets Di for i < ω1, establishing both of our claims about R. We
will build a decreasing sequence of conditions (ci, ḋi) for i ≤ ω1, such that

1. r = (c0, ḋ0).

2. For every i < λ,

(a) (ci, ḋi) ∈ Rγ

(b) The condition ci+1 determines ḋi, that is ci+1 
 ḋi = ďi for some
di ∈ V [Gκ].

(c) (ci+1, ḋi+1) ∈ Di.

(d) The condition ci+1 forces that max(ḋi+1) > max(ci).

(e) The ordinal βi =def max(ci) lies in the set e, and ci is a βi-master
condition.

3. The sequence 〈βi : i ≤ ω1〉 is increasing and continuous.

4. For every limit λ ≤ ω1, (cλ, ḋλ) is a flat condition.

The successor steps in this construction are easy by an appeal to Lemmas
18.14 and 18.15, and the fact we reflected the density of the dense sets down
to each βj .

The subtle point is that for a limit ordinal λ ≤ ω1 we are safe to set
βλ = supi<λ βi, cλ =

⋃
i<λ ci ∪ {βλ} and ḋλ equal to the canonical name for

dλ =
⋃

i<λ di ∪ {βλ}. The issue is to check that cλ is a βλ-master condition,
so we set β = βλ and fix a Pβ name Z ⊆ Vβ for a dense subset of R0,β . We
then find a club set CZ ⊆ β such that if α ∈ CZ is inaccessible then Z ∩ Vα

names a dense subset of R0,α. Now the key point is that β ∈ lim(e) so e ∩ β



76 Cummings / Iterated Forcing & Ele. Embeddings

meets CZ , and we have i < λ such that βi ∈ CZ . Let α = βi, then we are
done since ci is an α-master condition and it generates a filter which meets
the dense set named by Z ∩R0,α (which is an initial segment of the dense set
named by Z itself). a

We may now define the notion of a β-master condition for R and prove ana-
logues of Lemmas 18.15 and 18.17. To be a bit more explicit, we say that (c, d)
is a β-master condition for R if and only if it is flat, max(c) = max(d) = β,
and {(c ∩ (α + 1), d ∩ (α + 1)) : α ∈ d} is Rβ-generic over V [Gβ ]. We de-
fine T ′, X ′′, Y ′′, A′′ from X ′ and Y ′ in just the same way that T,X ′, Y ′, A′

were defined from X and Y . Then the analogue of Lemma 18.15 says that if
β ∈ A′′ any condition in Rβ extends to a β-master condition, and there is a
similar generalisation of Lemma 18.17.

We now sketch the main ideas in the argument that we can make the
restriction of NSω2 to Cof(ω) precipitous. Similar arguments apply to the
restriction to Cof(ω1).

Applying the elementary embedding j0 to the result of Lemma 18.15, we
obtain the result that every condition in R0 can be extended in M0 to a κ-
master condition in j0(R0). Implicitly this defines an embedding of Pκ ∗ R0

into j0(Pκ), and a strong master condition suitable for lifting the elementary
embedding j0 to the extension by Pκ ∗R0. A similar argument applies to the
iteration R0 ∗ R1.

We now return to a point which we already mentioned in subsection 18.3,
namely that can achieve the same kind of effect as in the construction of
subsection 17.2 by performing an iteration where every step is either like R0

or like R1. To fix ideas let H0 be R0-generic over V [Gκ], and let a ∈ V [Gκ∗H0]
be in the master condition ideal for j0. Explicitly this means that it is forced
that κ /∈ j+

0 (a) where j+
0 is the lifting of j0 onto V [Gκ ∗H0] described in the

preceding paragraph. We will show how to add an ω-club set disjoint from
a.

Let ȧ be a Pκ ∗ Ṙ0-name for a and let (p, q) ∈ Gκ ∗ H0 force that ȧ is
in the master condition ideal. That is to say, (p, q) forces that “it is forced
that κ /∈ j+

0 (a)”. Analysing the lifting construction and viewing p now as
a condition in j0(Pκ), p forces over M0 that for every κ-master condition
Q ≤ j0(q), Q forces that κ /∈ j0(ȧ).

Now let C be the set of α < κ such that

1. q ∈ R0,α.

2. p forces (over V for the forcing poset Pκ) that for every Q ≤ q which
is an α-master condition for R0, Q forces (over V [Gκ] for the forcing
poset R0) that α /∈ ȧ.

By  Loś’s theorem we see that C ∈ U0.
Define R2 to be similar to R0, adding a club contained in C ∪D for some

D ∈ U1. One can do an analysis of R0 ∗ R1 ∗ R2 which is similar to the
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analyses of R0 and R0 ∗R1 given above. Let Ei be the club set added by Ri.
Then

• By the construction of R1, E0 ∩ (α + 1) is an α-master condition for
every α ∈ E1.

• By the construction of R2, for every α ∈ E2 ∩ Cof(ω) we have α ∈ C.

• So for every α ∈ E1 ∩ E2 ∩ Cof(ω), it follows from the definition of C
that α /∈ a.

We have argued that in the extension by R0 ∗ R1 ∗ R2 there is an ω-club
set disjoint from a. In the next subsection we will show how to iterate and
achieve the same effect for every set which appears in some master condition
ideal during the course of the iteration.

18.7. The Main Iteration

Recall from the last section that we defined R0 from a set A = X∪Y and then
R1 from a set A′ ⊆ A, where β ∈ A′ if β ∈ A and there are stationarily many
γ < β such that X ∩γ ∈ Wγ . The poset R0 shot a club set E through A, and
the poset R1 shot a club set through the set of points β ∈ E ∩ A′ such that
E ∩ β was R0,β-generic over V [Gβ ]. The main iteration, which we will only
describe in outline, can be viewed as iterating this kind of construction many
times for every possible A simultaneously. The main difficulty in defining
the iteration is that when we have iterated ν times and have obtained an
iteration Qν , we need to define a suitable notion of β-master condition for
Qν ; this requires choosing a filtration of Qν , and the filtrations for different
values of ν must fit together nicely.

The main iteration is defined from some parameters 〈Aν , iν , Cν : ν < κ+〉,
which are chosen in V . They must satisfy a long list of technical conditions,
most of which we are omitting. In particular

1. Aν is the union of sets of inaccessibles Xν ⊆ Bc and Yν ⊆ B, with
Xν ∈ U0 and Yν ∈ U1.

2. Every set of inaccessibles X ⊆ Bc with X ∈ U0 is enumerated as Xν

for some successor ν, and similarly every set of inaccessibles Y ⊆ B
with Y ∈ U1 is enumerated as Yν for some successor ν.

3. iν is a surjection from κ to ν, which is also injective for ν ≥ κ. Note
that for any normal measure on κ, the map which takes β < κ to the
order-type of iν“β represents ν in the ultrapower.

4. Cν is club in κ.

5. If κ ≤ ν1 < ν2, β ∈ Cν2 and ν1 ∈ iν2“β, then β ∈ Cν1 .
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We define Xν,β = iν“β for β < κ, so that the Xν,β ’s form a filtration of ν.
We define by recursion posets Qν for ν < κ+, and for each Qν also a

filtration in which Qν is written as the union of subsets Qν,β for β < κ.

18.18 Remark. Once again the remarks about the “flat condition trick”
in Remark 17.2 are somewhat applicable. We are defining a sequence of
posets, whose conditions are comprised of closed bounded sets from the
ground model, and claiming that they can be considered as an iteration.
However in this instance it would be hard to write down a genuine iteration
and then identify our conditions as a dense subset. To give a complete ac-
count of the proof we would have to check that the sequence of posets Qν

can be considered as an iteration, but this is only one of many details that
we are omitting.

Conditions in Qν are sequences of the form q = 〈qα : α ∈ Xν,β〉 where
(omitting one condition for the moment)

I. β ∈ Cν (we will denote this ordinal β by βq in what follows).

II. For successor α in the support of q, qα ∈ CU(κ, Aα).

III. For limit α in the support of q, qα ∈ CU(κ, Aα ∩ Cα).

IV. For limit α in the support of q, for every η ∈ qα

(a) η ≤ βq.

(b) Xα,η ⊆ Xν,βq
.

(c) η ∈ qτ for every τ ∈ Xα,η.

To qualify as a member of Qν a sequence q as above must satisfy a fifth
property (property V.), whose description we defer until we have made a few
definitions.

Once we have defined Qν , we define Qν,β for β < κ to be the set of those
p ∈ Qν such that

1. p ∈ V [Gβ ].

2. βp < β.

3. For every τ in the support Xν,βp of p, pτ is bounded in β.

If q ∈ Qν , α is a limit ordinal in the support Xν,βq
of q and β ∈ qα then

we define q�(α, β) = 〈qτ ∩ (β + 1) : τ ∈ Xα,β〉. Notice that by the conditions
we imposed on q we have that the support Xα,β of q�(α, β) is contained in
the support Xν,βq of q; also β ∈ qτ for all τ ∈ Xα,β .

The intuition here is that q�(α, β) is of the right general shape to be a β-
master condition for Qα. To be a bit more formal we say that r is a β-master
condition for Qα if
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1. The support of r is Xα,β .

2. For every τ ∈ Xα,β , β = max(rτ ).

3. The set of conditions p ∈ Qα�β such that pτ is an initial segment of
rτ ∩ β for all τ is a V [Gβ ]-generic filter on Qα�β.

Now we can complete the description of Qν . Intuitively the following
condition says that at limit stages we are shooting clubs through certain sets
of “generic points”.

V. For every limit α in the support Xν,βq
of q and every β ∈ qα, q�(α, β)

is a β-master condition for Qα.

If p, q ∈ Qν then p ≤ν q iff βp ≥ βq and pα end-extends qα for all α ∈ Xν,βq .
The key lemmas are proved by similar means to those used in the last

section.

18.19 Lemma. For ν < µ < κ+, Qν is a complete subordering of Qµ.
Defining Qκ+ =

⋃
ν Qν , Qκ+ has the κ+-c.c.

The following lemma is the technical heart of the whole construction. The
proof (which we omit) is by a very intricate double induction on the pairs
(µ, β) with β ∈ Aµ ∩ Cµ, ordered lexicographically.

18.20 Lemma. If ν is limit, α ∈ Aν ∩ Cν , p ∈ Qν,α then there exists a
condition q = 〈qτ : τ ∈ Xν,α〉 ≤ν p in V [Gα+2] such that q is an α-master
condition for Qν .

The following is an easy corollary:

18.21 Lemma. Let ν < κ+ be limit and let α ∈ Aν ∩ Cν . Forcing over
V [Gα] with Qν,α adds no ω1-sequence of ordinals.

Let ji : V −→ M be the ultrapower by the normal measure Ui, and observe
that since V |= κM ⊆ M and Pκ, V [Gκ] |= κMi[Gκ] ⊆ Mi[Gκ]. Observe also
that by normality κ ∈ j(Aν ∩ Cν) for all limit ν < κ+. Accordingly we see
that

18.22 Lemma. For every limit ν < κ+, in Mi[Gκ+1] there is a condition
q ∈ Qj(ν) such that q = 〈qτ : τ ∈ j“ν〉, q induces a j(Q)ν,κ-generic filter over
V [Gκ], and max(qτ ) = κ for every τ ∈ j“ν.

Each condition in Qν is an object of size less than κ. It follows easily that

18.23 Lemma. For every limit ν < κ+ and every α ∈ Aν ∩ Cν , there is an
isomorphism between Qν,α and j(Q)ν,α in Mi[Gκ].

18.24 Lemma. There exists an isomorphism between Qν and j(Q)ν,κ in
Mi[Gκ].

Putting these various pieces of information together, we get

18.25 Lemma. For every limit ν < κ+, there is a Qν-generic filter over
V [Gκ]in Mi[Gκ+1], which is induced by a condition as in Lemma 18.22.
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18.8. Precipitousness of the Non-Stationary Ideal

We are now in precisely the situation of Lemma 17.4, so we have produced two
precipitous ideals I0 and I1, where Ia concentrates on points of cofinality ωa.
It remains to be seen that these are in fact restrictions of the non-stationary
ideal. We will show that the ideal I0 induced by the construction with j0
is the ω-nonstationary ideal, the argument for I1 is exactly the same. We
worked through a simple case of the argument at the end of Section 18.6, the
idea here is very similar.

Let H be generic over V [Gκ] for Qκ+ . We work in V [Gκ ∗H]. We denote
by H�ν the Qν-generic object induced by H. Let tj be the club set added
by H at stage j.

Since I0 is a normal ideal concentrating on points of cofinality ω, I0 must
contain the ω-nonstationary ideal. The other direction is trickier, since we
did not explicitly shoot ω-club sets through every I0-large set.

18.26 Claim. I0 is contained in the ω-nonstationary ideal.

Proof. Suppose that a is in I0. Unwrapping the definition, this means that
at some stage ν we have that a ∈ V [Gκ ∗Hν ] and it is forced that κ /∈ j0,ν(a)
where j0,ν is the lifting of j0 to V [Gκ ∗Hν ].

We now fix ȧ a Pκ ∗Qν-name name for a and a condition (p, q) ∈ Gκ ∗Hν

forcing (over M0 for Pκ ∗ Qν) that “it is forced (over M0[Ġκ][Ḣν ] by the
forcing poset (j0,ν(Pκ)/Ġκ ∗ Ḣν) ∗ j0,ν(Qν)/ṁν), where mν is the master
condition) that κ /∈ j0,ν(ȧ)”. Regarding p as a condition in j0(Pκ), p forces
(over M0 for j0(Pκ)) that for every κ-master condition Q ≤ j0(q) for j0(Q)ν ,
Q forces (over M0[Ġj0(κ)] for j0(Q)ν) that κ /∈ j0(ȧ).

Now we apply  Loś’s theorem to see that R ∈ U0, where R is the set of α
such that q ∈ Qν,α and p forces (over V for Pκ) that for every Q ≤ q with Q

an α-master condition for Qν , Q forces (over V [Ġκ] for Qν) that α /∈ ȧ.
Let η > ν be some limit stage. The construction of the forcing poset

implies that for all sufficiently large α ∈ tη, there is a condition Q ≤ q in H
which is an α-master condition for Qν . So for all sufficiently large α ∈ tη∩R,
α /∈ a.

In the construction we enumerated R as Xη̄ for some η̄. By definition
Aη̄ = Xη̄ ∪ Yη̄, and in V [Gκ] the preparation forcing arranged that all points
of Xη̄ have cofinality ω while all points of Yη̄ have cofinality ω1. At stage η̄
in the main iteration we added a club set tη̄ ⊆ Aη̄, so tη̄ ∩ Cof(ω) ⊆ R.

Combining these results, all sufficiently large α ∈ tη ∩ tη̄ ∩ Cof(ω) fail to
be in a. We conclude that a is ω-nonstationary in V [Gκ ∗H], as required. a

18.9. Successors of Larger Cardinals

Gitik [25, 26] has also obtained rather similar equiconsistency results for
regular cardinals κ > ω2. The idea is broadly the same, but the preparation
forcing is an iteration of Prikry-style forcing with Easton supports followed
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by an iteration of Cohen forcing (for κ inaccessible) or a Lévy collapse (for
κ a successor cardinal). The main iteration is essentially the same.

We content ourselves with quoting some of the main results. When stating
the lower bounds we assume throughout that there is no inner model with a
cardinal λ such that o(λ) = λ++, and we let K be the Mitchell core model
for sequences of measures and F its measure sequence. Let ~U be a coherent
sequence of measures. An ordinal α is an (ω, δ) repeat point over κ if and
only if cf(α) = ω and for every A ∈

⋂
{U(κ, ζ) : α ≤ ζ < α + δ} there are

unboundedly many γ < α such that A ∈
⋂
{U(κ, ζ ′) : γ ≤ ζ ′ < γ + δ}.

The result for successors of regular cardinals greater than ω1 is exact.

18.27 Theorem (Gitik [26]). Let λ = cf(λ) < κ and suppose that GCH
holds and there is a measure sequence with an (ω, λ + 1)-repeat point over κ.
Then there is a generic extension in which GCH holds, cardinals up to and
including λ are preserved, κ = λ+ and NSκ is precipitous.

18.28 Theorem (Gitik [25]). Suppose that µ = cf(µ) > ω1, GCH holds and
NSκ is precipitous where κ = µ+. Then in K there is an (ω, µ + 1)-repeat
point over κ.

Interestingly enough, the proof uses only the precipitousness of the re-
strictions of NSκ to cofinality ω and cofinality µ. When κ is inaccessible the
strength of “NSκ is inaccessible” is bounded from above by an (ω, κ + 1)-
repeat and from below by an (ω, <κ)-repeat.

19. More on Iterated Club Shooting

In this section we give sketches of two more theorems obtained by iterated
club shooting. The first theorem is due to Jech and Woodin [41] and shows
that it is consistent for NSκ�Reg to be a κ+-saturated ideal. The second
is due to Magidor [55] and shows that it is consistent for every stationary
subset of ω2 ∩Cof(ω) to reflect at almost every point of ω2 ∩Cof(ω1). Apart
from their intrinsic interest we have included them because they illustrate
some new ideas: the theorem by Jech and Woodin involves embedding one
iteration in another “universal” iteration, while the theorem by Magidor gives
another example of shooting clubs to make a natural filter (defined in this
case via stationary reflection) become the club filter.

As some motivation for Theorem 19.1 we sketch a proof that if κ is weakly
compact then NSκ�Reg is not κ+-saturated. We start by recalling a classical
result of Solovay: if κ is a regular uncountable cardinal and S ⊆ κ is station-
ary then T = {α ∈ S : S ∩ α is non-stationary in α} is stationary (given a
club C look at the first place where lim(C) meets S). In particular T ∩ α is
non-stationary in α for every α ∈ T , in what follows we refer to stationary
sets which reflect at no point of themselves as thin.

We now consider an ordering on stationary subsets of inaccessible cardinals
investigated by Jech [38]. Given an inaccessible cardinal κ and stationary
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subsets S, T ⊆ κ we write S < T when S ∩ α is stationary for almost every
α ∈ T (modulo the club filter). It is easy to check that < is well-founded,
and by the result of Solovay from the last paragraph < is irreflexive. If S < T
with S and T both thin, then clearly S ∩ T is non-stationary.

Assume now that κ is weakly compact. We will produce a <-increasing
sequence 〈Sα : α < κ+〉 of thin stationary sets of regular cardinals. Let
S0 = κ ∩ Reg. At stage α fix a surjection f from κ to α, and use Π1

1-
indescribability to show that

S = {δ : ∀γ < δ Sf(γ) ∩ δ is stationary in δ}

is stationary. Then choose Sα to be a thin stationary subset of this set S. If
β < α then Sβ ∩ δ is stationary for all large δ ∈ Sα, so Sβ < Sα. Since the
Sα for α < κ+ have pairwise non-stationary intersections, NSκ�Reg is not
κ+-saturated.

The proof we just gave shows essentially that if κ is κ+-Mahlo then
NSκ�Reg is not κ+-saturated. Jech and Woodin showed [41] that for any
α < κ+ we may have κ which is α-Mahlo with NSκ�Reg κ+-saturated, start-
ing from a measurable cardinal of Mitchell order α. This is known [38] to be
optimal.

19.1 Theorem. Let κ be measurable and let GCH hold. Then in a suitable
generic extension NSκ�Reg is κ+-saturated.

Proof. Let δ be inaccessible and let S ⊆ Reg ∩ δ. We define a forcing poset
CUReg(δ, S) = CU(δ, (Sing∩δ)∪S); to be more explicit conditions are closed
bounded subsets c of δ such that c ∩ Reg ⊆ S, ordered by end-extension.

It is easy to see that for every γ < δ the set of conditions c with max(c) > γ
is dense and γ-closed, so that CUReg(δ, S) forces that almost every regular
cardinal is in S while adding no <δ-sequences.

We now describe a kind of “universal” iteration of this forcing. To be more
precise we define by recursion Qα for α ≤ δ+ and Qα-names Ṡα for α < δ+

so that

1. f ∈ Qα if and only if

(a) f is a partial function on α.

(b) dom(f) has size less than δ, and f(β) is a closed bounded subset
of δ for all β ∈ dom(f).

(c) For all α ∈ dom(f), f�α 
Qα f(α) ∩ Reg ⊆ Ṡα.

2. For conditions f, g ∈ Qα, f ≤ g if and only if dom(g) ⊆ dom(f) and
f(β) end-extends g(β) for all β ∈ dom(g).

3. (Universality) Every Qδ+ -name for a subset of δ is equivalent to Ṡα for
unboundedly many α < δ+.
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For every α, Qα is δ+-c.c by an easy ∆-system argument. Also for all γ and
α the set of f ∈ Qα such that max(f(β)) > γ for all β ∈ dom(f) is dense and
γ-closed. The GCH assumption and the δ+-c.c make it possible to satisfy
universality.

19.2 Remark. We are cheating slightly, in the sense that we should really
verify that Qα is equivalent to an iteration of club-shooting forcing. See the
remarks on the “flat condition trick” in Section 17.

19.3 Lemma. Let Q∗δ+ be built in a similar way from a sequence of names
Ṡ∗α satisfying clauses 1 and 2 above. Then there is a complete embedding of
Q∗δ+ into Qδ+ .

Sketch of proof. This is almost immediate if we use the flat conditions trick
to regard Qδ+ and Q∗δ+ as dense sets in iterations of club shooting forcing.
We may also proceed quite explicitly by constructing for each α a complete
embedding iα of Qα into Q∗βα

for a suitable α < δ+. At successor stages we
use iα to identify the Q∗α-name Ṡ∗α with a Qβα -name, use universality to find
γ > βα such that this name is Ṡγ , and then set βα+1 = γ + 1 and extend
to iα+1 : Q∗α+1 → Qγ+1 in the obvious way; at limits we just take a suitable
limit of the embeddings iα and check that everything works. a

We are now ready to build the model. We will do a reverse Easton iteration
of length κ + 1. For α < κ we let Q̇α = {0} unless α is inaccessible, in which
case we let Q̇α name some universal iteration as above for α.

We fix some normal measure U and let j : V −→ M be the associated
ultrapower map. Let Q̇ be the member of M represented by 〈Qα : α < κ〉.
Since κM [Gκ] ⊆ M [Gκ], it is routine to check that Q is a universal iteration
in V [Gκ]; we let Ṡj be the set which is used at stage j.

The last step Qκ in our iteration will be a certain sub-iteration of Q. The
idea is to build a submodel V [G ∗ g0] of V [G ∗ g] (where g is Q-generic) and
an embedding j which is defined in V [G ∗ g] and has domain V [G ∗ g0], in
such a way that if S ∈ V [G ∗ g0] then 
 κ ∈ j(S) if and only if S contains
a club. A slightly subtle point is that as the construction proceeds we can
anticipate in V [Gκ] which of the names Ṡi are naming sets S of this type,
and pick out the sub-iteration Qκ so that we shoot a club through each one.

By the usual arguments Pκ ∗ Q is an initial segment of j(Pκ). If Gκ ∗ g
is Pκ ∗ Q-generic then as usual we may build in V [Gκ ∗ g] a M [Gκ ∗ g]-
generic filter H for the factor iteration j(Pκ)/G ∗ g, and then extend to get
j : V [Gκ] −→ M [Gκ ∗ g ∗H].

Working in V [Gκ], we construct an increasing sequence 〈αi : i < κ+〉 of
ordinals, subiterations Q∗i of Q and names for conditions ri ∈ j(Q∗i ) as follows:

1. Q∗i is the subiteration of Q which adds a club subset Cj ⊆ κ with
Cj ∩ Reg ⊆ Sαj for each j < i.

2. ri is a j(Pκ)-name for a condition in j(Q∗i ) which is a strong master
condition for j and the Q∗i -generic object gi.
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3. αi is chosen least so that Sαi
is a Q∗i -name and


(j(Pκ)/(Pκ∗Q∗i ))∗(j(Q∗i )/ri) κ ∈ j(Sαi).

4. The domain of ri is j“i, and if 〈Ck : k < i〉 is the sequence of club sets
added by Q∗i then r(j(k)) = Ck ∪ {κ}.

The construction is very similar to that of Section 17.2 and we omit all details.
Let Qκ = Q∗κ+ and let g0 be Qκ-generic over V [Gκ]. By forcing over

V [Gκ ∗ g0] with Q/g0 we may obtain g which is Q-generic over V [G], and
working in V [G ∗ g] we may lift to get j : V [G] −→ M [G ∗ g ∗H] as above.
Using Magidor’s method from Section 13 and the sequence of partial strong
master conditions ri, we may build in V [G∗g] an M [G∗g∗H]-generic filter I
on j(Qκ) with j“g0 ⊆ I and then lift to get j : V [G∗ g0] −→ M [G∗ g ∗H ∗ I].

The construction guarantees that for any T ∈ V [G∗g0] with T ⊆ Reg∩κ, T
is non-stationary if and only if 
Q/g0 κ /∈ j(T ). Since Q/g0 has the κ+-c.c. it
follows by Lemma 14.5 that NS�Reg is κ+-saturated. a

We now sketch Magidor’s result that consistently every stationary subset
of ω2 ∩Cof(ω) reflects almost everywhere in ω2 ∩Cof(ω1). The construction
is quite similar to that for the precipitousness of NSω1 ; we use this as the
pretext for omitting many details.

19.4 Remark. Magidor used the optimal hypothesis of weak compactness;
to simplify the exposition we use a measurable cardinal.

19.5 Theorem. If κ is measurable, then in some generic extension κ = ω2

and for every S ⊆ ω2 ∩ Cof(ω) there is a club set C such that S ∩ α is
stationary for all α ∈ C ∩ Cof(ω1).

Proof. Let P = Col(ω1, <κ) and let j : V −→ M be the ultrapower map
arising from some normal measure U on κ. The idea of the proof is that after
forcing with P every stationary set reflects stationarily often, and we may
then shoot club sets to arrange the desired result. Of course new stationary
sets will arise as we iterate so some care is required.

Much as in Section 17.2 we will work in V [G] where G is P-generic over V ,
and define Q which has the effect of iterating club-shooting with supports of
size ω1. We will be constructing certain strong master conditions as we go,
whose existence will imply by Theorem 12.5 that no ω1-sequences of ordinals
are added to V [G] by Q. This is why we can set things up so that the
conditions in Q are just functions in V [G].

Explicitly in V [G] we define by recursion Qα and Qα-names Ṡα such that

1. Ṡα is a Qα-name for a stationary subset of ω2 ∩ Cof(ω).

2. f ∈ Qα if and only if

(a) f is a partial function on α with |dom(f)| ≤ ω1.
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(b) For all α ∈ dom(f), f(α) is a closed bounded subset of ω2 and
f�β forces that

f(β) ⊆ Cof(ω) ∪ {γ ∈ Cof(ω1) : Sβ ∩ γ is stationary in γ}

Clearly Qα is countably closed and an easy ∆-system argument shows that
it is κ+-c.c.

19.6 Remark. Once again we are cheating slightly in the definition of the
forcing by using only “flat” conditions. See the remarks on the “flat condition
trick” in Section 17.

Exactly as in Section 17.2 we will build embeddings iα of P ∗ Qα into
j(P), with the added wrinkle that we use Theorem 14.3 to ensure that the
quotient forcing for prolonging a P∗Qα-generic to a j(P)-generic is countably
closed. As we see soon this is crucial for the success of the master condition
argument.

At a stage α < κ+, if 〈Cβ : β < α〉 is the sequence of club sets added by
Qα, then we define rα as follows: dom(rα) = j“α, and rα(j(β)) = Cβ ∪ {κ}
for every β < α. We verify that rα is a strong master condition just as in
Section 17.2, the only sticky point is that since cf(κ) = ω1 after forcing with
j(P) we need to know that rβ forces that j(Sβ)∩κ is stationary. This is easy
because (by virtue of being a master condition) rβ forces that j(Sβ)∩κ = Sβ ,
and since we are in a countably closed extension of V [G ∗ gβ ] we see that the
stationarity of Sβ is preserved.

It is now easy to see that forcing with Qκ+ adds no ω1-sequences of ordinals
to V [G], so that κ is preserved. By the usual book-keeping we may arrange
that every Qκ+-name for a stationary subset of κ∩Cof(ω) appears as Sα for
some α < κ+. If H is Qκ+-generic over V [G] then V [G∗H] is as required. a

20. More on Collapses

We have seen many applications of the Lévy collapse. In this section we
discuss two situations where the Lévy collapse cannot be used, one involving
master conditions and the other involving absorbing “large” forcing posets
into a collapsing poset. We shall describe some more exotic collapsing posets
which can sometimes be used in these situations, namely the Silver collapse
and Kunen’s universal collapse. We then show how these can be applied by
sketching Kunen’s consistency proof [45] for an ω2-saturated ideal on ω1.

We have seen many situations where we are given P = Col(δ,<κ) and
an elementary embedding j with critical point κ, and wish to lift j to the
extension by P. Here there is no master condition issue because j�P = id and
P is just an initial segment of j(P).

But now consider the following situation: k : M −→ N has critical point
κ, P = Col(κ, <λ)M , G is P-generic over M and both G and k�λ are in
N . Certainly we may form in N a partial function Q =

⋃
k“G, where
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dom(Q) = κ × k“λ; but if λ ≥ k(κ) then Q has the wrong shape to be a
condition in k(P).

To fix this we consider a cardinal collapsing poset due to Silver, which was
first used by him in the consistency proof for Chang’s Conjecture.

20.1 Definition. Let κ be inaccessible and let δ = cf(δ) < κ. The Silver
collapse S(δ,<κ) is the set of those partial functions f on δ × κ such that
dom(f) = α×X for some α < δ and some X ∈ [κ]δ, and f(β, γ) < γ for all
β < α and γ ∈ X. The ordering is extension.

It is easy to see that S(δ,<κ) is δ-closed and κ-c.c.
Returning for a moment to the discussion preceding Definition 20.1, if we

let P = S(κ, <λ) where λ = k(κ) then it is possible to build a strong master
condition. We will use this shortly, but first we discuss another problem with
the Lévy collapse.

Suppose that P = Col(ω, <κ) and that B is a complete subalgebra of ro(P).
Then as we saw in Theorem 14.2 we can embed B ∗ Ċ into P when Ċ names
an algebra of size less than κ. However there is no guarantee that this is
possible when Ċ has size κ, even if C is forced to have the κ-c.c.

Kunen [45] showed that it is possible to construct a poset with stronger
universal properties. We sketch a version of his construction. Let κ be an
inaccessible cardinal, and let U be a function which returns for each complete
Boolean algebra B of size less than κ a B-name U(B) for a κ-Knaster poset of
size κ. We aim to build a κ-c.c. poset P of size κ such that for every complete
subalgebra B of ro(P) with size less than κ, the inclusion embedding of B into
ro(P) extends to a complete embedding of B ∗ ro(U(B)) into ro(P).

To construct the universal collapse we build a finite support κ-c.c. iterated
forcing poset Pκ of length and cardinality κ, where each step Pα is κ-c.c. with
cardinality κ. At stage α we choose by some book-keeping scheme some Bα

which is a complete subalgebra of ro(Pα) with |Bα| < κ. Given an Bα-
generic filter g we may form in V [g] the product Pα/g × U(Bα), which is
κ-c.c. by Theorem 5.12. Back in V we see that Bα ∗ (Pα/ġ × U(Bα)) is
κ-c.c. and embeds both Pα and Bα ∗ U(Bα), and choose Pα+1 accordingly.
With appropriate book-keeping we may arrange that every small subalgebra
of ro(Pκ) has appeared as Bα for some α, giving the desired universal property
for Pκ. Preservation of κ-c.c. is easy since we are iterating with finite support.

20.2 Remark. The construction of the universal collapse is an example of
“iteration with amalgamation”, a technique which is frequently used in forc-
ing constructions to build saturated ideals. Note that in the construction we
amalgamated Pα and U(Bα) over Bα. The point in applications will typically
be that we can absorb an iteration P ∗ Q̇ into j(P) in a context where P ∗ Q̇
is “large”.

20.3 Remark. Laver showed that is sometimes possible to build λ-closed
collapsing posets with similar universal properties. Naturally one needs to
be a little more careful about the chain condition.
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We are now ready to sketch Kunen’s consistency proof for an ω2-saturated
ideal on ω1. More details will be found in Foreman’s chapter in this Hand-
book.

20.4 Theorem. Let κ be a huge cardinal with target λ. Then in some generic
extension κ is ω1, λ = ω2 and there is an ω2-saturated ideal on ω1.

Proof. We fix an elementary embedding j : V −→ M such that crit(j) = κ,
j(κ) = λ, and λM ⊆ M . We start by constructing as above a κ-c.c. poset P
of size κ such that for every subalgebra B of ro(P) with |B| < κ, the inclusion
embedding extends to an embedding of B ∗ ro(S(ωV B

1 , <κ)). For convenience
we assume (as we clearly may) that P ⊆ Vκ.

It is easy to see that after forcing with P, κ is the new ω1. Let G be generic
for P, let Q = S(κ, <λ)V [G] and let H be Q-generic over V [G].

We will show that there is a λ-saturated ideal on κ in V [G ∗H]. Working
in M we fix an embedding of ro(P ∗ Q) into ro(j(P)) extending the identity
embedding of ro(P). Since V [G ∗H] |= λM [G ∗H] ⊆ M [G ∗H], we see that
j(P)/G ∗H is λ-c.c. in V [G ∗H]. Forcing with this poset over V [G ∗H], we
obtain an embedding j+ : V [G] −→ M [G∗H ∗I] in V [G∗H ∗I]. Since Q is a
Silver collapse, and H and j�λ are both in M , we may construct a strong mas-
ter condition r =

⋃
j“H ∈ j(Q) and force with j(Q)/r to obtain a compatible

generic object J and an embedding j++ : V [G ∗H] −→ M [G ∗H ∗ I ∗ J ].
Unfortunately this is not quite enough because the V [G ∗ H]-ultrafilter

U = {X ∈ P (κ) ∩ V [G ∗ H] : κ ∈ j++(X)} lives in the extension by
j(P)/G ∗ H ∗ j(Q)/r, which is not λ-c.c. in V [G ∗ H]. To fix this we note
that in V [G ∗ H ∗ I] the V [G ∗ H]-powerset of κ has size λ, and j+(Q) is
λ-closed; so we may build a decreasing sequence 〈ri : i < λ〉 with r0 = r
deciding whether κ ∈ j++(X) for all X ∈ P (κ) ∩ V [G ∗ H], and then let
U0 = {X : ∃i ri 
 κ ∈ j++(X)}. Then U0 is a V [G ∗ H]-ultrafilter which
lives in V [G ∗ H ∗ I], so that we may derive a λ-saturated ideal by Lemma
14.5. a

20.5 Remark. A Woodin cardinal is all that is required to get the consis-
tency of an ω2-saturated ideal on ω1. The argument given here was gen-
eralised by Laver to get saturated ideals on larger cardinals. Magidor [54]
showed that the kind of argument given here can be done from an almost
huge cardinal.

21. Limiting Results

In this section we sketch some results which put limits on the effects which
we can achieve in Reverse Easton constructions. We are not sure to whom
the following result should be attributed; it has a family resemblance to some
results by Kunen [45] on the question of whether an inaccessible cardinal λ
can carry a λ-saturated ideal.
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21.1 Theorem. If P × P is κ-c.c. and P forces that κ is measurable then κ
is measurable.

Proof. Clearly κ is inaccessible in V . Let U̇ name a normal measure and
suppose that κ is not measurable in V . If A is a potential member of U̇ then
it can be split into two disjoint potential members of U̇ , otherwise we could
read off a measure on κ in V . Using this we build a binary tree of height κ
with root node κ such that the levels form increasingly fine partitions of κ
into fewer than κ many pieces. At successor steps every node is partitioned
by its two immediate successors, and if a node is a potential member of U̇
then so are both of its immediate successors; at limit steps λ, every branch
through the binary tree of height λ which has been constructed so far is
continued by putting at level λ the intersection of the nodes on that branch.

Now let G be P-generic and realise U̇ as UG; then there is a unique branch
through the tree consisting of members of UG. Choosing for each A on the
branch a condition which forces the successor of A which is not in UG into
U̇ , we build an antichain of size κ in P, contradicting our assumption that
P× P has the κ-c.c. a

We now sketch some results of Hamkins [33]. The key technical result
is Theorem 21.3 which involves two notions of resemblance between inner
models of ZFC.

21.2 Definition. Let M ⊆ N with M and N inner models of ZFC. Let δ be
a regular uncountable cardinal in N . Then

1. δ-covering holds between M and N if and only if for every set A ⊆ On
such that A ∈ N and N |= |A| < δ, there exists a set B ⊆ On such that
B ∈ M , A ⊆ B and M |= |B| < δ.

2. δ-approximation holds between M and N if and only if for every A ⊆ On
with A ∈ N , if A∩a ∈ M for all a ∈ M with M |= |a| < δ, then A ∈ M .

21.3 Theorem. Let V and V̄ be inner models with V ⊆ V̄ . Let j : V̄ −→ M̄
be a definable elementary embedding with crit(j) = κ, and let M =

⋃
j“V so

that j�V is an elementary embedding from V to M .
If there is a cardinal δ < κ regular in V̄ such that V̄ |= δM̄ ⊆ M̄ , and the

δ-covering and δ-approximation properties hold between V and V̄ , then

1. M = M̄ ∩ V , in particular V |= δM ⊆ M .

2. j�A ∈ V for all A ∈ V .

Proof. Throughout the proof we work in V̄ . In particular all cardinalities are
computed in V̄ unless otherwise specified. By elementarity and the fact that
δ < κ, the δ-covering and δ-approximation properties hold between M and
M̄ .
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We claim that every set of ordinals A with |A| < δ is contained in a set of
ordinals B ∈ V ∩M such that |B| ≤ δ. To see this we build (starting with
A) an increasing and continuous chain of length δ consisting of sets of size
less than δ, with even successor elements in V and odd successor elements in
M . If B is the union then by the approximation property B ∈ V ∩M .

Next we claim that for every set of ordinals A with |A| < δ, A ∈ V if
and only if A ∈ M . To see this find a set B ∈ V ∩ M with A ⊆ B and
γ = ot(B) < δ+. Since γ < κ and κ is inaccessible in V , it follows from
Proposition 2.9 that P (γ) ∩M = P (γ) ∩ V .

Now we claim that M = M̄ ∩ V . Let A ∈ M where by Proposition 2.2
we may assume that A is a set of ordinals. Clearly A ∈ M̄ . Let a ∈ V with
|a| < δ. Applying the preceding claim a ∈ M , hence A ∩ a ∈ M , hence by
another application of the preceding claim A∩ a ∈ V . By the approximation
property A ∈ V . Conversely let A ∈ M̄ ∩ V be a set of ordinals; arguing just
as before A ∩ a ∈ M for all a ∈ M with |a| < δ, so that A ∩ a ∈ M .

To finish we show that j�A ∈ V for all sets of ordinals A ∈ V . By
approximation it will suffice to show that j�a ∈ V for all a ∈ V with a ⊆ A
and |a| < δ. Since ot(a) < κ we see that j“a = j(a) ∈ M ⊆ V , and since j�a
is the order-isomorphism between a and j“a we have j�a ∈ V . a

21.4 Corollary. Under the hypotheses of Theorem 21.3, if V̄ is a set-generic
extension of V then j�V is definable in V . It is also easy to see that if j
witnesses the λ-supercompactness or λ-strongness of κ in V̄ then j�V will do
the same in V .

Of course the interest of Theorem 21.3 hinges on there being some ex-
amples of extensions with the covering and approximation properties. The
following result [33] shows that many extensions by Reverse Easton iterations
have these properties.

21.5 Theorem. Let δ be a cardinal. Let P ∗ Q̇ be a forcing iteration where
|P| ≤ δ, P is non-trivial and P forces that Q̇ is (δ + 1)-strategically closed.
Then the δ+-covering and δ+-approximation properties hold between V and
the extension by P ∗ Q̇.

Proof. The covering is easy so we concentrate on the approximation. Let
G ∗H be a P ∗ Q̇-generic filter and let S : θ → 2 be such that S ∈ V [G ∗H]
and S�a ∈ V for all a ∈ V with |a| ≤ δ. By induction we may assume that
S�λ ∈ V for all λ < θ. Let Ṡ name S.

If cf(θ) ≤ δ then S ∈ V [G], so without loss of generality Ṡ is a P-name.
Consider the tree T of potential proper initial segments of Ṡ; it is easy to see
that there are at most δ many sequences t such that both t_0 and t_1 are
in T . So by specifying δ many bits in S we determine S, hence S ∈ V .

If cf(θ) > δ in V , we note that this remains true in V [G ∗ H]. So since
|G| ≤ δ, there is a condition p ∈ G such that for all i < θ there is a con-
dition q ∈ H so that (p, q) determines Ṡ�i. We may thus find a condition
(p, q̇0) ∈ G ∗H forcing that Ṡ /∈ V̌ and that p has this property; so easily for
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all i and all (p, q̇1) ≤ (p, q̇0) there is a condition (p, q̇2) ≤ (p, q̇1) determining
Ṡ�i.

Using the non-triviality of P we can find a function h ∈ V [G] \ V such
that h : β → 2 for some β ≤ δ, where (by choosing β to be minimal) we may
also assume that h�j ∈ V for all j < β. Using the strategic closure of Q̇, the
choice of p and the fact that Ṡ is forced to be new we build 〈q̇t : t ∈ <β2〉
and 〈β̇t : t ∈ <β2〉 such that

1. For each t, q̇t is a P-name for a condition in Q, and β̇t is a P-name for
an element of <θ2 ∩ V .

2. The sequences 〈q̇t : t ∈ <β2〉 and 〈β̇t : t ∈ <β2〉 lie in V .

3. It is forced by p that for any branch x of the tree <β2∩V , the sequence
〈qx�j : j < β〉 has a lower bound.

4. (p, qt_i) forces that β_
t i is an initial segment of S.

Now working in V [G] we choose a lower bound q for 〈qh�j : j < β〉. If we
force so that H contains q we obtain a situation in which h can be computed
from a proper initial segment of S, contradiction! a

As an example of these ideas in action we sketch an easy case of the
superdestructibility theorem of Hamkins [32]. A supercompact cardinal κ is
said to be Laver indestructible if it is supercompact in every extension by κ-
directed closed forcing; we show in Section 24 that any supercompact cardinal
can be made indestructible.

21.6 Corollary. Let κ be supercompact and let P = Add(ω, 1). Then κ is
not Laver indestructible after forcing with P.

Proof. Let g be P-generic, and let Q = Add(κ, 1)V [g]. Let G be Q-generic
over V [g ∗G]. we show that κ is not measurable in V [g ∗G].

Let V̄ = V [g∗G] and suppose that j : V̄ :−→ M̄ is the ultrapower by some
normal measure in V̄ . By Theorems 21.5 and 21.3 we have j�V : V −→ M
where M ⊆ V . Now easily M̄ = M [g ∗ j(G)], by the closure of ultrapowers
G ∈ M̄ , and by the closure of j(Q) we have G ∈ M [g]. This is impossible as
M ⊆ V and G /∈ V [g]. a

22. Termspace Forcing

In this section we introduce a very useful idea due to Laver, that of the
term forcing or termspace forcing. The idea is roughly that given a two step
iteration P ∗ Q̇ we can add by forcing over V a sort of “universal generic
object”, from which given any G which is P-generic over V we may compute
in a uniform way an H which is iG(Q̇)-generic over V [G].

Magidor [52] showed by iterated Prikry forcing that the least measurable
cardinal can be strongly compact. In unpublished work Magidor [51] gave an
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alternative proof, using term forcing and an Easton iteration of the forcing
from Example 6.5. We outline the proof here, a more detailed account is
given in a joint paper by Apter and the author [4] which further exploits
these ideas.

22.1 Definition. Let P be a notion of forcing and let Q̇ be a P-name for
a notion of forcing. Then A(P, Q̇) is the notion of forcing whose underlying
set is the set of canonical P-terms for members of Q̇, with the ordering being
given by

σ̇ ≤A(P,Q̇) τ̇ ⇐⇒ 
P σ̇ ≤Q̇ τ̇ .

22.2 Remark. Several notations for the termspace forcing are in use, for
example Q∗ and QP. We follow Foreman’s paper [19] in using A(P, Q̇), em-
phasising the importance of P.

The following proposition is the key to the applications of term forcing.

22.3 Proposition. Let G be P-generic over V and let H be A(P, Q̇)-generic
over V . Define I = {iG(τ̇) : τ̇ ∈ H}. Then I is an iG(Q̇)-generic filter over
V [G].

Proof. We begin by checking that I is a filter. If σ̇ and τ̇ are in H then there
is a term ρ̇ ∈ H such that 
P ρ̇ ≤ σ̇, τ̇ . It follows that iG(ρ̇) ≤ iG(σ̇), iG(τ̇)
so that I is a directed set.

If iG(σ̇) ≤ iG(τ̇) with σ̇ ∈ H then we fix p ∈ G such that p 
 σ̇ ≤ τ̇ . Let
ρ̇ be a name which is interpreted as τ̇ if p is in the generic filter and as the
trivial condition otherwise, so that p 
 ρ̇ = τ̇ and 
P σ̇ ≤ ρ̇. Then τ̇ ∈ H
and so iG(ρ̇) = iG(τ̇) ∈ I. It follows that I is upwards closed, and so is a
filter.

Finally let D = iG(Ḋ) where Ḋ is forced to be a dense subset of Q̇. If
E = {σ̇ : 
P σ̇ ∈ Ḋ} then by the maximum principle E is a dense subset
of A(P, Q̇). We find a term σ̇ ∈ E ∩H, and observe that iG(σ̇) ∈ D ∩ I. It
follows that I is iG(Q̇)-generic over V [G] as required. a

The next result is an easy application of the maximum principle.

22.4 Proposition. If it is forced by P that Q̇ is κ-strategically closed then
A(P, Q) is κ-strategically closed.

Foreman’s paper “More saturated ideals” [19] contains a wealth of other
structural results about A(P, Q̇). We quote some here.

22.5 Proposition. Let P be a poset and Q̇ a P-name for a poset.

1. If P is non-trivial and it is not forced that Q̇ is κ-c.c. then A(P, Q̇) is
not 2κ-c.c.

2. If κ is inaccessible, P is κ-c.c. and it is forced that Q is κ-c.c. then
A(P, Q̇) is κ-c.c.
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3. If 〈Pi, Q̇i〉 is a forcing iteration with supports in an ideal I, then the
limit of the iteration can be completely embedded in the product of the
termspace posets A(Pi, Q̇i) taken with supports in I.

We will now use term forcing to give a proof (due to Magidor) that the
least measurable cardinal can be strongly compact. The idea of the proof is to
shoot a non-reflecting stationary set through each measurable cardinal below
a supercompact cardinal κ, and then argue that the strong compactness of κ
is preserved and no new measurable cardinals are created.

To get an embedding witnessing strong compactness we use the following
easy result.

22.6 Proposition. Let j : V −→ M be an embedding with critical point κ,
and let λ ≥ κ be such that j“λ ∈ M and λ < j(κ). Let k : M −→ N be
any embedding with crit(k) ≥ κ and let X = k(j“λ). Then crit(k ◦ j) = κ,
X ∈ N , (k ◦ j)“λ ⊆ X and N |= ot(X) < k ◦ j(κ).

In particular if k ◦ j is definable then k ◦ j witnesses that κ is λ-strongly
compact. If V [G] is a generic extension of V , and i : V [G] −→ M [H] is
an embedding definable in V [G] extending k ◦ j, then i witnesses that κ is
λ-strongly compact in V [G].

We now fix a ground model in which GCH holds, κ is supercompact,
and there is no measurable cardinal greater than κ. This last hypothesis
is a technical one which simplifies some later arguments; it entails no loss
of generality because we can truncate the universe at the least measurable
greater than κ if such a cardinal exists. Notice that since κ is supercompact
there are unboundedly many measurable cardinals less than κ.

Let A be the set of α < κ which are measurable in V . We will define an
iteration Pκ of length κ with Easton support, in which Q̇α names the trivial
forcing unless α ∈ A. If α ∈ A then Q̇α names the poset from Example 6.5
to add a non-reflecting stationary set to α, as defined in V [Gα]. It is clear
that this iteration will destroy the measurability of every α in A. We will
show that no new measurable cardinals are created.

Let Gκ be Pκ-generic over V and suppose for a contradiction that α < κ
and α is measurable in V [Gκ]. By construction α /∈ A, and if γ is the least
measurable greater than α then arguments as in Lemma 11.2 show that V [Gκ]
is an extension of V [Gα] by γ-strategically closed forcing. In particular α is
measurable in V [Gα], from which it easily follows that α must be a Mahlo
cardinal in V . Since α is Mahlo, by Proposition 7.13 Pα is α-Knaster. It
follows that Pα × Pα is α-c.c. By Theorem 21.1 α must be measurable in V ,
which is a contradiction as α /∈ A.

To finish, we show that κ is still strongly compact in V [Gκ]. We fix a
regular cardinal λ > κ and let j : V −→ M be the ultrapower of V by
a supercompactness measure on Pκλ. The argument of Example 4.8 shows
that V |= |j(κ)| = λ+.

By GCH λ ≥ 2κ and so κ is measurable in M , and we may find a measure
U on κ such that U ∈ M and U is minimal in the Mitchell ordering [58];
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we let k : M −→ N be the ultrapower of M by U , so that in particular
N |= “κ is not measurable”. It is easy to see that κ /∈ k ◦ j(A).

Consider the iteration j(Pκ), which is an iteration defined in M in which
a non-reflecting stationary set is added to each α ∈ j(A). The cardinal κ
is measurable in M , so κ ∈ j(A) and j(P)κ adds a set at κ. There are
no measurable cardinals above κ in V and P (λ) ⊆ M , so if γ is the least
M -measurable cardinal greater than κ then γ > λ.

Notice that since we are aiming to show that κ is strongly compact (and
so a fortiori measurable) in V [Gκ] we cannot hope to find a Qκ-generic filter
over M [Gκ] in V [Gκ]. It is at this point that we use term forcing.

Working in M we may factor j(Pκ) as Pκ ∗ Q̇ ∗ Ṙ, where Q̇ adds a non-
reflecting stationary subset of κ. Working in M [Gκ] we get a factorisation of
the rest of the iteration as Q ∗ Ṙ.

22.7 Lemma. Ṙ is j(κ)-c.c. and γ-strategically closed in M [Gκ]Q.

Proof. It follows from Proposition 7.13 that R is j(κ)-c.c. The closure follows
from Proposition 7.12. a

22.8 Lemma. In M [Gκ], A(Q, Ṙ) is j(κ)-c.c. and λ+-strategically closed.

Proof. We work in the model M [Gκ]. The strategic closure follows by Propo-
sition 22.4.

For the chain condition, assume for a contradiction that 〈ṙα : α < j(κ)〉 is
an antichain in A(Q, Ṙ). If α < β then ṙα and ṙβ are incompatible, which
means that there is no term for a condition forced to refine both of them; by
the maximum principle this is equivalent to saying that ṙα and ṙβ are not
forced to be compatible in Ṙ.

For α < β we choose qαβ ∈ Q such that qαβ 

M [Gκ]
Q ṙα ⊥ ṙβ . j(κ) is

measurable in M and so by the Lévy-Solovay Theorem [50] j(κ) is measurable
in M [Gκ]. By Rowbottom’s theorem we may therefore find a fixed q ∈ Q
and X ⊆ j(κ) unbounded such that qαβ = q for all α, β ∈ X. q forces that
{ṙα : α ∈ X} is an antichain of size j(κ) in R, contradicting Lemma 22.7. So
A(Q, Ṙ) is j(κ)-c.c. in M [Gκ]. a

Appealing to Proposition 8.1 we may now build H ∈ V [Gκ] which is
A(Q, Ṙ)-generic over M [Gκ].

We now consider the embedding k and the iteration k(Pκ). Since κ is not
a point at which this iteration adds a set, we may argue exactly as in Section
11 to build g ∈ M [Gκ] such that Gκ ∗g is k(Pκ)-generic over N [Gκ], and may
lift to get k : M [Gκ] −→ N [Gκ ∗ g]. By similar arguments we may also build
h ∈ M [Gκ] which is k(Q)-generic over N [Gκ ∗ g].

By Proposition 9.3 this lifted embedding has width ≤ κ, so by Proposi-
tion 15.1 we may transfer H along k to get H+ which is k(A(Q, Ṙ))-generic
over N [Gκ ∗ g]. If we let I = {ih(σ̇) : σ̇ ∈ H+} then I is k(R)-generic over
N [Gκ ∗ g ∗ h].
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Putting everything together we get Gκ ∗ g ∗h ∗ I which is k ◦ j(Pκ)-generic
over N , and then as in Section 11 we may lift k ◦ j to get a map from V [Gκ]
to N [Gκ ∗ g ∗ H ∗ I]. This map is definable by Proposition 9.4, and so by
Proposition 22.6 we see that κ is λ-strongly compact in V [Gκ].

23. More on Term Forcing and Collapsing

In this section we show that the term forcing ideas of Section 22 may be
used to analyse iterations. We also introduce yet another cardinal collapsing
poset, this time one due to Mitchell [57]

We give an outline of Mitchell’s model [57] in which there are no ω2-
Aronszajn trees. Our treatment of this material owes much to Abraham
[2]. For simplicity we build the model using a measurable cardinal. Mitchell
actually used a weakly compact cardinal and this is known to be optimal
[57].

Throughout this section we assume that κ is measurable. We recall the
easy proof that κ has the tree property; let T be a κ-tree, let j : V −→ M
have critical point κ, then j(T )�κ is isomorphic to T and any point on level
κ of j(T ) gives us a branch through T .

We start by making an instructive false start. Let P = Col(ω1, <κ) and as
in Theorem 10.5 factor j(P) as P×Q. If G ∗H is j(P)-generic then we may
build as usual an embedding j : V [G] −→ M [G ∗H]. If T ∈ V [G] is a κ-tree
then as above j(T )�κ is isomorphic to κ, so by choosing any point on level κ
we may determine a branch b of T .

It is well-known that CH implies there is a special ω2-Aronszajn tree, and
since V [G] is a model of CH and κ = ω2 there is a κ-Aronszajn tree in V [G].
This is not a contradiction to the argument of the previous paragraph; the
point is that j(T ) only exists in M [G∗H], so the branch b that we constructed
is a member of V [G ∗H] but not in general a member of V [G].

To put the problem more abstractly, we need to create a situation in which
a generic embedding with critical point ω2 is added by a poset which does
not add any branches through any ω2-Aronszajn tree. By the remarks made
above we also need the continuum to be at least ω2.

Before the main argument we need a technical fact about trees.

23.1 Lemma. Let 2ω = ω2 and let T be an ω2-Aronszajn tree. Let S and T
be forcing posets such that

1. T is countably closed forcing and collapses ω2.

2. S is ω1-Knaster in V T.

Then forcing with S× T does not add a cofinal branch of T .

Proof. Let GS × GT be S × T-generic. We claim first that T has no cofinal
branch in V [GT]. To see this suppose p ∈ T forces that ḃ is a cofinal branch,
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and use the fact that b /∈ V to build a binary tree 〈ps : s ∈ <ω2〉 and increasing
〈αn : n < ω〉 such that p0 = p and for each n the conditions {ps : s ∈ n2}
decide where ḃ meets level αn in 2n different ways. Then let α = supn αn

and observe that level α must have at least 2ω elements, contradicting our
assumptions that T is an ω2-tree and 2ω = ω2.

Choose in V [GT] a sequence βj for j < ω1 which is cofinal in ωV
2 . Suppose

for a contradiction that some q ∈ S forces over V [GT] that ċ is cofinal in T ,
and then choose for each j a condition qj ≤ q deciding where the branch
ċ meets level βj . In V [GT] a subfamily of size ω1 of {qj} must be pairwise
compatible, but this implies that there is a cofinal branch in V [GT]. a

23.2 Theorem. Let κ be measurable. Then in some ω1-preserving generic
extension, 2ω = ω2 = κ and κ has the tree property.

Proof. Let

P = Add(ω, κ), Pα = Add(ω, α), Rα = Add(ω1, 1)V Pα .

We define Q as follows; a condition is a pair (p, f) where p ∈ P, f is a
partial function on κ with countable support, and f(α) is a Pα-name for a
condition in Rα. (p2, f2) ≤ (p1, f1) iff p2 ≤ p1 in P, supp(f1) ⊆ supp(f2),
and p2�(ω × α) 
 f2(α) ≤ f1(α) for all α ∈ supp(f1).

It is easy to see that Q is κ-c.c. Since adding a Cohen subset of ω1 collapses
the continuum to ω1, it is also easy to see that Q collapses every α between
ω1 and κ. It may not be immediately clear that Q preserves ω1. This will
fall out from the product analysis of Q which we give below.

For any inaccessible δ < κ we may truncate the forcing at δ in the obvious
way, to get Q�δ which forces 2ω = ω2 = δ. We note that if Gδ is Q�δ-generic
then Q/Gδ is very similar to Q.

To analyse Q we define a variation of the sort of term forcing we studied
in Section 22. Let R be the set of g such that g is a function on κ with
countable support, and g(α) is Pα-name for an element of Rα. Order R by
setting r2 ≤ r1 if and only if supp(r1) ⊆ supp(r2), and 
 r2(α) ≤ r1(α) for
all α ∈ supp(r1). It is routine to check that the identity is a projection map
from P × R to Q. It follows that if G is Q-generic with projection g on the
first coordinate then we may view V [G] as a submodel of V [g×h] where g×h
is P× R-generic. By Easton’s lemma all countable sequences from V [G] are
in V [g], so in particular ω1 is preserved.

We now finish the argument by showing there are no ω2-Aronszajn trees
in V [G]. To do this we start by noting that (morally speaking) Q ⊆ Vκ, so
that we may regard Q as an initial segment of j(Q) where j : V −→ M is
the ultrapower by some normal measure on κ. As usual we may then build
a generic embedding j : V [G] −→ M [G ∗H] where H is j(Q)/G-generic.

Suppose for contradiction that T ∈ V [G] is a κ-tree. By the usual chain
condition arguments T ∈ M [G], and since j(T ) ∈ M [G ∗ H] we see that
forcing over M [G] with j(Q)/G has added a branch to the κ-Aronszajn tree
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T . We observe that in M [G] we have that 2ω = κ = ω2. It is not hard to
see that j(Q)/G is susceptible exactly to the same kind of product analysis
as Q or j(Q), so that by Lemma 23.1 it is not possible for j(Q)/G to add a
branch through T . This concludes the proof. a

23.3 Remark. Abraham [2] showed that it is consistent for both ω2 and
ω3 to simultaneously have the tree property. Foreman and the author [12]
built a model where ωn has the tree property for 1 < n < ω. Magidor and
Shelah [56] showed that ωω+1 may have the tree property. Foreman and the
author [12] constructed a model where ωω is strong limit and ωω+2 has the
tree property.

Mitchell also showed that if κ is Mahlo and we force with the poset Q of
Theorem 23.2, then in the extension there is no special ω2-Aronszajn tree.
By work of Jensen there is a special ω2-Aronszajn tree if and only if the
weak square principle �∗ω1

holds, so in Mitchell’s model �∗ω1
fails. We sketch

a proof (due to Mitchell) that an even weaker version of square fails in the
model; for more on the ideal I[λ] see [10].

Recall that I[ω2] is the (possibly improper) ideal of A ⊆ ω2 such that
there exist 〈xα : α < ω2〉 and a club set C ⊆ ω2, such that for every
α ∈ C ∩ A ∩ Cof(ω1) there is a set d ⊆ α with d club in α, ot(d) = ω1,
and every proper initial segment of d appearing as xβ for some β < α. It is
easy to see that if �∗ω1

then ω2 ∈ I[ω2].

23.4 Theorem. If κ is Mahlo and we force with Q as in Theorem 23.2 then
in the extension ω2 /∈ I[ω2].

Proof. Let G be Q-generic. An argument similar to that of Theorem 21.5
shows that if α < κ is inaccessible and X ∈ P (α)∩V [G] with X ∩β ∈ V [Gα]
for all β < α, then X ∈ V [Gα]. Suppose for contradiction that 〈xα : α < κ〉
and C witness in V [G] that ω2 /∈ I[ω2].

Then since β is Mahlo and Q is β-c.c. there is a V -inaccessible cardinal
β ∈ C such that 〈xα : α < β〉 ∈ V [Gβ ], and so there is in V [G] a club subset
d ⊆ β such that ot(d) = ω1 and every initial segment of d is in V [Gβ ]. By
the remarks of the last paragraph we have d ∈ V [Gβ ], which is impossible
because β = ω

V [Gβ ]
2 . a

24. Iterations with Prediction

In this section we look at some theorems proved using the powerful reflection
properties of supercompact cardinals. Both of the results we prove depend
on the following theorem of Laver [49] which may be viewed as a kind of
diamond principle.

24.1 Theorem. Let κ be a supercompact cardinal, then there exists a func-
tion f : κ → Vκ such that for all λ ≥ κ and all x ∈ Hλ+ there is a supercom-
pactness measure U on Pκλ such that jU (f)(κ) = x.



24. Iterations with Prediction 97

Proof. Fix a well-ordering ≺ of Vκ. We define f(α) by recursion on α. We
set f(α) = 0 unless there exists a cardinal λ with α ≤ λ < κ and x ∈ Hλ+ ,
such that for no supercompactness measure U on Pαλ does jU (f�α)(α) = x.
In this case we choose the minimal such λ and then the ≺-minimal such
x ∈ Hλ+ , and set f(α) = x.

Suppose for a contradiction that there exist λ ≥ κ and x ∈ Hλ+ such that
for no supercompactness measure U on Pκλ does jU (f)(κ) = x. Let ρ = 22λ

,
let W be a supercompactness measure on Pκρ, and let the ultrapower by W
be j : V −→ N = Ult(V,W ). Observe that Hλ+ ⊆ (Vj(κ))N .

All supercompactness measures on Pκλ and all functions from Pκλ to Vκ

lie in N . It follows easily that

N |= “ for no supercompactness measure U on Pκλ does jU (f)(κ) = x”.

Let µ be minimal such that for some y ∈ Hµ+ there is no supercompact-
ness measure U on Pκµ with jU (f)(κ) = y; clearly µ ≤ λ, so in particular
y ∈ (Vj(κ))N . Let y be j(≺)-minimal such y ∈ Hµ+ . By elementarity, the
definition of f , and the agreement between V and N we may conclude that
j(f)(κ) = y.

Now we define U = {X ⊆ Pκµ : j“µ ∈ j(X)} so that U is a supercom-
pactness measure on Pκµ. Let i : V −→ M = Ult(V,U) be the ultrapower
map, and observe that by Proposition 3.2 there is an elementary embedding
k : M −→ N given by k : [F ]U = j(F )(j“µ). We also have that k ◦ i = j.

We now analyse the embedding k. The definition of k gives easily that
j“V ⊆ ran(k) and j“µ ∈ ran(k). If X ⊆ µ then

X = {ot(γ ∩ j“µ) : γ ∈ j“µ ∩ j(X)},

so that X ∈ ran(k). It follows that Hµ+ ⊆ ran(k) and so in particular
k�Hµ+ = id.

Since y ∈ Hµ+ , k(y) = y. We also know that k(κ) = κ and k ◦ i = j, so
k(i(f)(κ)) = j(f)(κ) = y. Contradiction!

It follows that for all λ ≥ κ and all x ∈ Hλ+ there is a supercompactness
measure U on Pκλ with jU (f)(κ) = x. a

24.2 Remark. Using extenders in the place of supercompactness measures
it is possible to prove a similar result for strong cardinals. See Gitik and
Shelah’s paper [29] for this result and some applications.

In this section we prove the consistency of the Proper Forcing Axiom (de-
fined below) and of the statement “the supercompactness of κ is indestruc-
tible under κ-directed closed forcing”. These statements have in common
that they involve a universal quantification over a proper class; they will
both be proved by doing a set forcing and using some reflection arguments.

In each of the two consistency proofs we will begin with a supercompact
cardinal κ. We fix a function f as in Theorem 24.1 (a Laver function) and use
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this function as a guide in building an iteration of length κ which anticipates
a proper class of possibilities for what may happen at stage κ.

The details of the constructions are of course somewhat different, but
they each involve taking a generic object for some forcing we may do stage
κ, and copying it via some supercompactness embedding j to a filter on the
image of that forcing under j. In the argument for PFA the existence of
this filter is reflected back to give a witness for the truth of PFA, while in
the indestructibility theorem the filter is used to construct a strong master
condition and lift the embedding j.

We now give Baumgartner’s consistency proof [15] for the Proper Forcing
Axiom. We begin with a brief review of proper forcing.

24.3 Definition. Let θ be regular with P ∈ Hθ. Let <θ be a well-ordering
of Hθ and let P ∈ N ≺ (Hθ,∈, <θ) where N is countable. p ∈ P is (N, P)-
generic if and only if for every maximal antichain A of P with A ∈ N , A∩N
is predense below p.

24.4 Remark. This notion is closely related to the ideas about lifting em-
beddings from Proposition 9.1. Let N̄ be the Mostowski collapse of N , let
π : N̄ −→ N be the inverse of the Mostowski collapse and let x̄ be the collapse
of x for x ∈ N .

Then it is easy to see that p is (N, P)-generic if and only if p forces that
Ḡ =def {p̄ : p ∈ G ∩N} is P̄-generic over N̄ ; that is, p is a master condition for
π in the sense of Definition 12.1. The definition of Ḡ implies that π“Ḡ ⊆ G.
Therefore if p is (N, P)-generic and p ∈ G for some G which is P-generic over
V , then π can be lifted to a map π+ : N̄ [Ḡ] −→ N [G] which is the inverse of
the Mostowski collapse map for N [G].

We note that for example in the Martin’s Maximum paper [20] (N, P)-
generic conditions are referred to as “(N, P)-master conditions”. We have
chosen to follow the conventions of Shelah’s book on proper forcing [64].

24.5 Remark. In the study of proper forcing it is often interesting to look
at conditions which are strongly (N, P)-generic, where (adopting the notation
of the last remark) a condition p ∈ P is strongly (N, P)-generic if and only
if gp =def {q̄ : q ∈ N ∩ P, p ≤ q} is P̄-generic over N̄ . Such a condition is
precisely a strong master condition for gp and π in the sense of Definition
12.2.

24.6 Definition. P is proper if and only if for all large θ, all countable N
with P ∈ N ≺ (Hθ,∈, <θ), and all p ∈ P ∩N there exists a condition q ≤ p
which is (N, P)-generic.

See Abraham’s chapter in this Handbook for an exposition of proper forc-
ing. The only fact about properness we will need is that a countable support
iteration of proper forcing is proper.



24. Iterations with Prediction 99

24.7 Definition. The Proper Forcing Axiom (PFA) is the statement: for
every proper P and every sequence 〈Dα : α < ω1〉 of dense subsets of P there
exists a filter F on P such that F ∩Dα 6= ∅ for all α < ω1.

Before we prove the consistency of PFA we make a few remarks.

24.8 Remark. It would be hopeless to ask to meet ω2 sets in the statement
of PFA, because we could then apply the axiom to the proper forcing poset
Col(ω1, ω2) and produce a surjection from ω1 onto ω2.

24.9 Remark. The axiom PFA is known [66] to have a very high consistency
strength. One way of seeing this is that by work of Todorčević [67] PFA
implies the failure of �κ for κ singular, which implies in turn that the weak
covering lemma fails over any reasonable core model.

24.10 Remark. In the consistency proof for MAω1 [6] the first step is to
observe that we only need to deal with forcing posets of size ω1. The point
is that the property of being c.c.c. is inherited by any completely embedded
subposet, and so to deal with ω1 dense subsets of an arbitrary P we may as
well work in some subposet Q of size ω1 in which all those dense sets remain
dense.

This is not so for proper forcing. Notice that by Example 6.6 we may force
�κ without changing Hκ+ , so that PFA cannot in general be “localised” to
a statement in Hκ+ for any κ.

24.11 Theorem. Let κ be supercompact. Then there is a forcing iteration
of length κ such that in V Pκ

1. PFA holds.

2. 2ω = κ = ω2.

Proof. Let f : κ −→ Vκ be a function as in Theorem 24.1. The poset Pκ

will be an inductively defined iteration of length κ with countable support,
with each Qα forced to be proper in V Pα . The name Q̇α will name the trivial
forcing unless f(α) is a Pα-name for a proper forcing poset, in which case
Qα = f(α).

By the Properness Iteration Theorem [1] the poset Pκ is proper, so pre-
serves ω1. By Proposition 7.13 Pκ is κ-c.c. with cardinality κ, so in particular
κ is preserved.

Now let Q̇ be the standard Pκ-name for Add(ω, 1). Let λ = 22κ

and find
a supercompactness measure U on Pκλ such that jU (f)(κ) = Q̇. Arguing as
in Lemma 11.6, jU (Pκ) is an iteration of length j(κ) in Ult(V,U) whose first
κ stages are exactly those of Pκ.

Ult(V,U) agrees that Q̇ is a Pκ-name for Add(ω, 1), so by the usual re-
flection argument there are unboundedly many α < κ such that f(α) is a
Pα-name for Add(ω, 1). Since Add(ω, 1) is proper, there are unboundedly
many α where Q̇α is a Pα-name for Add(ω, 1), so that in the course of the
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iteration Pκ we add κ many subsets of ω. A very similar argument shows
that Qα = Col(ω1, α)V Pα for many α < κ, so that 2ω = κ = ω2 in V Pκ .

To finish the proof we need to show that PFA holds in V Pκ . Let G be
Pκ-generic over V , and let Q = iG(Q̇) where Q̇ is a Pκ-name for a proper
forcing poset. Find a cardinal λ such that Q̇ ∈ Hλ, let µ = 22λ

, and let
U be a supercompactness measure on Pκµ such that jU (f)(κ) = Q̇. Let
j : V −→ M = Ult(V,U) be the ultrapower map.

By Proposition 8.4 we see that V [G] |= µM [G] ⊆ M [G], so in particular

M

Pκ
“Q̇ is proper”. It follows that in the iteration j(Pκ), the forcing which

is used at stage κ is precisely Q̇.
Now let g be Q-generic over V [G]. Working in MPκ∗Q̇ let Ṙ name the

canonical forcing such that j(Pκ) ' Pκ ∗ Q̇ ∗ Ṙ, and let R = iG∗g(Ṙ). Let H
be R-generic over V [G ∗ g].

Since Pκ is an iteration with countable support, the support of every con-
dition in G is bounded in κ. This implies that j“G ⊆ G ∗ g ∗H, and so we
may lift j to get a map jG : V [G] −→ M [G ∗ g ∗H].

Now let ~D = 〈Dα : α < ω1〉 be an ω1-sequence of dense subsets of Q, with
~D ∈ V [G]. Since g is generic over V [G], g∩Dα 6= ∅ for each α. By the choice
of µ and U we know that j�Q̇ ∈ M , from which it follows by the definition
of jG in Proposition 9.1 that jG�Q ∈ M [G ∗ g ∗H].

Now let F be the filter on jG(Q) generated by jG“g. By the arguments of
the last paragraph we see that F ∈ M [G∗g∗H]. Since crit(jG) = crit(j) = κ,
we see that jG( ~D) = 〈jG(Dα) : α < ω1〉. By genericity g ∩ Dα 6= ∅ for all
α < ω1, and so by elementarity F ∩ jG(Dα) 6= ∅ for all α < ω1.

It follows that

M [G ∗ g ∗H] |= “F meets every set in jG( ~D)”.

By the elementarity of jG,

V [G] |= “∃f f meets every set in ~D”.

It follows that V [G] is a model of PFA. a

We will prove the following theorem of Laver.

24.12 Theorem (Laver [49]). Let κ be supercompact and let δ < κ. There
is a forcing iteration Pκ of length κ such that

1. κ is supercompact in V Pκ , and in any extension of V Pκ by κ-directed
closed forcing.

2. Pκ has cardinality κ, is κ-c.c. and is δ-directed closed.

24.13 Remark. The proof of Theorem 24.12 is similar in its outline to the
consistency proof for PFA. One significant difference is that we will leave
long gaps in the iteration in which nothing happens. This is natural when
we consider that
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• κ is supposed to be supercompact in V Pκ .

• Pκ will have no effect above κ on cardinals, cofinalities and the contin-
uum function.

An easy reflection argument shows that there should be arbitrarily long in-
tervals (α, β) below κ in which V Pκ should resemble V .

Proof. Let f : κ −→ Vκ be a function as in Theorem 24.1. The poset Pκ will
be an iteration of length κ with Easton support, such that for each α


α “Q̇α is α-directed closed”.

Q̇α will name the trivial forcing unless

1. α ≥ δ.

2. f(α) is a pair (λ, Q) where Q is a Pα-name for an α-directed closed
forcing poset and λ is an ordinal.

3. For all β < α, if f(β) is an ordered pair whose first entry f(β)0 is an
ordinal, then f(β)0 < α.

In this case we let Qα = Q.
By Proposition 7.13 Pκ is κ-c.c. with cardinality κ, and by Proposition 7.9

Pκ is δ-directed closed.
Let G be Pκ-generic over V . We need to show that the supercompactness

of κ is indestructible; accordingly we fix Q ∈ V [G] such that

V [G] |= “Q is a κ-directed closed forcing poset”,

and a cardinal λ with λ ≥ κ, and we prove that κ is λ-supercompact in
V [G]Q. Notice that the trivial forcing is (trivially) κ-directed closed, so that
our proof will show in particular that κ is supercompact in V [G].

Let Q = iG(Q̇), where (increasing λ if necessary) we may as well assume
that Q̇ ∈ Hλ. Let µ = 22λ

. Let W be a supercompactness measure on Pκµ
such that jW (f)(κ) = (µ, Q). Let j = jW and N = Ult(V,W ).

Let g be Q-generic over V . Working in N let Ṙ be the standard name for
the iteration such that Pκ ∗ Q̇ ∗ Ṙ ' j(Pκ), let R = iG∗g(Ṙ) and let H be
R-generic over V [G ∗ g].

Arguing exactly as in the consistency proof for PFA, we may lift j to
get jG : V [G] −→ N [G ∗ g ∗ H]. We may also argue exactly as before that
M [G] |= |Q| < λ, V [G∗g] |= µM [G∗g] ⊆ M [G∗g] and jG�Q ∈ M [G∗g ∗H].

We now need to lift jG to an embedding of V [G∗g], which we will do using
Silver’s master condition argument as in the proof of Theorem 12.6. By the
last paragraph jG“g ∈ M [G ∗ g ∗ H], and clearly jG“g is a directed set of
conditions in jG(Q). We recall that j(κ) > λ, M [G] |= |Q| < λ and by the
elementarity of jG

M [G ∗ g ∗H] |= “j(Q) is j(κ)-directed closed”.
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It follows that there is a condition q ∈ jG(Q) such that ∀p ∈ g q ≤ j(p),
that is to say q is a strong master condition for g and jG. Let h be jG(Q)-
generic over V [G ∗ g ∗ G] with q ∈ h. We may lift jG as usual to get an
elementary embedding j++ : V [G ∗ g] −→ M [G ∗ g ∗H ∗ h].

The argument is not finished at this point because j++ can only be defined
in V [G ∗ g ∗ H ∗ h]. The final stage of the proof is to find an approxima-
tion to j++ which can be defined in V [G ∗ g]. For notational simplicity let
V ∗ = V [G ∗ g] and M∗ = M [G ∗ g ∗H ∗ h]. Let

U = {X ⊆ Pκλ : X ∈ V ∗, j“λ ∈ j++(X)}.

As in Proposition 3.2 we may factor j++ as k ◦ jU where jU is the ultrapower
of V ∗ by U .

Recall that |Pκ ∗ Q̇| < λ. The definition of the iteration j(Pκ) and the fact
that j(f)(κ) = (µ, Q̇) together imply that in the iteration j(Pκ) we do trivial
forcing at every stage between κ and µ. It follows that

M [G ∗ g] |= “R ∗ j(Q̇) is µ-closed”

Since V ∗ |= µM [G ∗ g] ⊆ M [G ∗ g], V ∗ agrees that R ∗ j(Q̇) is µ-closed.
Now since V ∗ |= λ<κ < µ, the arguments of the last paragraph imply that

U ∈ V ∗. It is easy to check that

V ∗ |= “U is a supercompactness measure on Pκλ”.

This concludes the proof that κ is λ-supercompact in V [G ∗ g]. a

24.14 Remark. It is easy to see that if κ is measurable then there is no
κ-Kurepa tree. Since Example 6.1 shows that a κ-Kurepa tree can be added
by a κ-closed forcing poset for any inaccessible κ, it is not possible to improve
Laver’s result to cover all κ-closed forcing posets.

25. Altering Generic Objects

In this final section we introduce an idea due to Woodin, namely that it is
sometimes possible to alter generic objects so as to enforce the compatibility
requirements of Proposition 9.1. Returning to the theme of failure of GCH
at a measurable cardinal, we will prove a result of Woodin which gets GCH
to fail at a measurable cardinal from the optimal large cardinal hypothesis.

25.1 Theorem. Let GCH hold and let j : V −→ M be a definable embedding
such that crit(j) = κ, κM ⊆ M and κ++ = κ++

M . Then there is a generic
extension in which κ is measurable and GCH fails.

25.2 Remark. The hypotheses of Theorem 25.1 can easily be had from a
cardinal κ which is (κ + 2)-strong. Work of Gitik [24] shows that they can
be forced starting with a model of o(κ) = κ++, and by work of Mitchell [59]
this is optimal.
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Proof of Theorem 25.1. By the arguments of Section 3, we may assume that
j = jV

E for some (κ, κ++)-extender E. We define U = {X : κ ∈ j(X)} and
form the ultrapower map i : V −→ N ' Ult(V,U). We write j = k ◦ i where
k : N −→ M is given by k([F ]) = j(F )(κ).

Let λ = κ++
N . Then λ < i(κ), since i(κ) is inaccessible in N . Since the

GCH holds i(κ) < κ++. On the other hand k(λ) = κ++
M = κ++, so that

crit(k) = λ. It is also easy to see that k is an embedding of width ≤ λ.
As before we will let P = Pκ+1 be an iteration with Easton support, where

for α ≤ κ we let Qα = Add(α, α++)V [Gα] for α inaccessible and let it be the
trivial forcing otherwise.

Let G be Pκ-generic over V and let g be Qκ-generic over V [G]. The
iterations P, i(P) and j(P) agree up to stage κ.

The following lemmas are easy.

25.3 Lemma. j(P)κ+1 = Pκ+1.

25.4 Lemma. i(P)κ+1 = Pκ ∗ Q̇∗κ, where Q∗κ = Add(κ, λ)V [Gκ].

Let g0 = g ∩ Q∗κ, then g0 is Q∗κ-generic over V [G] and also over N [G]. It
follows from Proposition 8.4 that V [G ∗ g0] |= κN [G ∗ g0] ⊆ N [G ∗ g0].

Let R0 = RN
κ+1,i(κ) be the factor forcing to prolong G ∗ g0 to a generic

object for i(Pκ). By Proposition 8.1 we may build H0 ∈ V [G ∗ g0] which is
R0-generic over N [G ∗ g0].

Since crit(k) = λ it is easy to see that k“G = G, and we may lift
k : N −→ M to get k : N [G] −→ M [G]. Since λ = κ++

N , if q ∈ Q∗κ then the
support of q is contained in κ×µ for some µ < λ, and so k(q) = q. It follows
that k“g0 = g0 ⊆ g, and so we may lift again to get k : N [G∗g0] −→ M [G∗g].

Since N [G ∗ g0] |= “R0 is λ+-closed” and we bounded the width of k, we
may now appeal to Proposition 15.1 and transfer H0 along k. We obtain H
which is R-generic over M [G ∗ g], where R = RM

κ+1j(κ). We may then build a
commutative triangle

V [G] M [G ∗ g ∗H]

N [G ∗ g0 ∗H0]

-j

@
@

@
@

@
@

@
@

@
@

@
@

@@R

i

6

k

Let S0 = i(Qκ), that is S0 = Add(i(κ), i(κ++))N [G∗g0∗H0].
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25.5 Lemma. S0 is κ+-closed and κ++-Knaster in the model V [G ∗ g0].

Proof. The closure is easy because V [G ∗ g0] |= κN [G ∗ g0] ⊆ N [G ∗ g0].
Let 〈pα : α < κ++〉 be a sequence of conditions, and let pα = i(fα)(κ) where
fα : κ −→ Qκ, fα ∈ V [G]. An easy ∆-system argument shows that κ++ of
the functions fα are pointwise compatible, from which it follows that κ++ of
the conditions pα are compatible. a

25.6 Remark. A more delicate analysis shows that S0 is isomorphic to
Add(κ+, κ++)V [G∗g0].

25.7 Lemma. S0 is (κ+,∞)-distributive and κ++-c.c. in V [G ∗ g].

Proof. V [G ∗ g] is a generic extension of V [G ∗ g0] by a forcing isomorphic
to Qκ. The poset Qκ is κ+-c.c. in V [G ∗ g0] and so by Easton’s lemma S0 is
(κ+,∞)-distributive in V [G ∗ g]. By Proposition 5.12 S0 ×Qκ is κ++-c.c. in
V [G ∗ g0] and so by Easton’s lemma again S0 is κ++-c.c. in V [G ∗ g]. a

Now we force over V [G ∗ g] with S0, and denote the generic object by f0.
By the last lemma forcing with S0 preserves cardinals. Since k has width
≤ λ, we may use Proposition 15.1 and transfer f0 to get f which is S-generic
over M [G ∗ g ∗H], where S = Add(j(κ), j(κ++)). The problem is now that
we wish to lift j, but it may not be the case that j“g ⊆ f .

There is no hope of using any of our previous methods for doing without
a master condition, since f0 is built by forcing (and even if we could build f0

in a suitably compatible way, this would not guarantee compatibility for f).
We adopt a different approach based on the observation that we only need
to adjust any given condition in f on a small set to make it agree with j“g.
We will work in V [G ∗ g ∗ f0] and construct a suitable f∗, by altering each
element of f to conform with j and g.

To be precise let Q =
⋃

j“g, so that Q is a partial function from κ×j“κ++

to 2. Let p ∈ f , so that p = j(P )(a) for some a ∈ [κ++]<ω and some function
P : [κ]|a| → Qκ with P ∈ V [G]. If (γ, j(δ)) ∈ dom(p) then by elementarity
(γ, δ) ∈ dom P (x) for at least one x ∈ [κ]|a|, so that there are at most κ
many points in the intersection of dom(Q) and dom(p). If we then define p∗

to be the result of altering p on dom(p)∩dom(Q) to agree with Q, then since
V [G ∗ g] |= κM [G ∗ g ∗ H] ⊆ M [G ∗ g ∗ H] we see that p∗ ∈ M [G ∗ g] and
hence p∗ ∈ j(Qκ).

It remains to see that f∗ = {p∗ : p ∈ f} is j(Qκ)-generic over M [G∗g∗H].
To see this we work temporarily in V [G]. Let δ < κ and let D be dense in
Qκ. Let E be the set of those p ∈ D such that every q obtained by altering
p on a set of size δ is in D. An easy argument shows that E is also dense.
Returning to M [G ∗ g ∗H] and applying this remark with κ in place of δ, we
see that f∗ meets every dense set in M [G ∗ g ∗H].

We may now lift to get j : V [G ∗ g] −→ M [G ∗ g ∗ H ∗ f∗]. We are not
quite done because f∗ only exists in the extension V [G ∗ g ∗ f0]. However
since f0 is generic for (κ,∞)-distributive forcing and j has width ≤ κ, we



25. Altering Generic Objects 105

may transfer f0 to get a suitable generic object h and finish by lifting to get
j : V [G ∗ g ∗ f0] −→ M [G ∗ g ∗H ∗ f∗ ∗ h]. a
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Astronomiques et Physiques, 9:521–524, 1961.

[62] Saharon Shelah. A weak generalization of MA to higher cardinals. Israel
Journal of Mathematics, 30(4):297–306, 1978.

[63] Saharon Shelah. Reflecting stationary sets and successors of singular
cardinals. Archive for Mathematical Logic, 31(1):25–53, 1991.

[64] Saharon Shelah. Proper and Improper Forcing. Perspectives in Mathe-
matical Logic. Springer-Verlag, Berlin, 1998.

[65] Robert M. Solovay. A model of set-theory in which every set of reals is
Lebesgue measurable. Annals of Mathematics (2), 92:1–56, 1970.

[66] John R. Steel. PFA implies ADL(R). The Journal of Symbolic Logic,
70(4):1255–1296, 2005.

[67] Stevo Todorčević. A note on the proper forcing axiom. In James E.
Baumgartner, Donald A. Martin, and Saharon Shelah, editors, Ax-
iomatic Set Theory (Boulder, Colo., 1983), volume 31 of Contemporary
Mathematics, pages 209–218. American Mathematical Society, Provi-
dence, R.I., 1984.



Index

S condition, 70
I condition, 70
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Easton support, 26
Easton support iteration, 37
Easton’s lemma, 18
elementary embedding, 6
extender, 9

factor iteration, 27
flat condition trick, 61

forcing, 15
forcing iteration, 25
full reflection, 84

generic condition, 98
generic elementary embedding, 34
generic embedding, 6

huge cardinal, 13

identity crisis, 92
inner model, 6
inverse limit, 26
iterated forcing, 24, 25
iteration with amalgamation, 87
iteration with prediction, 96

killing a stationary set, 22
Knaster property, 19
Kunen-Paris theorem, 37
Kurepa tree, 20

Lévy collapse forcing, 18
Lévy-Solovay theorem, 33
Laver diamond, 97
Laver indestructibility, 100
lifting a definable embedding, 33
lifting an elemntary embedding, 31

Magidor’s trick, 44
master condition, 40
Master condition ideal, 62
Maximum principle, 17
measurable cardinal, 13
Mitchell core model, 65
Mitchell model, 94
Mitchell ordering, 14
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Namba forcing, 70
name, 15
non-stationary ideal, 82
non-trivial forcing, 16
notion of forcing, 15

PFA, 98
precipitous ideal, 57
projection map, 16
proper forcing, 98
pullback of a generic object, 53

quotient forcing, 17
quotient poset of a preordering, 15

RCS iteration, 70
regular open algebra, 16

saturated ideal, 48, 82
separative quotient, 16
Silver collapse, 86
square sequence, 22
stationary reflection, 36, 48
stationary set preservation, 36
strategic closure, 19
strategic Easton lemma, 19
strong cardinal, 13
strong master condition, 40
strong non-reflection, 50
strongly compact cardinal, 13
strongly generic condition, 98
supercompact cardinal, 13
support of a condition in a forcing it-

eration, 26
support of an embedding, 12

termspace forcing, 90
transfer of a generic object, 53
tree property, 94
trivial forcing, 16

ultrapower, 9
universal collapse, 87
universal property of the Lévy col-

lapse, 46

weakly compact cardinal, 48, 55
width of an embedding, 12


