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Abstract

The market involving credit derivatives has become increasingly popular and ex-
tremely liquid in the most recent years. The pricing of such instruments offers a myriad
of new challenges to the research community as the dimension of credit risk should be
explicitly taken into account by a quantitative model. In this paper, we describe a
doubly stochastic model with the purpose of pricing and hedging derivatives on se-
curities subject to default risk. The default event is modeled by the first jump of a
counting process Nt, doubly stochastic with respect to the Brownian filtration which
drives the uncertainty of the level of the underlying state process conditional on no-
default event. Assuming absence of arbitrage, we provide all the possible equivalent
martingale measures under this setting. In order to illustrate the method, two simple
examples are presented: the pricing of defaultable stocks, and a framework to price
multi-name credit derivatives like basket defaults.
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1 Introduction

The market for credit derivatives has become increasingly popular and extremely liquid in
the most recent years. Credit risk is basically everywhere, in swaps, corporate bonds, Col-
lateralized Debt Obligation (CDO), basket default instruments, sovereign bonds, etc. The
necessity of explicitly considering credit risk by making use of quantitative modeling tech-
niques is evident. For instance, Duffie and Singleton (1999)[5] proposed a reduced form
model for term structures of defaultable bonds, which is extended by Collin Dufresne at al.
(2004)[3], while Hull and White (2004)[8] propose an implementation of Merton’s (1974)[13]
seminal credit risk model estimated from the implied volatilities of options on the companies
equities, which outperform the original model. Hundreds of papers on credit risk modeling,
which can be found on websites like ”defaultrisk.com” and ”gloriamundi.org”, suggest this
topic as an important issue under consideration.
Credit risk models are usually obtained by one of two concurrent techniques: structural
models or reduced form models. In structural models, whose first representant is Merton
model (1974)[13], a default is triggered when the process representing the assets of the firm
falls bellow a certain barrier value. In reduced form models, whose first formal description
appears in Duffie and Singleton (1999)[5]1, the default event is modeled by the first jump of
a counting process Nt. Duffie and Singleton propose that Nt should be a doubly stochas-
tic process, which means, a conditionally Poison process, with the uncertainty driving the
intensity of the process coming from a sigma-algebra which does not contain information
regarding the jumps of this process. In their paper however, all the calculations are obtained
under the risk neutral measure, with no allusion to the physical measure.
In this paper, we describe a doubly stochastic model with the purpose of pricing and hedg-
ing derivatives on securities subject to default risk. The default event is modeled by the
first jump of a counting process Nt, doubly stochastic with respect to a brownian filtration
which drives the uncertainty of the volatility process, and of the security price conditional
on no-default event. Assuming absence of arbitrage, we provide all the possible equivalent
martingale measures under this setting. This allows the implementation of dynamic credit
risk models where investors can charge risk premia which takes into account the probability
that default events happen. Our main contribution is a clear description of the dynamics of
credit default securities under both measures.
We also provide two examples of applications using our methodology: The pricing of default-
able equities (see Bielecki et al. (2004)[1] or Das and Sundaram (2004)[4]), and the pricing
of multi-name products, like basket defaults and CDOs (see Duffie and Singleton (2003)[6]).
For the multi-name example we propose modeling the intensity of the counting process that
drives default as a hybrid between a mean reverting state vector capturing specific firm risks
and a function of a market index that would capture common factors risk. We show that the
inclusion of this common factor improves the ability of the model in capturing correlation
between default times of different companies.
The paper is organized as follows. Section 2 describes the basic framework, provides the the-
oretical results on changes of measures under our model, and proposes a first simple example

1Others have used special cases of this approach before. For instance, Pye (1974)[14] proposes a discrete
time precursor version of this model where interest rates, and default intensities are deterministic.
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on a defaultable stock. Section 3 considers how well the model is able to capture correlation
of default times when dealing with multi-name securities. Section 4 concludes the article.
The Appendix present Girsanov’s Theorem for counting processes and an extension of the
model that includes stochastic volatility for the underlying asset.

2 Pricing Defaultable Securities

Let us fix a Probability space (Ω,F , P ) and the σ− algebra Ft = σ(W S
t , Zλ

t ) where W S
t , Zλ

t

are independent standard Brownian Motions. Let’s also introduce the σ− algebra Gt =
σ(Ft ∨ Nt) where Nt is a nonexplosive doubly stochastic (with respect to Ft) counting
process with intensity λt, i.e.

i. λt is Ft predictable and
∫ t

0
λsds < ∞ a.s.

ii. Nt −
∫ t

0
λsds is a Gt local martingale

iii. P{Ns − Nt = k|Gt ∨ Fs} =
e−

R s
t λudu(

R s
t

λudu)k

k!

In this section we will price derivatives on a defaultable security, where the price of the
security is modeled as a Geometric Brownian Motion with stochastic volatility, and the
default event is modeled by the stopping time τ , the first jump of the counting process
Nt. We assume that the short term interest rate process is constant and equal to r.2. The
default intensity process itself is modeled by an OU process. We also introduce correlation
between the security price and the intensity brownian motions allowing that changes in prices
influence the likelihood of default.

{

dSt = µStdt + σStdW S
t

dλt = a(b − λt)dt + βλdW λ
t dW λ

t = ρλdW S
t +

√

1 − ρ2
λdZ

λ
t

(1)

where S is the stock price, σ is the volatility, λ is the instantaneous probability of default of
the underlying.
Clearly, the way the problem is set up gives rise to an incomplete market model in the sense
that there exist derivatives that can not be hedged by a portfolio of the basic securities.
Assumption of no arbitrage guarantees the existence of a set of equivalent martingale mea-
sures.3 In this setting, an EMM P ∗ is a probability measure equivalent to P , under which
the discounted price of the defaultable security4, e−rtSt1{τ>t} is a Gt-martingale. At this
point, we look for all possible EMM’s P ∗ that allow us to write the price of a defaultable
object as an expectation in terms of the intensity of the counting process Nt under P ∗.5 Let
us call the set of all such measures to be S.
In order to characterize all EMM’s in the set S, we make use of the two versions of the

2This implies that the money market account, the usual instrument adopted for deflation, will be Bt = e
rt.

3non-empty, non-unitary.
4Defaultable equity derivatives have been also studied in Bielecki et al. (2004) and Das and Sundaram

(2004).
5More general versions, useful for instance in markets with multiple defaults, would allow the intensity

to depend not only on a Brownian filtration but also on default events.
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Girsanov’s theorem, where one is for changes in the Brownian Filtration and one for the
changes in the intensity process λt. In order to construct our argument we state the stan-
dard version of Girsanov’s theorem for a d-dimensional Brownian filtration6 and also the
Girsanov’s theorem version for counting processes.7

2.0.1 Girsanov’s Theorem (G1):

Given θ ∈ (L2)d, assume that ξθ
t = e−

R t
0

θsdWs−
1

2

R t
0

θs·θsds is a martingale (Novikov’s condition
is sufficient.) Then a Standard Brownian Motion W θ is defined by

W θ
t = Wt +

∫ t

0

θsds, 0 ≤ t ≤ T

Moreover, W θ has the martingale representation theorem under the new measure P ∗ where
dP ∗

dP
= ξθ

T . Hence, any P ∗ martingale can be represented as

Mt = M0 +

∫ t

0

φsdW θ
s , t ≤ T

for some φ ∈ (L2)d

2.0.2 Girsanov’s Theorem for Counting Processes (G2):

Suppose Nt is a nonexplosive counting process with intensity λt, and φ is a strictly positive
predictable process such that, for some fixed T ,

∫ T

0
φsλsds < ∞ almost surely. Then,

ξ
φ
t = e

R t

0
(1−φs)λsds

∏

{i:τ(i)≤t}

φτ(i)

is a well defined local martingale where τ(i) is the ith jump time of Nt. In addition, if ξ
φ
t is

a martingale (bounded φ suffices), then an equivalent martingale measure P ∗ is defined by
dP ∗

dP
= ξ

φ
T . Under this new martingale measure, Nt is still a nonexplosive counting process

with intensity λtφt.

Now, suppose the counting process Nt is doubly stochastic with respect to Ft under measure
P ∗, say with an intensity λ∗. Then one can show that:

E∗{1{τ>s}|Gt ∨ Fs} = E∗{1{τ>t}1{Ns−Nt=0}|Gt ∨ Fs} (2)

= 1{τ>t}E
∗{1{Ns−Nt=0}|Gt ∨ Fs} (3)

= 1{τ>t}e
−

R s
t

λ∗

udu (4)

If we go from P ∗ to a measure P ∗∗ making use of G1, then one can prove that there is an
equivalence between the discounted defaultable price being a Gt P ∗∗−martingale and the

6For the proof see Karatzas and Shreve (1991)[11].
7For the proof see the Appendix.
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process e
R t
0

(r+λ∗

u)duSt being a Gt P ∗∗-martingale as follows

E∗∗{e−rsSs1{τ>s}|Gt} = E∗{ξs

ξt

e−rsSs1{τ>s}|Gt}

= E∗{E∗{ξs

ξt

e−rsSs1{τ>s}|Gt}|Gt ∨ Fs}

= E∗{E∗{ξs

ξt

e−rsSs1{τ>s}|Gt ∨ Fs}|Gt}

= E∗{ξs

ξt

e−rsSsE
∗{1{τ>s}|Gt ∨ Fs}|Gt}

= 1{τ>t}e
R t
0

λuduE∗{ξs

ξt

e−
R s
0

(r+λ∗

u)duSs|Gt}

= 1{τ>t}e
R t

0
λuduE∗∗{e−

R s

0
(r+λ∗

u)duSs|Gt}

where we used Bayes rule and Equation (2,3,4).
How do we characterize the elements in S? The idea is to realize a two step change of
measure, where we first change the intensity of the counting process going from P to P ∗,
using a particular case of G2 where Nt counts up to 1. Then, we apply G1 changing the
measure from P ∗ to P ∗∗. The Radon-Nikodym derivative from P to P ∗∗ is, by construction,
the product of the two Radon-Nikodym derivatives from P to P ∗ and from P ∗ to P ∗∗. By
theorems G1 and G2

dP ∗

dP
= e

R t

0
(1−φs)λsds(1{τ>t} + φ(τ)1{τ≤t}) and

dP ∗∗

dP ∗
= e−

R t

0
θsdWs−

1

2

R t

0
θs·θsds

In general, φ and θ are free parameters, but for simplicity we assume that φ is deter-
ministic and to guarantee that the process e−rt1{τ>t}St is a Gt martingale, we choose the θ

as follows:

θt =

[

µ−r−λ∗

t

σ

δt

]

where the parameter δ is free. The Radon-Nikodym Derivative of the new measure becomes

dP ∗∗

dP
|Ft

= e−
R t
0

θ1(u)dW S
u − 1

2

R t
0

θ2

1
(u)du e−

R t
0

θ2(u)dZλ
u− 1

2

R t
0

θ2

2
(u)due

R t
0

(1−φu)λudu(1{τ>t} + φ(τ)1{τ≤t})

where
θ1 =

µ−r−λ∗

t

f(Yt)

θ2 = δt

and System (1) becomes:

{

dSt = (r + λ∗
t )Stdt + σStdW ∗S

t

dλ∗
t = [(a − φ′

t

φt
)( abφt

a−
φ′

t
φt

− λ∗
t ) − βλφt(ρλ

µ−r−λ∗

t

f(Yt)
+ δt

√

1 − ρ2
λ)]dt + βλφtdW ∗λ

t
(5)

Let’s introduce the 2 dimensional vector process Xt as follows.
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Xt =

[

St

λ∗
t

]

. Then the process followed by Xt can be written as:

dXt =

[

r + λ∗
t

(a − φ′

t

φt
)( abφt

a−
φ′

t
φt

− λ∗
t ) − βλφt(ρλ

µ−r−λ∗

t

σ
+ δt

√

1 − ρ2
λ)

]

dt

+

[

σSt 0

φtβλρλ φt

√

1 − ρ2
λβλ

] [

dW ∗S
t

dZ∗λ
t

]

directly implying that the Feynman-Kac PDE for the function P (x, t) = E{e−
R t

0
(r+λ∗

u)dug(Xt)}
,where g(Xt) = h(St), is

Pt + (r + λ∗
t )PS + [(a − φ′

t

φt

)(
abφt

a − φ′

t

φt

− λ∗
t ) − βλφt(ρλ

µ − r − λ∗
t

σ
+ δt

√

1 − ρ2
λ)]Pλ∗

1

2
σ2

t S
2
t PSS +

1

2
φ2

tβ
2
λPλ∗λ∗ + σStφtρλβλPSλ∗

with the boundary condition P (XT , T ) = h(ST )

2.1 First Example: Poisson process with constant intensity

Let St be a defaultable security which follows a Geometric Brownian Motion with constant
mean and volatility parameters. The counting process modeling default events has a constant
intensity λ, i.e.

i. dSt = µStdt + σStdW S
t

ii. Nt
∼ Poisson(λt)

Define Ft = σ{W S
t } and Gt = σ{W S

t , Nt}. We are interested in pricing a derivative based
on St with a maturity date T . We would like to find an equivalent measure P ∗∗ under which
the process Yt ≡ e−rtSt1{τ>t} is a Gt martingale. In the spirit of the argument for the general
change of measure which appears in the previous section, we can change the measure in
two steps. First, Girsanov’s theorem for counting processes guarantees that if we take φ

constant and realize the change of measure dP ∗

dP
= e

R T
0

(1−φ)λdu(1{τ>T} + φ1{τ≤T}), Nt is a
Poisson process under P ∗ with intensity λ∗ = φλ.
Now, we want to make a second change of measure from P ∗ to P ∗∗ just changing the brownian
filtration in a way that Yt ≡ e−rtSt1{τ>t} is a Gt martingale under P ∗∗. We know that this
change will not affect the characteristics of the process Nt which will consequently be Poisson
under P ∗∗ with intensity λ∗ = φλ. By the previous section, the general change of measure is

dP ∗∗

dP
= e−

R T

0

µ−r−λ∗

t
σ

dW S
u − 1

2

R T

0
(

µ−r−λ∗

t
σ

)2due
R T

0
(1−φ)λdu(1{τ>T} + φ1{τ≤T})

Finally, it is interesting to note that, under this simple model, the problem of pricing a
derivative on the defaultable stock boils down to pricing a derivative on the non-defaultable
stock with default adjusted parameters that represent a spread in interest rates:

dSt = (r + λ∗
t )Stdt + σStdW ∗S

t
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2.2 Second Example: Poisson process with random intensity but
constant risk premium

Define the following σ−algebras Ft = σ{W S
t , Zλ

t } and Gt = σ{W S
t , Zλ

t , Nt}, where W S
t and

Zλ
t are two independent Brownian Motions, and Nt is a counting process, doubly stochastic

with respect to Ft. Let St be a defaultable stock which follows a Geometric Brownian Motion
with constant mean and volatility parameters. The default process is modeled by the first
jump of the counting process Nt. The stochastic intensity λ follows an OU process driven by
a Brownian Motion that is correlated with the Brownian Motion which drives the dynamics
of the stock price. The model is described by the following equations:

i. dSt = µStdt + σStdW S
t

ii. dλt = a(b − λt)dt + βλdW λ
t , dW λ

t = ρλdW S
t +

√

1 − ρ2
λdZ

λ
t

iii. Ns − Nt|Gt ∨ Fs
∼ Poisson(

∫ s

t
λudu)

We would like to find a general measure P ∗∗ equivalent to P , under which the process
Yt ≡ e−rtSt1{τ>t} is a Gt martingale. Using the same idea of the previous example, we first
apply Girsanov’s theorem for counting processes taking φ constant and realize the change of

measure dP ∗

dP
= e

R T
0

(1−φ)λdu(1{τ≥T} + φ1{τ≤T}). Again, we want to make a second change of
measure from P ∗ to P ∗∗ just changing the brownian filtration in a way that Yt ≡ e−rtSt1{τ>t}

is a Gt martingale under P ∗∗.
Then, the general change of measure is

dP ∗∗

dP
= e−

R T
0

µ−r−λ∗

u
σ

dW S
u − 1

2

R T
0

(
µ−r−λ∗

u
σ

)2due−
R T
0

δudW λ
u − 1

2

R T
0

δ2
udue

R T
0

(1−φ)λ∗

udu(1{τ>T} + φ1{τ≤T})

The equations for the security price and intensity processes under P ∗∗ are given by:

{

dSt = (r + λ∗
t )Stdt + σtStdW ∗∗S

t

dλ∗
t = [a(φb − λ∗

t ) − φβλ(ρλ
(µ−r−λ∗

t )

σ
+

√

1 − ρ2
λδt)]dt + φβλdW ∗∗λ

t

(6)

Let’s assume, for instance, that ρλ = 0 and that δ is an affine function of λ∗
t . In particular,

δt = mλ∗
t . Then the equation for the intensity process takes the form of

dλ∗
t = (a + βλm)(

φba

a + βλm
− λ∗

t )dt + φβλdW ∗λ
t

Observe that, φ and δ have different effects on the intensity process. While φ only effects
the long term mean of the process, δ also effects the speed of mean reversion.

3 Modeling the Default Correlation in Multi-Name Prod-

ucts

In today’s financial markets there are lots of multi-name products whose pricing is critically
dependent on the correlation of defaults of these different names. Basket default swaps,
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CDO’s, CBO’s are such examples. In this section we try to develop a model to price this
kind of products paying particular attention to the default correlations. We try to combine
the capital structure models and reduced form models by modeling the default intensities
of different names as both a function of the overall market and a function of its individual
structure. Modeling the effect of overall market is done through a proxy like a big common
index, e.g. S&P 500 and the effect of individual structure is like a surprise default.
Fair amount of this section is devoted to explain the ability of the model in capturing the high
levels of correlation between defaults of different names. Since there are various definitions
for default correlation in the literature, we would like to clarify which definition we will use
throughout the section. The default correlation of two names, say S1 and S2 is defined with
respect to their exact default times. say τ1 and τ2 as follows:







ρ = cov(τ1,τ2)√
var(τ1)var(τ2)

= E{τ1τ2}−E{τ1}E{τ2}√
var(τ1)var(τ2)

(7)

Hereafter we simply call this definition to be the default correlation. This kind of default
correlation is a much more general concept than that of the discrete default correlation
based on a one period, i.e. the correlation between defaults of two different names occurred
or not in a certain period. Certainly, if the joint distributions of default times are known
we could calculate quantities like E{1τ1<T 1τ2<T} or E{1τ1<T} and therefore calculate the
discrete default correlation using the methodology described in Lucas(1995)[12]. However,
even if we know the discrete correlation we cannot calculate the default correlation in the
above sense.
The straight forward intuition behind the setting is the following: When the overall market
is not doing well, the default probability of each name tend to go up together, not necessarily
with the same rate. Or there could be something happening not in the whole market but in
a specific sector which would bump up all the default probabilities of names in that sector.
In addition to that, there could be also something happening within a firm which would
only effect that particular firm but not the others. So it is natural to assume the default
probabilities (intensities) have two different components, one for the overall market effect
and one for the individual firm effect.
In the typical setting of the model, the proxy used to capture the overall market impact
is modeled as a Geometric Brownian Motion. All the default intensities are modeled as
product of a state process, which is an OU process with appropriate parameters and a
positive function of the index level above. The Brownian Motions that drive the dynamics
of all the state processes that effect the intensities are correlated with each other. One can,
in general, introduce the correlation between the Brownian Motions of the index level and
state processes but we rather capture that effect in the specific form that we choose for the
intensity processes.
Now suppose we try to price a product that depends on N different names. Then the SDE’s
that describe the event look as follows:







dSt = µStdt + σtSdW S
t

λi
t = X i

tgi(St, K
i) for i = 1, 2, ..., N

dX i
t = ai(bi − X i

t)dt + βi
XdW i

t E{dW i
t dW

j
t } = ρX

ij dt

(8)
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where S is the common index level, σ is the volatility of the index level, λi is the instantaneous
probability of default of name i. X is the OU state process whose each component affects
each specific intensity process (capturing the firm specific risk), and the function g is some
power function which blows up at a certain fixed boundary level Ki. Although one can keep
the function g general for the rest of the section we will assume that g(St, K) = ( St−K

S0−K
)n

where S0 −K is a normalization factor and S0 is the initial value of the index in the period
of interest.
Although there seems to be a lot of parameters in the general setting, as far as the correlation
of default times are concerned there are just a few key parameters. The most important one
is the actual exponent in the function g. Clearly a positive power corresponds to a positive
correlation and negative power corresponds to a negative correlation between the market
and the default intensity of the individual name. If we assume same type of g, i.e. the same
power and the same boundary level for two different names and keeping the other variables
fixed, we observe that the correlation is almost a linear function of the square root of this
power parameter (See Figure 1)8. The difference between the two pictures is the level of the
volatility of the common index process. So the first one corresponds to a market with high
volatility and the second one with a low volatility. As we can see from the figures above
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Figure 1: Correlation effect of the parameter in the exponent of the function g, under low
volatile and high volatile environments

through this model we get correlation between default times up to 90%. Here the correlation
is defined in the classical sense. In the market, it is also of interest the correlation between
consecutive defaults, i.e. the defaults that happened within the same year. However, one
gets just similar results for that definition of correlation too.

At this point we see that in the above pair of figures although each of them are almost
straight lines, the slopes of those lines are different. This means that the level of correlation
introduced by the specific form of the function g creates different effects in different regimes
in the market. Note that, besides the exponent and the volatility parameters, another very
effective parameter is the explosion boundary K in the function g. We call it explosion

8At this point all our observations are based on simulated data with parameters chosen from the published
literature (see Duffie and Singleton (2003)).
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boundary because once the value of the common index gets close to this level, it increases
all the intensities by incredible amount and we get simultaneous defaults. Also the more
we are further away from this level, the smaller the intensities are, i.e. when the market is
doing well all the default intensities tend to go lower. And the closeness of this level to the
index level is basically the sensitivity of the individual to the overall market. But in order
to create a uniform effect of this exponent under different regimes of the process St, we also
define this explosion boundary as a function of S0 and σ and we let K = S0 − L ∗ σ. Then
if we generate the first two pictures with this new definition of the boundary we observe
the same level of correlation effect under both regimes, as shown in Figure 2. Regarding
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Figure 2: Correlation effect of the parameter in the exponent of the function g, without the
effect of the volatility of the index process

the other set of parameters that could possibly effect the default time correlation, that is,
the correlation parameters ρX

ij of the Brownian Motions driving the state process X or the
mean reverting level of the state processes, we experimented the same phenomena under
different sets of values of all those parameters: We observe that for all possible values of
these parameters we get the same effect on the correlation of the default times. For instance,
consider a first-to-default instrument. It is a contingent claim that pays off $1 at the time
where the first from a set of n names defaults. Figure 3 shows the effect of the correlation
parameters between the state variables Xis on the premium of a First-to-Default insurance
contract. As it is clear from the picture, there is almost no effect of the correlation parameter
for Brownian motions on the price of the first-to-default instrument. This is an indication
that the correlation parameter for the Brownian motions is not generating enough correlation
between the different default intensity processes, and therefore is not affecting the correlation
of default times, otherwise the price would be sensitive to it. Why? Intuitively we have an
idea of the effect of the correlation of default intensities on the price of this simple derivative.
Namely, if we have n perfectly uncorrelated default intensities then the intensity of the first-
to-default event is the sum of all intensities. On the other hand if they are all perfectly
correlated then having an insurance against the first-to-default or against any one of them
would be the same (if we assume that each name has the same default intensity). Therefore
the price of the contract should be much less in the case of the perfectly correlated case then
the uncorrelated case. By a similar argument, one can convince himself that actually the
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Figure 3: Correlation between Brownian Motions vs. the premium of a First-to-Default
contract

price of this contract is a decreasing function of the correlation of the default times. Hence
in our model a decreasing function of the square root of the exponent parameter. Figure
4 shows the impact of the exponent on the price of the first-to-default contract. Note that
the price is clearly a decreasing function of the exponent, except for a small region where
the exponent assumes values around 0.4. This indicates that we can generate correlation on
default times using our common factor captured by the market index.
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Figure 4: Correlation of Default Times vs. the premium of a First-to-Default contract

4 Conclusion

Adopting a doubly stochastic counting process to represent default events, we present the-
oretical results on the construction of equivalent martingale measures for defaultable secu-
rities. Examples are provided involving defaultable equities, and multi-name products. In
order to price multi-name products, we propose the intensity of the counting process to be a
combined function of both a mean reverting state vector representing firm-specific risk and
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a function of a common market index. We show that it is possible to generate correlation
between default times of the different instruments that compose the basket by controlling
one specific parameter of the common factor function (the exponent).
In the general theoretical model, two sources contribute to changes in the intensity λ of the
counting process from the physical to the risk neutral measure: the Brownian filtration which
influences the dynamics of λ indirectly changing its behavior, and a possible deterministic
shift φ that re-scales λ. These results might be applied on econometric studies of default-
able claims to determine the price of credit risk charged by investors, and in particular, if
investors price credit risk sharply (significant φ) or more smoothly (significant change in the
drift of Brownian motion driving λ).

5 APPENDIX

5.1 Girsanov’s Theorem for Counting Processes

Claim 1: Suppose Nt is a nonexplosive counting process with intensity λt, and φt is a strictly
positive predictable process such that, for some fixed T ,

∫ T

0
φsλsds < ∞ almost surely. Then,

ξ
φ
t = e

R t

0
(1−φs)λsds

∏

{i:τ(i)≤t}

φτ(i)

is a well defined local martingale where τ(i) is the ith jump time of Nt.

Proof : Define

Xt = e
R t

0
(1−φs)λsds and Yt =

∏

{i:τ(i)≤t}

φτ(i) and Mt = Nt − λtdt

Then

i. ξ
φ
t = XtYt

ii. Mt is a local martingale

iii. dXt = (1 − φt)λte
R t

0
(1−φs)λsdsdt = (1 − φt)λtXtdt

iv. dYt = (
∏

{i:τ(i)<t} φτ(i))(φt − 1)dNt = Yt(φt − 1)dNt

v. dMt = dNt − λtdt

By the above five facts and general Ito formula with jumps, ξ
φ
t is calculated as:

dξ
φ
t = d(XtYt)

= dXtYt− + Xt−dYt + ∆Xt∆Yt

= (1 − φt)λtXtYt−dt + Xt−Yt−(φt − 1)dNt

= (1 − φt)λtξ
φ
t− + (φt − 1)ξφ

t−dNt

= (1 − φt)λtξ
φ
t− + (φt − 1)ξφ

t−(dMt + λtdt)

= (φt − 1)ξφ
t−dMt

12



In the third equation we made use of the fact that Xt is a continuous process which implies
∆Xt = 0. Since Mt is a local martingale, we know that an integral against a local martingale
is also a local martingale under certain regularity conditions (see Bremaud (1981)[2]) for the
integrand ⋄

Claim 2: If ξ
φ
t is a martingale, then an equivalent martingale measure P ∗ is defined by

dP ∗

dP
= ξ

φ
T . Under this new martingale measure, Nt is still a nonexplosive counting process

with intensity λtφt.

Proof : To say that Nt is counting process with intensity λtφt what we need to show is
At = Nt −

∫ t

0
λsφs is P ∗ local martingale where dP ∗

dP
= ξ

φ
T . Or equivalently we can show that

the process Zt = ξ
φ
t At is a P local martingale.

By the first claim

dAt = dNt − λtφtdt and dξ
φ
t = (φt − 1)ξt−dMt

Then by the Ito’s formula with jumps we get

dZt = dξ
φ
t At− + ξ

φ
t−dAt + ∆ξ

φ
t ∆At

= (φt − 1)ξφ
t−At−dMt + ξ

φ
t−(dNt − λtφtdt) + (φt − 1)ξt−dNtdNt

= (φt − 1)ξφ
t−At−dMt − ξ

φ
t−λtφtdt + φtξt−dNt

= (φt − 1)ξφ
t−At−dMt − ξ

φ
t−λtφtdt + φtξt−(dMt + λtdt)

= [(φt − 1)ξφ
t−At− + φtξt−]dMt

Hence Zt can be written as an integral against a local martingale, which would imply Zt

itself is a P local martingale. Therefore, At is a P ∗ local martingale and therefore Nt is a
counting process with intensity λtφt under the new measure P ∗ ⋄

5.2 Extension, Index Process with Stochastic Volatility

Let us consider a more generalized version of the same problem where intensity rate process
depends upon the process of the underlying, and the underlying dynamics present stochastic
volatility. The stochastic volatility process is defined as a positive bounded function of a OU
process as proposed in Fouque et al. (2000)[9]. Let us assume that λt = g(Xt, St) where the
function g has a certain form, but kept general for now, and Xt is some state process. Then,
our SDE system for the prices will be























dSt = µStdt + σtStdW S
t

σt = f(Yt)

dYt = α(m − Yt)dt + βσdW σ
t dW σ

t = ρσdW S
t +

√

1 − ρ2
σdZσ

t

dXt = a(b − Xt)dt + βλdW λ
t dW λ

t = ρλdW S
t +

√

1 − ρ2
λdZ

λ
t

λt = g(Xt, St)

(9)

We would like to find a measure P ∗ under which the process e−rtSt1{τ>t} is a Gt-martingale.

As we showed earlier this is equivalent to have the process e−
R t
0

(r+λ∗

u)duSt a Gt-martingale,
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where λ∗
t is the intensity process under the measure P ∗.

Using this and the two step change of measure described in the notes we obtain the system
under consideration under P ∗ using the following change in the Brownian filtration

W ∗
t = Wt +

∫ t

0

θudu

where

Wt =





W S
t

Zσ
t

Zλ
t



 and θt =





µ−r−φtg(Xt,St)
f(Yt)

γt

δt





and the parameters γ, δ and φ are free.
Finally the system becomes:



















dSt = (r + φtg(Xt, St))Stdt + σtStdW ∗S
t

σt = f(Yt)

dYt = [α(m − Yt) − βσ(ρσ
µ−r−λ∗

t

f(Yt)
+ γt

√

1 − ρ2
σ)]dt + βσdW ∗σ

t

dXt = a(b − Xt) − βλ(ρλ
µt−r−φtg(Xt,St)

f(Yt)
+ δt

√

1 − ρ2
λ)dt + βλdW ∗λ

t

(10)
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