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Abstract

Learning governing equations allows for deeper understanding of the structure and dynam-

ics of data. We present a random sampling method for learning structured dynamical systems

from under-sampled and possibly noisy state-space measurements. The learning problem takes

the form of a sparse least-squares fitting over a large set of candidate functions. Based on a

Bernstein-like inequality for partly dependent random variables, we provide theoretical guar-

antees on the recovery rate of the sparse coefficients and the identification of the candidate

functions for the corresponding problem. Computational results are demonstrated on datasets

generated by the Lorenz 96 equation, the viscous Burgers’ equation, and the two-component

reaction-diffusion equations (which is challenging due to parameter sensitives in the model).

This formulation has several advantages including ease of use, theoretical guarantees of suc-

cess, and computational efficiency with respect to ambient dimension and number of candidate

functions.

Keywords— High Dimensional Systems, Dynamical Systems, Sparsity, Model Selection, Exact

Recovery, Cyclic Permutation, Coherence

1 Introduction

Automated model selection is an important task for extracting useful information from observed

data. One focus is to create methods and algorithms which allow for the data-based identification of

governing equations that can then be used for more detailed analysis of the underlying structure and

dynamics. The overall goal is to develop computational tools for reverse engineering equations from

data. Automated model selection has several advantages over manual processing, since algorithmic
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approaches allow for the inclusion of a richer set of potential candidate functions, which thus allow

for complex models and can be used to process and fit larger data sets. However, several factors

restrict the computational efficiency; for example, as the dimension of the variables grows, the size of

the set of possible candidate functions grows rapidly. In this work, we present some computational

strategies for extracting governing equation when additional structural information of the data is

known.

Data-driven methods for model selection have several recent advances. The authors of [2, 36]

developed an approach for extracting physical laws (i.e. equations of motion, energy, etc.) from

experimental data. The method uses a symbolic regression algorithm to fit the derivatives of the

time-series data to the derivatives of candidate functions while taking into account accuracy versus

simplicity. In [4], the authors proposed a sparse approximation approach for selecting governing

equations from data. One of the key ideas in [4] is to use a fixed (but large and possibly redundant)

set of candidate functions in order to write the model selection problem as a linear system. The

sparse solutions of this system are those that are likely to balance simplicity of the model while

preserving accuracy. To find a sparse approximation, [4] uses a sequential least-squares thresholding

algorithm which includes a thresholding sub-step (sparsification) and a least-squares sub-problem

(fitting). Several sparsity-based methods were developed in order to solve the model selection prob-

lem. The authors of [40] proposed an optimization problem for extracting the governing equation

from chaotic data with highly corrupted segments (of unknown location and length). Their ap-

proach uses the `2,1-norm (often referred to as the group sparse or joint sparse penalty), in order

to detect the location of the corruption, coupling each of the state-variables. In [40], it was proven

that, for chaotic systems, the solution to the optimization problem will locate the noise-free regions

and thus extract the correct governing system. In [30], the authors used a dictionary of partial

derivatives along with a LASSO-based approach [38] to extract the partial differential equation

that governs some (possibly noisy) spatiotemporal dataset. An adaptive ridge-regression version of

the method from [4] was proposed in [29] and applied to fit PDE to spatiotemporal data. One com-

putational issue that arrises in these approaches is that noise on the state-variables are amplified

by numerical differentiation. To lessen the effects of noise, sparse learning can be applied to the

integral formulation of the differential equation along with an integrated candidate set as done in

[33]. The exact recovery of the governing equation can be guaranteed when there is sufficient ran-

domness in the data, even in the under-sampling limit. In [34], using random initial conditions, an

`1-penalized optimization problem was shown to recover the underlying differential equation with

high probability, and several sampling strategies were discussed. In order to allow for variations

in the coefficients, a group-sparse recovery model was proposed in [35]. Using information criteria,

[21] proposed a method to choose the “optimal” model learned from the algorithm in [4] as one

varies the thresholding parameter.

There have been several recent methods using general sparse approximations techniques for

learning governing dynamical systems, including: SINDy with control [5], the SINO method [37],

an extension of SINDy to stochastic dynamics [3], sparse identification of a predator-prey system

[9], SINDy with rational candidate functions [20], rapid-SINDy [24], the unified sparse dynamics

learning (USDL) algorithm which uses a weak formulation with the orthogonal matching pursuit
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(OMP) algorithm [22]. Sparsity inducing and/or data-driven algorithms have been applied to other

problems in scientific computing, including: sparse spectral methods for evolution equations [31, 19],

sparse penalties for obstacle problems [39], sparse-low energy decomposition for conversation laws

[13], sparse spatial approximations for PDE [6], sparse weighted interpolation of functions [28],

leveraging optimization algorithms in nonlinear PDE [32], sparse approximation for polynomial

chaos [23], high-dimensional function approximation using sparsity in lower sets [1], learning PDE

through convolutional neural nets [17], modeling dynamics through Gaussian processes [26, 25],

and constrained Galerkin methods [16].

1.1 Contributions of this Work.

We present an approach for recovering governing equations from under-sampled measurements

using the burst sampling methodology in [34]. In this work, we show that if the components of

the governing equations are similar, i.e. if each of the equations contains the same active terms

(after permutation of the indices), then one can recover the coefficients and identify the active basis

terms using fewer random samples than required in [34]. The problem statement and construction

of the permuted data and dictionaries are detailed in Section 2. In essence, after permutation,

the dictionary matrix is still sufficiently random and maintains the necessary properties for exact

and stable sparse recovery. Theoretical guarantees on the recovery rate of the coefficients and

identification of the candidate functions (the support set of the coefficients) are provided in Section

3. The proofs rely on a Bernstein-like inequality for partially dependent measurements. The

algorithm uses the Douglas-Rachford iteration to solve the `1 penalized least-squares problem. In

Section 4, the algorithm and the data processing are explained1. In Section 5, several numerical

results are presented, including learning the Lorenz 96 system, the viscous Burgers’ equation, and

a two-component reaction-diffusion system. These examples include third-order monomials, which

extend the computational results of [34]. These problems are challenging due to their sensitivities

of the dynamics to parameters, for example, shock locations or the structure of patterns. Our

approach is able to recover the dynamics with high probability, and in some cases, we can recover

the governing dynamical system from one-sample!

2 Problem Statement

Consider an evolution equation u̇ = f(u), where u(t) ∈ Rn and the initial data is u(t0) = u0.

Assume that f is a polynomial vector-valued equation in u. The evolution equation can be written

component-wise as: 

u̇1 = f1(u1, . . . , un)

u̇2 = f2(u1, . . . , un)

...

u̇n = fn(u1, . . . , un).

1The code is available on https://github.com/linanzhang/SparseCyclicRecovery.
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From limited measurements on the state-space u, the objective is to extract the underlying model

f . In [34], this problem was investigated for general (sparse) polynomials f using several random

sampling strategies, including a burst construction. The data is assumed to be a collection of

K-bursts, i.e. a short-time trajectory:

{u(t1; k), u(t2; k), . . . , u(tm−1; k)},

associated with some initial data u(t0; k), where u(· ; k) denotes the k-th burst, 1 ≤ k ≤ K. In

addition, we assume that the time derivative associated with each of the measurements in a burst,

denoted by {u̇(t0; k), u̇(t1; k), u̇(t2; k), . . . , u̇(tm−1; k)}, can be accurately approximated. Define the

matrix M as the collection of all monomials (stored column-wise),

M(k) =
[

M (0)(k) | M (1)(k) | M (2)(k) | · · ·
]
,

where the sub-matrices are the collections of the constant, linear, quadratic terms and so on,

M (0)(k) =


1

1

1
...

1

 ∈ Rm,

M (1)(k) =


u1(t0; k) u2(t0; k) · · · un(t0; k)

u1(t1; k) u2(t1; k) · · · un(t1; k)

u1(t2; k) u2(t2; k) · · · un(t2; k)
...

...
. . .

...

u1(tm−1; k) u2(tm−1; k) · · · un(tm−1; k)

 ,

and

M (2)(k) =


u21(t0; k) u1(t0; k)u2(t0; k) · · · u2n(t0; k)

u21(t1; k) u1(t1; k)u2(t1; k) · · · u2n(t1; k)

u21(t2; k) u1(t2; k)u2(t2; k) · · · u2n(t2; k)
...

...
. . .

...

u21(tm−1; k) u1(tm−1; k)u2(tm−1; k) · · · u2n(tm−1; k)

 .

Define the velocity matrix at each of the corresponding measurements:

v(k) =


u̇1(t0; k) u̇2(t0; k) · · · u̇n(t0; k)

u̇1(t1; k) u̇2(t1; k) · · · u̇n(t1; k)

u̇1(t2; k) u̇2(t2; k) · · · u̇n(t2; k)
...

...
. . .

...

u̇1(tm−1; k) u̇2(tm−1; k) · · · u̇n(tm−1; k)

 .
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Using this data, one would like to extract the coefficients for each of the components of f , i.e. fj ,

which is denoted by a column vector cj . The collection of coefficients can be defined as:

C =

 | | |
c1 c2 · · · cn
| | |

 . (1)

Therefore, the problem of identifying the sparse polynomial coefficients associated with the model

f is equivalent to finding a sparse matrix C such that v(k) = M(k)C for all bursts k.

In [34], it was shown that finding a sparse matrix C from v(k) = M(k)C with randomly sampled

initial data was achievable using an `1 optimization model. In particular, with probability 1 − ε,
C can be recovered exactly from limited samples as long as the number of samples K satisfies

K ∼ s log(N) log
(
ε−1
)
, where s is the maximum sparsity level among the n columns of C and

N is the number of basis functions. In this work, using a coherence bound, we get a sampling

rate that scales like n−1 log(n) when the governing equation has a structural condition

relating each of the components of the model f .

2.1 A Cyclic Condition

When structural conditions on f and u can be assumed a priori, one expects the number of initial

samples needed for exact recovery to decrease. One common assumption is that the components

of the model, fj , are cyclic (or index-invariant), i.e. for all 1 ≤ i, j ≤ n, we have:

fj(u1, u2, . . . , un) = fi(uj−i+1, uj−i+2, . . . , un, u1, . . . , uj−i+n),

where un+q = uq and u−q = un−q, for all 0 ≤ q ≤ (n− 1). In particular, all components fj can be

obtained by determining just one component, say f1, since:

fj(u1, u2, . . . , un) = f1(uj , uj+1, . . . , un, u1, . . . , uj−1+n).

The goal is to determine f (by learning f1), given observations of u and an (accurate) approximation

of u̇.

The physical meaning behind the cyclic condition relates to the invariance of a model to loca-

tion/position. For example, the Lorenz 96 system in n > 3 dimensions is given by [18]:

u̇j = −uj−2 uj−1 + uj−1 uj+1 − uj + F, j = 1, 2, . . . , n,

for some constant F (independent of j) and with periodic conditions, u−1 = un−1, u0 = un, and

un+1 = u1. Each component of f follows the same structure, and is invariant to the index j.

This is also the case with spatiotemporal dynamics which are not directly dependent on the space

variable. For a simple example, consider the standard discretization of the heat equation in one
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spatial dimensional periodic domain:

u̇j =
1

h2
(uj−1 − 2uj + uj+1) ,

with grid size h > 0 and periodic conditions, u0 = un and un+1 = u1. The system is invariant to

spatial translation, and thus satisfies the cyclic condition.

Extending the results from [34], we show that recovering the governing equations from only

one under-sampled measurement is tractable when the model f has this cyclic structure. This is

possible since one measurement of u(t) will provide us with n-pieces of information for f1 (and thus

the entire model f). Under this assumption, the problem of determining the coefficient matrix C,

defined by Equation (1), reduces to the problem of determining the first column of C, i.e. c1. For

simplicity, we can drop the subscript and look for a coefficient vector c ∈ RN (N is the number of

candidate functions) that fits the dynamic data.

The construction of the optimization problem and computational method are detailed in the

subsequent sections. To summarize, we define what cyclic permutations are and explain how to

build the associated dictionary matrix. This construction is detailed for the one spatial dimensional

case, since general spatial dimensions follow from a vectorization of the n-dimensional problem.

Following the second strategy in [34], a subset of the domain is considered (via localization and

restriction of the dictionary terms), which leads to a smaller, but still underdetermined, problem.

The dictionary is transformed to the tensorized Legendre basis in order to guarantee an incoherence

principle on the system. Lastly, the coefficients of the governing equations are learned via an `1

penalized basis pursuit problem with an inexact (noise-robust) constraint.

2.2 Cyclic Permutations

The (multi-sample) data matrix is computed using a set of cyclic permutations from very few

samples. The set of cyclic permutations, Cn, is a subset of all permutations of [n] := {0, 1, . . . , n−1},
whose elements are shifted by a fixed amount. There are n cyclic permutations out of the n!

possible permutations of [n]. In addition, the corresponding n×n permutation matrices of a cyclic

permutation are all circulant. For example, C3 contains three permutations of the set {0, 1, 2} (out

of a total of six possible permutations), i.e. {0, 1, 2}, {1, 2, 0}, and {2, 0, 1} whose permutation

matrices are:

P1 =

1 0 0

0 1 0

0 0 1

 , P2 =

0 1 0

0 0 1

1 0 0

 , P3 =

0 0 1

1 0 0

0 1 0

 .

The importance of the cyclic permutations is that they preserve the natural ordering between

elements, since the left and right neighbors of any element are fixed (with periodic conditions at

the first and last elements).
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2.3 Dictionary for One Spatial Dimension

Consider the sequence (indexed by k) of discrete measurements {u(t1; k), u(t2; k), . . . , u(tm−1; k)},
obtained through either k-simulations or k-observations. Assume that the data is a discretization of

a system with one spatial variable u(t; k) ∈ Rn for t ∈ R and k ∈ N. For general spatial dimensions,

the variables are multidimensional arrays. In particular, after discretization and vectorization, the

spatially dependent function u(t, x) is converted to a 1D array (vector), u(t, x, y) is converted to a

2D array (matrix), and u(t, x, y, z) is converted to a 3D array, etc.. As in [34], the total number

of temporal samples, denoted by m, is small, and thus we refer to the short-time trajectory as a

burst. Each of the bursts is initialized by data sampled from a random distribution.

Given one measurement u(t0; k) ∈ Rn, we obtain “multiple” measurements by considering the

collection of all cyclic permutations of the data vector u(t0; k). In particular, we can construct the

n-measurement matrix,

U(t0; k) =


u1(t0; k) u2(t0; k) · · · un(t0; k)

u2(t0; k) u3(t0; k) · · · u1(t0; k)

u3(t0; k) u4(t0; k) · · · u2(t0; k)
...

...
. . .

...

un(t0; k) u1(t0; k) · · · un−1(t0; k)

 . (2)

To build the dictionary matrix, we collect all monomials of U . The quadratic matrix, denoted by

U2, is defined as:

U2(t0; k) =


u21(t0; k) u1(t0; k)u2(t0; k) · · · u2n(t0; k)

u22(t0; k) u2(t0; k)u3(t0; k) · · · u21(t0; k)

u23(t0; k) u3(t0; k)u4(t0; k) · · · u22(t0; k)
...

...
. . .

...

u2n(t0; k) un(t0; k)u1(t0; k) · · · u2n−1(t0; k)

 , (3)

and the cubic matrix, denoted by U3, is defined as:

U3(t0; k) =


u31(t0; k) u21(t0; k)u2(t0; k) · · · u1(t0; k)u2(t0; k)u3(t0; k) · · · u3n(t0; k)

u32(t0; k) u22(t0; k)u3(t0; k) · · · u2(t0; k)u3(t0; k)u4(t0; k) · · · u31(t0; k)

u33(t0; k) u23(t0; k)u4(t0; k) · · · u3(t0; k)u4(t0; k)u5(t0; k) · · · u32(t0; k)
...

...
. . .

...
. . .

...

u3n(t0; k) u2n(t0; k)u1(t0; k) · · · un(t0; k)u1(t0; k)u2(t0; k) · · · u3n−1(t0; k)

 . (4)

The process continues this way for any higher-order monomial term. The n×N dictionary matrix

(where N =
(
n+p
p

)
is the number of monomials of degree at most p) is given by:

A(t0; k) =
[

1 | U(t0; k) | U2(t0; k) | U3(t0; k) | · · ·
]
, (5)
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where one augments the matrix from the right by the additional monomial terms. For simplicity,

we will consider the cubic case for all examples and results. Note that when n = 150, the number of

candidate functions N exceeds half a million for the cubic case and over 22 million for the quartic

case.

The velocity for the kth burst is given by:

V (t0; k) =


u̇1(t0; k)

u̇2(t0; k)

u̇3(t0; k)
...

u̇n(t0; k)

 .

Let c be the vector of coefficients, c =
(
c1, c2, . . . , cN

)T
. If we use multiple bursts, say k from

1, . . . ,K and/or multiple snapshots (i.e. m > 1), then we concatenate the matrices and vectors

row-wise as follows,

V =



V (t0; 1)

V (t1; 1)
...

V (tm−1; 1)

V (t0; 2)

V (t1; 2)
...

V (tm−1; 2)
...

V (t0;K)

V (t1;K)
...

V (tm−1;K)



and A =



A(t0; 1)

A(t1; 1)
...

A(tm−1; 1)

A(t0; 2)

A(t1; 2)
...

A(tm−1; 2)
...

A(t0;K)

A(t1;K)
...

A(tm−1;K)



. (6)

Thus, the linear inverse problem is to find c such that V = Ac. The size of the dictionary matrix

A is mnK ×N . Therefore, for small K and m, this problem will be underdetermined.

We assume that the number of samples is very small. Thus, the initial data provides a large

portion of the information in A. The burst is (mainly) used to obtain an approximation to the

velocity, so that V is relatively accurate.

2.4 Dictionary for Higher Spatial Dimension

To generalize to higher spatial dimension, the cyclic permutations must be defined for multiple

indices. Given the vectorization of a two-dimensional array, w = vec(W ), where W = [Wi,j ] for
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1 ≤ i, j ≤ n, we must permute w with respect to cyclic permutations of the two-dimensional array

W . A permutation of an array preserves the cyclic structural condition if it is a cyclic permutation

of both the rows and the columns. In particular, a cyclic permutation of W ∈ Rn×n is equivalent to

sending each element Wi,j to Wγ(i),τ(j) for γ, τ ∈ Cn. In order to combine the n2-permuted arrays,

each permutation is vectorized and stored row-wise:

U(t0; k) = [vec(uγ(i),τ(j))(t0; k)]. (7)

As an example, consider u(t0; k) ∈ R3×3, where:

u(t0; k) =

u1,1(t0; k) u1,2(t0; k) u1,3(t0; k)

u2,1(t0; k) u2,2(t0; k) u2,3(t0; k)

u3,1(t0; k) u3,2(t0; k) u3,3(t0; k)

 .

One cyclic permutation of u(t0; k) is to take rows {1, 2, 3} to {2, 3, 1} and columns {1, 2, 3} to

{3, 1, 2},

ũ(t0; k) =

u2,3(t0; k) u2,1(t0; k) u2,2(t0; k)

u3,3(t0; k) u3,1(t0; k) u3,2(t0; k)

u1,3(t0; k) u1,1(t0; k) u1,2(t0; k)

 .

This construction has the additional benefit of not repeating elements in each row or column.

The higher-order monomials and the corresponding dictionary and velocity matrices (A and V ,

respectively, defined by Equation (6)) are built as before using Equation (7) as the input data.

As we increase the spatial dimension, the number of candidate functions grows; for example for

n = 15, the number of cubic candidate functions in two spatial dimensions is nearly two million!

For a general spatial dimension n, the process above is repeated, where one constructs all

permutations of the n-dimensional array u(t0; k) by applying cyclic permutations to each of the

coordinates separately. Each of the permuted n-dimensional arrays are vectorized and collected

(row-wise) as is done in Equation (7). The dictionary and velocity matrices are constructed as

above.

2.5 Restriction of the Data and Localization of the Dictionary Matrix

The dictionary matrix construction in the previous sections relies on the cyclic permutation of the

input. One may restrict the learning algorithm to a subset of the data and also localize the basis

to a patch in the domain. This is advantageous, for example, when only a subset of the data is

known to be accurate enough to approximate the velocity or when the initial data is only sufficiently

random in a subset of the domain.

The process of restricting the data and localizing the basis are technically distinct. The re-

striction to a subdomain will always be slightly larger than the localization of the basis terms.

To illustrate, consider the one-dimensional system with n > 9 points. We localize the basis by

assuming that the equation for the jth component, say uj , only depends on monomial terms ui for

i ∈ [j − 2, j + 2]. Therefore, the data matrix U(t0; k) defined by Equation (2) becomes a five point
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approximation:

U(t0; k)|5−pnts =



u1(t0; k) u2(t0; k) u3(t0; k) un−1(t0; k) un(t0; k)

u2(t0; k) u3(t0; k) u4(t0; k) un(t0; k) u1(t0; k)

u3(t0; k) u4(t0; k) u5(t0; k) u1(t0; k) u2(t0; k)
...

un−1(t0; k) un(t0; k) u1(t0; k) un−3(t0; k) un−2(t0; k)

un(t0; k) u1(t0; k) u2(t0; k) un−2(t0; k) un−1(t0; k)


.

Note that U(t0; k)|5−pnts is of size n × 5. The first two and last two rows assume that the data

is periodic, since information crosses the boundary between indices n and 1. Next, the restriction

of the data onto a subdomain is done by removing all rows that include points outside of the

subdomain. For example, the restriction onto the subdomain indexed by {3, 4, 5, 6, 7} yields:

U(t0; k)|5−pnts,restricted =


u3(t0; k) u4(t0; k) u5(t0; k) u1(t0; k) u2(t0; k)

u4(t0; k) u5(t0; k) u6(t0; k) u2(t0; k) u3(t0; k)

u5(t0; k) u6(t0; k) u7(t0; k) u3(t0; k) u4(t0; k)

u6(t0; k) u7(t0; k) u8(t0; k) u4(t0; k) u5(t0; k)

u7(t0; k) u8(t0; k) u9(t0; k) u5(t0; k) u6(t0; k)

 , (8)

which reduces the matrix to size 5 × 5 – the loss of additional rows are required so that all cyclic

permutations remain within the domain. It is important to note that the localized and restricted

data matrix no longer requires periodic data as long we are sufficiently away from the boundary.

The localized and restricted dictionary matrix is built by repeating the process in Equations (3)-(5),

but using the localized and restricted data matrix described above (see Equation (8)).

Localizing the dictionary elements provide additional benefits. For many dynamical systems,

information at a particular spatial point (or index) only interacts with information at its neighboring

points (for example, all neighbors within a prescribed distance). Thus, localization may remove

unnecessary complexities in the dictionary. The second is that the number of unknowns is severely

reduced when considering a subset of the candidate functions. This was observed in [34] where

localization reduced the inverse problem to a smaller (but still under-sampled) system and makes

the sampling rate nearly independent of the ambient dimension n. Lastly, the accuracy of the

approximation to the time derivative controls the error bound in our recovery problem. Thus,

if the dynamics are only accurate in a small region, it is better to restrict the learning to that

region. More data is usually beneficial; however, adding noisy and inaccurate measurements does

not increase the likelihood of recovering the correct governing model.

2.6 Bounded Orthogonal Dictionary

The recovery of the coefficient vector c from data V is better conditioned with respect to a dictionary

built from bounded orthogonal terms. For simplicity, we will detail this construction for data

u ∈ Rn, i.e. one spatial dimension with n-nodes. Consider a subset of the domain, D ⊂ Rn,
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endowed with a probability measure µ. Suppose that {φ1, φ2, . . . , φN} is a (possibly complex-

valued) orthonormal system on D,∫
D
φj(u)φk(u)dµ(u) = δj,k =

{
0 if j 6= k

1 if j = k

}
.

The collection {φ1, φ2, . . . , φN} is called a bounded orthonormal system with constant Kb ≥ 1 if:

‖φj‖∞ := sup
u∈D
|φj(u)| ≤ Kb for all j ∈ [N ]. (9)

Suppose that u(1), u(2), . . . , u(m) ∈ D are sampling points which are drawn i.i.d. with respect to the

orthogonalization measure µ, and consider the sampling matrix:

A`,k = φk(u
(`)), ` ∈ [m], k ∈ [N ].

An important example of a bounded orthonormal system is the Legendre polynomials. In high

dimensional systems, we will use the tensorized Legendre basis in place of their corresponding

monomials. We denote AL the dictionary matrix corresponding to the tensorized Legendre basis.

For example, if we consider the initial data samples u(t0) drawn i.i.d. from the uniform distribution

[−1, 1]n, then the Legendre polynomials (orthogonalization with respect to dµ = 1
2 dx) up to degree

three are:

1,
√

3ui,

√
5

2
(3u2i − 1), 3uiuj ,

√
7

2
(5u3i − 3ui),

√
15

2
(3u2i − 1)uj ,

√
27uiujuk.

If a function is s-sparse with respect to the standard quadratic basis, it will be (s + 1)-sparse

with respect to the Legendre basis, since the quadratic Legendre term,
√
5
2 (3u2i − 1), can add at

most a constant to the representation. If a function is s-sparse with respect to the standard cubic

basis, it will be (2s)-sparse with respect to the Legendre basis, since the terms
√
7
2 (5u3i − 3ui) and

√
15
2 (3u2i − 1)uj each add an additional s terms (in the worst-case scenario). We assume that s is

sufficiently small so that, for example, a (2s)-sparse system is still relatively sparse.

For the examples presented here, we focus on dynamical systems with (at most) cubic nonlin-

earity. The procedure above is not limited to this case. In fact, generalizing this construction to

systems which are sparse with respect to alternative bounded orthogonal system is fairly direct.

With high probability, a random matrix formed from bounded orthogonal terms will lead to a

well-conditioned inverse problem V = ALc if c is sufficiently sparse (see [7, 11]).

3 Sparse Optimization and Recovery Guarantee

Let AL be the dictionary in the Legendre basis up to third order. The size of AL is mnK×N , where

N is the number of basis terms. The linear system V = ALc is underdetermined if we assume that

m and K are small and fixed. To “invert” this system, we impose that the vector of coefficients c

11



is sparse, i.e., c has only a few non-zero elements. This can be written formally as a non-convex

optimization problem:

min
c
||c||0 subject to ALc = V,

where ||c||0 = card(supp(c)) is the `0 penalty which measures the number of non-zero elements

of c. In practice, the constraint is not exact since V is computed and contains some errors. The

noise-robust problem is:

min
c
||c||0 subject to ||ALc− V ||2 ≤ σ,

where σ > 0 is a noise parameter determined by the user or approximated from the data. The gen-

eral noise-robust `0 problem is known to be NP hard [11], and is thus relaxed to the `1 regularized,

noise-robust problem:

min
c′
||c′||1 subject to ‖ALc′ − V ‖2 ≤ σ, (L-BPσ)

which we refer to as the Legendre basis pursuit (L-BP) (for a general matrix A this is known as the

`1 basis pursuit). Note that c′ is the coefficients in the Legendre basis and c is the coefficients in the

standard monomial basis. If the system is sufficiently sparse with respect to the standard monomial

basis representation, then it will be sparse with respect to the Legendre basis representation, and

thus the formulation is consistent. The parameter σ is independent of the basis we use in the

dictionary matrix. In the ideal case, σ is the `2 error between the computed velocity and true

velocity. In practice, it must be estimated from the trajectories.

3.1 Recovery Guarantee and Error Bounds

To guarantee the recovery of sparse solution to the underdetermined linear inverse problem, we

use several results from random matrix theory. In general, it is difficult to recover c ∈ RN from

Ac = V , when V ∈ Rm̃, A ∈ Rm̃×N , and m̃ � N . In our setting, we know that the system is

well-approximated by an s-term polynomial (for small s), and thus the size of the support set of

c is relatively small. However, the locations of the nonzero elements (the indices of the support

set) are unknown. If the matrix A is incoherent and m̃ ∼ s log(N), then the recovery of the sparse

vector c from the `1 basis pursuit problem is possible. In particular, by leveraging the sparsity

of the solution c and the structure of A, compressive sensing is able to overcome the curse of

dimensionality by requiring far fewer samples than the ambient dimension of the problem. This

approach also yields tractable methods for high-dimensional problems.

We provide a theoretical result on the exact and stable recovery of high-dimensional orthogonal

polynomial systems with the cyclic condition via a probabilistic bound on the coherence of the

dictionary matrix.

Theorem 3.1. If Aj1 and Aj2 are two columns from the cyclic Legendre sampling matrix of order

p generated by a vector u ∈ Rn with i.i.d. uniformly distributed entries in [−1, 1] and 2p2 ≤ n, then

with probability exceeding 1−
(
e
p + e

2p2

)2p
n−2p/11, the following holds:

1. | 〈Aj1 , Aj2〉 | ≤ 12 p3 3p
√
n log n for all j1 6= j2 ∈ {1, 2, . . . , n},

12



2. |‖Aj1‖2 − n| ≤ 12 p3 3p
√
n log n for all j1 ∈ {1, 2, . . . , n}.

Proof. Given a vector u = (u1, . . . , un) ∈ Rn with i.i.d. uniformly distributed entries in [−1, 1], let

A ∈ Rn×N , with N =
(
n+p
p

)
, be the associated Legendre sampling matrix of order p, that is the

matrix formed by transforming the matrix in Equation (5) with k = 1 to the Legendre system. In

particular, the matrix is defined as:

A :=
[

U0
L | U1

L | U2
L | · · · | UpL

]
,

where U qL is a matrix generated from the tensorized Legendre basis of order q for 0 ≤ q ≤ p. For

examples, U0
L ∈ Rn is a vector of all ones,

U1
L :=


√

3u1
√

3u2 · · ·
√

3un√
3u2

√
3u3 · · ·

√
3u1

...
...

...√
3un

√
3u1 · · ·

√
3un−1

 ,

and

U2
L :=


√
5
2 (3u21 − 1) 3u1 u2 · · ·

√
5
2 (3u2n − 1)√

5
2 (3u22 − 1) 3u2 u3 · · ·

√
5
2 (3u21 − 1)

...
...

...√
5
2 (3u2n − 1) 3un u1 · · ·

√
5
2 (3u2n−1 − 1)

 .

Consider the random variable Yj1,j2 = 〈A·,j1 , A·,j2〉 which is the inner product between the columns

j1 and j2 of A, where A = [Ai,j ] for 1 ≤ i ≤ n and 1 ≤ j ≤ N . Denote the components of the sum

by:

Yi := Ai,j1 Ai,j2 ,

so that we can write the inner product as:

Yj1,j2 = 〈A·,j1 , A·,j2〉 =
n∑
i=1

Ai,j1 Ai,j2 =
n∑
i=1

Yi. (10)

The components Yi have several useful properties. The components of Yj1,j2 are uncorrelated,

in particular, they satisfy E[Yi] = 0 if j1 6= j2 and E[Yi] = 1 if j1 6= j2, when one normalizes the

columns. For fixed j1 and j2, the elements Yi = Ai,j1 Ai,j2 follow the same distribution for all

1 ≤ i ≤ n. This is a consequence of the cyclic structure of A, since each product Ai,j1 Ai,j2 has the

same functional form applied to different permutations of the data u.

Note that the L2(dµ)-normalized Legendre system of order p (i.e. the tensor product of univari-

ate Legendre polynomials up to order p) is a bounded orthonormal system with respect to dµ = 1
2dx.

In particular, each basis term is bounded in L∞([−1, 1]n) by Kb = 3p/2 (which can be achieved by

3p/2ui1 · · ·uip at the boundary of the domain). Therefore, |Yi| ≤ K2
b = 3p, |Yi − E[Yi]| = |Yi| ≤ 3p,

and Var(Yi) ≤ E(Y 2
i ) ≤ 9p.

13



Applying Theorem 6.1 from the Appendix, which is a rephrasing of Theorem 2.5 from [14], with

4 = 4p2, M = 3p, and Var(Yi) ≤ 9p, yields the following bound:

P (|Yj1,j2 − EYj1,j2 | ≥ τ) ≤ 2 exp

(
− τ2(1− p2/n)

8p2(9p n+ 3p−1 τ)

)
. (11)

By assumption we have
p2

n
≤ 1

2
, which happens, for example, when the maximal degree p is small

and the ambient dimension n is much larger than p. By setting τ = 12 p3 3p
√
n log n and using

(1− p2

n ) ≥ 1
2 and log n ≤ n, we have:

P
(
|Yj1,j2 − EYj1,j2 | ≥ 12 p3 3p

√
n log n

)
≤ 2 exp

(
− τ2

16p2(9p n+ 3p−1 τ)

)
≤ 2 exp

(
− 9p4 n log n

n+ 4 p3
√
n log n

)
≤ 2 exp

(
−9p4n log n

n+ 4 p3n

)
≤ 2 exp

(
− 9p4

1 + 4 p3
log n

)
. (12)

Equation (12) holds for all pairs (j1, j2), therefore taking a union bound over all N(N − 1)/2 pairs

and using the inequality:

N =

(
n+ p

p

)
≤
(
e(n+ p)

p

)p
≤
(
n

(
e

p
+

e

2p2

))p
= np

(
e

p
+

e

2p2

)p
,

for p ≥ 1 where e = exp(1), we have:

P
(
∃(j1, j2) : |Yj1,j2 − EYj1,j2 | ≥ 12 p3 3p

√
n log n

)
≤ N2 exp

(
− 9p4

1 + 4 p3
log n

)
≤ n2p

(
e

p
+

e

2p2

)2p

exp

(
− 9p4

1 + 4 p3
log n

)
≤
(
e

p
+

e

2p2

)2p

exp

((
2p− 9p4

1 + 4 p3

)
log n

)
≤
(
e

p
+

e

2p2

)2p

exp

(
−p

4 − 2p

4p3 + 1
log n

)
≤
(
e

p
+

e

2p2

)2p

n−2p/11, for p ≥ 2.

Theorem 3.1 provides an estimate on the coherence of the sampling matrix. We recall the

coherence-based sparse recovery result from [12, 10, 11] below.
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Theorem 3.2 (Related to Theorem 5.15 from [11]). Let A be an m×N matrix with `2-normalized

columns. If:

max
j 6=k
|〈Aj , Ak〉| <

1

2s− 1
, (13)

then for any s-sparse vector c ∈ CN satisfying v = Ac+ e with ||e||2 ≤ σ, a minimizer c# of L-BPσ
approximates the vector c with the error bound:

‖c− c#‖1 ≤ d s σ,

where d > 0 is a universal constant.

Using Theorem 3.2, we can show the exact recovery for the case were A is a cyclic Legendre

sampling matrix of order p.

Theorem 3.3. Let A ∈ Rn×N be the Legendre sampling matrix of order p generated by a vector

u ∈ Rn with i.i.d. uniformly distributed entries in [−1, 1], then with probability exceeding

1 −
(
e
p + e

2p2

)2p
n−2p/11, an s-sparse vector c ∈ CN satisfying v = Ac + e with ||e||2 ≤ σ can be

recovered by c#, the solution of L-BPσ, with the error bound:

‖c− c#‖1 ≤ d s σ,

for some universal constant d > 0 as long as:

n

log n
≥ 144 p6 9p s2.

In addition, if A is generated from K samples u(k) ∈ Rn with i.i.d. uniformly distributed entries

in [−1, 1] for 1 ≤ k ≤ K and:

K ≥ 144 p6 9p s2 log n

n
,

then with probability exceeding 1 −
(
e
p + e

2p2

)2p
n−2p/11, an s-sparse vector c ∈ CN satisfying v =

Ac+ e with ||e||2 ≤ σ can be recovered by c#, the solution of L-BPσ, with the error bound:

‖c− c#‖1 ≤ d s σ.

Proof. The normalized matrix can be written as:

Ā = AD,

where D is a diagonal matrix with Dj = ‖A·,j‖22, i.e. the diagonal contains the squared norm of the

columns of A. Then Ā has `2-normalized columns, and Equation (13) is satisfied with probability

exceeding 1−
(
e
p + e

2p2

)2p
n−2p/11 as long as:
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n

log n
≥ 144 p6 9p s2.

Thus by Theorem 3.2, we have the corresponding `1 error bound. The extension of this result to

multiple samples u(k) = (u(k)1, . . . , u(k)n) for 1 ≤ k ≤ K, follows directly as long as:

K ≥ 144 p6 9p s2 log n

n
.

The results in Theorem 3.3 are important on their own. In particular, the theorem shows that

for large enough dimension, one can recovery cyclic polynomial systems from only a few samples.

Returning to the problem of model selection for structured dynamical systems, we can apply

Theorem 3.3 to obtain the following recovery guarantee.

Theorem 3.4. Let {u(t0; k), . . . , u(tm−1; k)} and {u̇(t0; k), . . . , u̇(tm−1; k)} be the state-space and

velocity measurements, respectively, for 1 ≤ k ≤ K bursts of the n-dimensional evolution equation

u̇ = f(u). Assume that the components, fj, satisfy the cyclic structural condition and that they

have at most s non-zero coefficients with respect to the Legendre basis. Assume that for each k,

the initial data u(t0; k) is randomly sampled from the uniform distribution in [−1, 1]n (thus each

component of the initial vector are i.i.d.). Also, assume that the total number of bursts, K, satisfies:

K ≥ 144 p6 9p s2 log n

n
. (14)

Then with probability exceeding 1 −
(
e
p + e

2p2

)2p
n−2p/11, the vector c can be recovered exactly by

the unique solution to Problem (L-BPσ). In addition, under the same assumptions as above, if

the time derivative is approximated within η-accuracy in the scaled `2 norm, i.e. if ˜̇u(t0; k) is the

approximation to the time derivative and:√√√√ 1

K

K∑
k=1

∣∣∣˜̇u(t0; k)− u̇(t0; k)
∣∣∣2 ≤ η,

then by setting σ =
√
Kη and using the submatrix of AL consisting of only the initial data, any

particular vector c is approximated by a minimizer c# of Problem (L-BPσ) with the following error

bound:

‖c− c#‖1 ≤ d s σ, (15)

where d is a universal constant.

Theorem 3.4 provides an `1 error bound between the learned coefficients and the true sparse
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coefficients. If the nonzero elements of c# are sufficiently large with respect to the error bound,

then the support set containing the s-largest coefficients coincides with the true support set.

Proposition 3.5. Assume that the conditions of Theorem 3.4 hold. Let S be the support set of the

true coefficients c, i.e. S := supp(c), and let S# be the support set of the s-largest (in magnitude)

of c#, a minimizer of Problem (L-BPσ). If

σ <

min
j∈S
|cj |

2 d s
, (16)

where d is the same universal constant as in Equation (15), then S# = S.

Proof. This proposition is a consequence of the recovery bound in Equation (15):

‖c# − c‖1 ≤ d s σ.

By assumption, σ satisfies Equation (16), then the maximum difference between the true and

approximate coefficients is:

max
j
|cj − c#j | ≤ ‖c− c

#‖1 ≤ d s σ <
1

2
min
j∈S
|cj |.

Thus, for any j ∈ S, we have |c#j | >
1
2 min
j∈S
|cj |, and for any j ∈ Sc, we have |c#j | ≤

1
2 min
j∈S
|cj |.

Therefore, S# corresponds to the support set of |c#j | >
1
2 min
j∈S
|cj |, which is identically S.

Proposition 3.5 provides validation for post-processing the coefficients of Problem (L-BPσ),

in particular, if the noise is small enough, we could remove all but the s largest (in magnitude)

coefficients in c#.

It is worth noting that it is possible to recover the system from one time-step. This is more

probable as the dimension n of the problem grows. The sampling bound improves as n grows,

since for large n, we have n� s2 log n. Thus, for large enough n, one random sample is sufficient.

Furthermore, if s2 � n, we can recover the system from only one time step and from only a subset

ñ < n of the coordinate equation, where ñ ∼ s2. Therefore, one just needs to have ñ accurate

estimations of velocities.

Theorem 3.4 also highlights an important aspect of the scaling. Without any additional as-

sumptions, one is limited to lower-order polynomials, since the numbers of samples required may

be too large (since Kb grows rapidly). However, with additional assumptions, for example the cyclic

structural condition, the recovery becomes nearly dimension-free, which as a side-effect, allows for

higher-order polynomials more easily.

Note that if the initial data follows another random distribution, then one can construct the

corresponding orthogonal polynomial basis. For example, we could assume that the initial data has

i.i.d. components sampled from the Chebyshev measure on [−1, 1]n or an interpolating measure

between the uniform measure and the Chebyshev measure [27].
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4 Numerical Method

The constrained optimization problem (L-BPσ) can be solved using the Douglas-Rachford algorithm

[15, 8]. To do so, we first define the auxiliary variable w with the constraints:

(w, c) ∈ K := {(w, c)| w = Ac} and w ∈ Bσ(V ) := {w | ‖w − V ‖2 ≤ σ},

Equation (L-BPσ) can be rewritten as an unconstrained minimization problem:

min
(w,c)

F1(w, c) + F2(w, c), (17)

where the auxiliary functions F1 and F2 are defined as:

F1(w, c) := ‖c‖1 + IBσ(V )(w), and F2(w, c) := IK(w, c).

Here IS denotes the indicator function over a set S, i.e.,

IS(w) :=

{
0, if w ∈ S,
∞, if w /∈ S.

The utility of writing the optimization problem in this form is that both auxiliary functions have a

simple and explicit proximal operators, which will be used in the iterative method. The proximal

operator for a function F (x) is defined as:

proxγF (x) := argmin
y

{
1

2
‖x− y‖2 + γ F (y)

}
,

where γ > 0 (to be specified later). The proximal operator of F1(w, c) is:

proxγF1
(w, c) = argmin

(y,d)

{
1

2
‖w − y‖2 +

1

2
‖c− d‖2 + γ‖d‖1 + γIBσ(V )(w)

}
=

(
argmin

y

{
1

2
‖w − y‖2 + IBσ(V )(w)

}
, argmin

d

{
1

2
‖c− d‖2 + γ‖d‖1

})
=
(

projBσ(V )(w), Sγ(c)
)
,

where the projection onto the ball can be computed by:

projBσ(V )(w) :=

 w, if w ∈ Bσ(V ),

V + σ
w − V
‖w − V ‖2

, if w /∈ Bσ(V ).
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and the soft-thresholding function S with parameter γ is defined (component-wise) as:

[Sγ(c)]j =

 cj − γ
cj
|cj |

, if |cj | > γ,

0, if |cj | ≤ γ.

Similarly, the proximal operator for F2 is:

proxγF2
(w, c) = argmin

(y,d)

{
1

2
‖w − y‖2 +

1

2
‖c− d‖2 + IK(w, c)

}
=
(
A(I +ATA)−1(c+ATw), (I +ATA)−1(c+ATw)

)
.

To implement the proximal operator for F2, we pre-compute the Cholesky factorization (I+ATA) =

LLT and use forward and back substitution to compute the inverse at each iteration. This lowers

the computational cost of each of the iterations. The iteration step for the Douglas-Rachford

method is:
(w̃k+1, c̃k+1) =

(
1− µ

2

)
(w̃k, c̃k) +

µ

2
rproxγF2

(
rproxγF1

(
w̃k, c̃k

))
,

(wk+1, ck+1) = proxγF1
(w̃k+1, c̃k+1),

(18)

where rproxγFi(x) := 2proxγFi(x) − x for i = 1, 2. The second step of Equation (18) can be

computed at the last iteration and does not need to be included within the main iterative loop.

The approximation (wk, ck) converges to the minimizer of Problem (17) for any γ > 0 and µ ∈ [0, 2].

An outline of the numerical method is provided Algorithm 1. The data, u(t; k) ∈ Rn, is given

at two consecutive time-steps t = t0 and t = t1, and each component of u(t0; k) is i.i.d. uniform.

The number of samples must satisfy Equation (14). First, the data must be arranged into the data

matrix U using the cyclic permutation construction, as detailed in Sections 2.3, 2.4, and 2.5. Then,

the data matrix is transformed so that each element is ranged in the interval [−1, 1]. Using the

transformed data matrix, the Legendre dictionary matrix AL is computed using the basis described

in Section 2.6 and is normalized so that each column has unit `2-norm. The coefficients with respect

to the normalized Legendre dictionary is computed by solving Problem (L-BPσ) via the Douglas-

Rachford method. The last step is to map the coefficients with respect to the normalized Legendre

dictionary to the standard monomial basis. As an optional step, the problem Ac = V with respect

to the monomial dictionary can be re-solved by restricting it to the support set computed from the

main algorithm. In particular, let c be the output from Algorithm 1 and S = supp(c), then the

solution can be refined by solving the reduced system A|S c̃ = V (see also Proposition 3.5).

5 Computational Results

The method and algorithm are validated on a high-dimensional ODE as well as two finite dimen-

sional evolution equations that arise as the discretization of nonlinear PDEs with synthetic data. In

each case, the initial data is perturbed by a small amount of uniform noise. For the 2D examples,

it is assumed that there exists a block of size n×n of the data which is nearly uniformly distributed
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Algorithm 1 Learning Sparse Dynamics

Data: Given: u(t; k) ∈ Rn for t = t0 and t = t1. The number of bursts k is either equal to 1 or
very small. The number of nodes n does not need to be large.

Result: Coefficients of the governing equation c ∈ RN .
Step 1: Construct data matrix U as in Sections 2.3, 2.4, and 2.5.
Step 2 (optional): Add Gaussian noise to U , i.e. U 7→ U + η, where η ∼ N (0, var).
Step 3: Construct the velocity vector V from using U from the previous step.
Step 4: Transform U 7→ aU + b so that each elements is valued in [−1, 1].
Step 5: Construct the dictionary matrix AL using U from Step 4; see Section 2.6.
Step 6: Normalize each column of AL to have unit `2-norm.
Step 7: Apply the Douglas-Rachford algorithm to solve Problem (L-BPσ).
Input: Set σ > 0. Compute the Cholesky decomposition of (I +ATLAL). Initialize w̃0 and c̃0.
while the sequence {c̃k} does not converge do

Update w̃k+1 and c̃k+1 based on Equation (18).
end

Output: cL := ck

Step 8: Map the coefficients cL obtained from Step 5 to the coefficients with respect to the standard
monomial basis on the original U as constructed in Step 1.
Step 9 (optional): The coefficients can be “debiased” by solving the system A|S c̃ = V , where
A|S is the submatrix of A consisting of columns of A indexed by S := supp(c) (from Step 6; see
also Proposition 3.5).

in [−1, 1]n×n (possibly up to translation and rescaling). Similarly for the high-dimensional ODE

case, one can restrict to a subset of the components. Therefore, the input data to Problem (L-BPσ)

is restricted to the block (see Figure 1; the restriction is described in Section 2.5). It is important

to note that the data restricted onto the blocks are not necessarily uniformly random; they may

contain some slope. However, we assume that the dominate statistics are close to the uniform mea-

sure. In each of the examples, we apply the Douglas-Rachford algorithm described in Section 4,

with the parameter σ > 0 determined beforehand.

5.1 The Lorenz 96 Equation

For the first example, we consider the Lorenz 96 equation:

u̇j = −uj−2 uj−1 + uj−1 uj+1 − uj + F, j = 1, 2, . . . , n,

for j = 1, . . . , n with periodic conditions u−1 = un−1, u0 = un, and un+1 = u1. We simulate the

data using the forward Euler method with n = 128 and F = 8. The simulation is performed with

a finer time-step dt = 5× 10−5, but we only record the solution at the two time-stamps, the initial

time t0 = 0 and the final time t1 = 10−2. Let

u(t) =
(
u1(t), u2(t), . . . , un(t)

)T
∈ Rn,
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(a) u at t0 (b) u at t1

(c) Sub-block 1 at t0 (d) Sub-block 1 at t1

(e) Sub-block 2 at t0 (f) Sub-block 2 at t1

Figure 1: This figure includes a visual description of what the algorithm sees as its input. The first
column corresponds to the system at t0 and the second column corresponds to the system at t1.
The first row is the full state, which is not known to the user; the two highlighted blocks are what
is actually given. In the second row, the first block and its evolution are shown and in the third
row the second block and its evolution is shown.
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and set the initial data to be u(0) = ν, where ν is sampled from the uniform distribution in

[−1, 1]n. Assume that the input data is corrupted by additive Gaussian noise, and the resulting

measurements are denoted by ũ, i.e.,

ũ = u+ η, η ∼ N (0, var).

To construct the velocity vector V , we use the following approximation of u̇:

u̇i(t0) :=
ũi(t1)− ũi(t0)

dt
, i = 1, 2, . . . , n.

In this example, we vary the variance of the additive noise and the size of the dictionary, and

compare the accuracy of the recovery under different noise levels and dictionary sizes. The results

are provided in Section 5.4.

5.2 Viscous Burgers’ Equation

Consider a 2D variant of the viscous Burgers’ Equation:

ut = α∆u+ uux + uuy,

where ∆ is the Laplacian operator and is defined by ∆u = uxx + uyy, and α > 0 is the viscosity.

The equation is spatially invariant and well-posed, and thus there exists a discretization that yields

a finite dimensional system that satisfies the cyclic structural condition. In particular, we simulate

the data using the finite dimensional semi-discrete system:

u̇i,j = α
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
+

(ui+1,j)
2 − (ui−1,j)

2

4h
+

(ui,j+1)
2 − (ui,j−1)

2

4h
,

for i, j = 1, 2, . . . , n, where h is the grid spacing of the spacial domain, and n = 1/h. For α large

enough (relative to h), this semi-discrete system is convergent. Note that this nonlinear evolution

equation is 9-sparse with respect to the standard monomial basis in terms of ui,j . We simulate

the data using the discrete system above with a 128 × 128 grid, i.e. h = 1/128, and α = 10−2.

This choice of α allows for both nonlinear and diffusive phenomena over the time-scale that we are

sampling. The simulation is performed with a finer time-step dt = 5 × 10−8, but the solution is

only recorded at the two time-stamps, the initial time t0 = 0 and the final time t1 = 10−5.

The results appear in Figure 2. The initial data is plotted in Figures 2(a)-2(b), and is given by:

u0(x, y) = 50 sin(8π(x− 0.5)) exp

(
−(x− 0.5)2 + (y − 0.5)2

0.05

)
+ ν,

where ν is sampled from the uniform distribution in [−1, 1]128×128. To construct the velocity vector
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V , we use the following approximation of u̇:

u̇i,j(t0) :=
ui(t1)− ui(t0)

dt
, i, j = 1, 2, . . . , n. (19)

The input to the algorithm is a block of size 7 × 7. For display purpose, we mark in Figure 2(a)

the location of the block which is used as the input. The learned equation is given by:

u̇i,j = −655.9404ui,j + 163.3892ui+1,j + 163.5089ui−1,j + 163.4859ui,j+1 + 163.5551ui,j−1

+ 31.9211 (ui+1,j)
2 − 31.7654 (ui−1,j)

2 + 31.7716 (ui,j+1)
2 − 31.8849 (ui,j−1)

2 , (20)

compared to the exact equation:

u̇i,j = −655.36ui,j + 163.84ui+1,j + 163.84ui−1,j + 163.84ui,j+1 + 163.84ui,j−1

+ 32 (ui+1,j)
2 − 32 (ui−1,j)

2 + 32 (ui,j+1)
2 − 32 (ui,j−1)

2 . (21)

The correct 9-terms are selected from the 351 possible candidate functions. To compare between

the learned and true evolutions, we simulate the two systems up to the time of the shock formation,

which is well beyond the interval of learning. Note that the qualitative difference between the two

shocks is small.

5.3 Two Component Cubic Reaction-Diffusion Systems

Consider the 2D Gray-Scott Equation, which models a reaction-diffusion system:

ut = ru∆u− uv2 + f(1− u),

vt = rv∆v + uv2 − (f + k)v,

where ru and rv are the diffusion rates of u and v, respectively, f is the processing rate of u,

and k represents the rate of conversion of v. We simulate the data using the finite dimensional

semi-discrete system:

u̇i,j = ru∆h,9ui,j − ui,j (vi,j)
2 + f (1− ui,j) ,

v̇i,j = rv∆h,9vi,j + ui,j (vi,j)
2 − (f + k)vi,j ,

for i, j = 1, 2, . . . , n, where h is the grid spacing of the spacial domain, n = 1/h, and ∆h,9 denotes

the nine-point discrete Laplacian operator which is defined by:

∆h,9ui,j =
2

3h2
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 5ui,j)

+
1

6h2
(ui+1,j+1 + ui−1,j+1 + ui−1,j+1 + ui−1,j−1) .
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Note that this nonlinear evolution equation is 12-sparse with respect to the standard monomial

basis in terms of ui,j and is 11-sparse in terms of vi,j .

We first present the implementation details for constructing Problem (L-BPσ) in this setting

(a system of PDEs). Given the initial data u(t0; k), v(t0; k) ∈ Rn×n, construct the data matrix

(a) Initial data u0 (b) Initial data u0

(c) True evolution (d) Learned evolution

Figure 2: The Burgers’s Equation: (a) The initial data u0 in a planar view; the sub-block in
the boxed region is used as the input to the algorithm. (b) The initial data u0 in a 3D view. (c)
The true evolution at T = 10−3 using Equation (21). (d) The learned evolution at T = 10−3 using
Equation (20).
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W (t0; k) as follows:

W (t0; k) =


u1,1(t0; k) u1,2(t0; k) · · · un,n(t0; k) v1,1(t0; k) v1,2(t0; k) · · · vn,n(t0; k)

u1,2(t0; k) u1,3(t0; k) · · · un,1(t0; k) v1,2(t0; k) v1,3(t0; k) · · · vn,1(t0; k)

u1,3(t0; k) u1,4(t0; k) · · · un,2(t0; k) v1,3(t0; k) v1,4(t0; k) · · · vn,2(t0; k)
...

...
. . .

...
...

...
. . .

...

un,n(t0; k) un,1(t0; k) · · · un−1,n−1(t0; k) vn,n(t0; k) vn,1(t0; k) · · · vn−1,n−1(t0; k)

 .

Localization and restriction of W (t0; k) are performed with respect to both u and v independently.

For example, with n > 7, the restriction onto the indices (i, j) ∈ {3, 4, 5}2 is given by:

W (t0; k)|9−pnts,restricted =
[
U(t0; k)|9−pnts,restricted | V (t0; k)|9−pnts,restricted

]
, (22)

where U(t0; k)|9−pnts,restricted is given by:
u3,3(t0; k) u3,4(t0; k) u3,2(t0; k) u4,3(t0; k) u4,4(t0; k) u4,2(t0; k) u2,3(t0; k) u2,4(t0; k) u2,2(t0; k)

u3,4(t0; k) u3,2(t0; k) u3,3(t0; k) u4,4(t0; k) u4,2(t0; k) u4,3(t0; k) u2,4(t0; k) u2,2(t0; k) u2,3(t0; k)
...

u5,5(t0; k) u5,6(t0; k) u5,4(t0; k) u6,5(t0; k) u6,6(t0; k) u6,4(t0; k) u4,5(t0; k) u4,6(t0; k) u4,4(t0; k)

 ,

and V (t0; k)|9−pnts,restricted is defined in the same way using the information of v(t0; k). Thus, we

have reduced the size of the data matrix from n × (2n) to 9 × 18. The localized and restricted

dictionary matrix is then built by repeating the process in Equations (3)-(5), but using the localized

and restricted data matrix described above (see Equation (22)). The velocity vectors, Vu for u̇i,j and

Vv for v̇i,j , are constructed as in Equation (6), and u̇i,j and v̇i,j are approximated using Equation

(19). Let AL be the (localized and restricted) dictionary in the Legendre basis. With the given

system of PDEs, we then need to solve two basis pursuit problems:

min
c′u
||c′u||1 subject to ‖ALc′u − Vu‖2 ≤ σ,

and,

min
c′v
||c′v||1 subject to ‖ALc′v − Vv‖2 ≤ σ,

where c′u and c′v are the coefficients for the governing equations for u̇i,j and v̇i,j , respectively, in the

Legendre basis. Note that AL is the same between each of the basis pursuit problems above since

each equation depends on both u and v, but the outputs (c′u and c′v) are cyclic independently. Its

worth noting that this example extends beyond the theoretical results, since the entire governing

equation is not cyclic, but it is cyclic in the components (u, v).

We simulate the data using the discrete system above with a 128 × 128 grid, i.e. h = 1/128,

and parameters ru = 0.3, rv = 0.15. We consider three different parameter sets for the Gray-
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Scott model, by varying the values of f and k. The simulation is performed with a finer time-step

dt = 10−6, but the solution is only recorded at two time-stamps, the initial time t0 = 0 and the

final time t1 = 10−5.

The initial data is shown in Figure 3, and is given by:

u0(x, y) = 1 + 0.2ν, v0(x, y) = IH(x, y) + 0.02ν,

where ν is sampled from the uniform distribution in [−1, 1]128×128, and H ⊂ [0, 1]2 represented the

H-shaped region in Figure 3(d). The input to the algorithm is a block of u and the corresponding

block of v, each of size 7 × 7. For display purposes, we mark the block’s location in each of

Figures 3(a) and 3(d).

For the first example, we use the parameters f = 0.055 and k = 0.063, which creates a “coral”

(a) Initial data u0 (b) Sub-block of u at t0 (c) Sub-block of u at t1

(d) Initial data v0 (e) Sub-block of v at t0 (f) Sub-block of v at t1

Figure 3: Initial Data for the Gray-Scott Equation: (a)(d) The initial data u0 and v0; the
sub-blocks in the boxed regions are used as the input to the algorithm. (b)(c) The sub-block of u
at time-stamps t0 and t1, whose measurements are used to compute u̇i,j . (e)(f) The sub-block of v
at time-stamps t0 and t1, whose measurements are used to compute v̇i,j .
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pattern. The visual results are given in Figure 4. The learned equations are:

ut = 0.30000∆u− 1.00000uv2 − 1.05500u+ 0.05501,

vt = 0.15000∆v + 1.00000uv2 − 0.61801v − 0.00001,
(23)

compared to the exact equations:

ut = 0.3∆u− uv2 − 1.055u+ 0.055,

vt = 0.15∆v + uv2 − 0.618v.
(24)

To compare between the learned and true evolutions, we simulate the two systems up to time-stamp

T = 5000, well past the interval of learning. It is worth nothing that two evolutions are close (see

Section 5.4 for errors).

(a) True evolution of u (b) Learned evolution of u (c) Difference in u

(d) True evolution of v (e) Learned evolution of v (f) Difference in v

Figure 4: The Gray-Scott Equation, Example 1: (a)(d) The true evolution at T = 5000
using Equation (24). (b)(e) The learned evolution at T = 5000 using Equation (23). (c)(f) The
difference between the true evolution and the learned evolution. Note that the patterns are very
similar except at a small region near the center.
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In the second example, we use the parameters f = 0.026 and k = 0.053, which yields a hexagonal

pattern. The visual results are given in Figure 5. The learned equations is:

ut = 0.30000∆u− 1.00000uv2 − 1.02600u+ 0.02601,

vt = 0.15000∆v + 1.00001uv2 − 0.57901v − 0.00001,
(25)

compared to the exact equations:

ut = 0.3∆u− uv2 − 1.026u+ 0.026,

vt = 0.15∆v + uv2 − 0.579v.
(26)

As before, to compare between the learned and true evolutions, we simulate the two systems up

to time-stamp T = 2500, beyond the learning interval. Small errors in the coefficient lead to some

error in the pattern formulation; however, visually the simulations are similar.

(a) True evolution of u (b) Learned evolution of u (c) Difference in u

(d) True evolution of v (e) Learned evolution of v (f) Difference in v

Figure 5: The Gray-Scott Equation, Example 2 (a)(d) The true evolution at T = 2500 using
Equation (26). (b)(e) The learned evolution at T = 2500 using Equation (25). (c)(f) The difference
between the true evolution and the learned evolution. The overall qualitative structures are similar.
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The last example uses the parameters f = 0.018 and k = 0.051, which leads to “U” shaped

patterns. The visual results are given in Figure 6. The learned equations are:

ut = 0.30000∆u− 1.00000uv2 − 1.01800u+ 0.01801,

vt = 0.15000∆v + 1.00001uv2 − 0.56902v,
(27)

compared to the exact equations:

ut = 0.3∆u− uv2 − 1.018u+ 0.018,

vt = 0.15∆v + uv2 − 0.569v.
(28)

As before, we compare the learned and true evolutions, by simulating the two systems up to time-

stamp T = 1000, well beyond the learning interval. The location of the “U” shaped regions are

correct; however, there is some error in their magnitude.

5.4 Discussion

In all of the examples found in Sections 5.1-5.3, the linear systems are under-determined. Never-

theless, the model selected and parameters learned via Problem (L-BPσ) yield relatively accurate

results. The parameters used in the computational experiments in Sections 5.1-5.3 are summarized

in Tables 1 and 2, and the corresponding errors are displayed in Tables 3 and 4.

In Tables 3 and 4(a), we measure the relative error in the learned model by comparing the

coefficients:

Ec, LBP =
‖cexact − c′‖`2
‖cexact‖`2

,

where cexact is the exact coefficient vector corresponding to the underlying system and c′ is the

solution of Problem (L-BPσ). The relative errors in the coefficients are within the theoretical

bounds. Thus from limited measurements, we are able to extract the governing equations with

high-accuracy.

In Table 4(b), we display the relative error between the learned solution and the exact solution:

Eu =
||uexact(T )− u(T )||`2
||uexact(T )||`2

,

where uexact(T ) is the true evolution at the final time T , and u(T ) is the evolution at the final time

T with governing equation determined by c. The final time T is outside of the interval used to learn

the coefficients. In both Burgers’ and Gray-Scott’s equation, the relative error is within expectation.

Note that small errors in the coefficients accumulate rapidly in these evolution equations, since the

locations of sharp transitions in the solution will are sensitive to the coefficients.

In Table 3, we display the relative errors Ec, LBP for the Lorenz 96 Equation with different noise

levels and dictionary sizes. In all the examples, a large noise level and a small sampling rate lead

to a higher relative error. As the sampling rate increases and the noise level decreases as well as
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the relative error. However, it is worth noting that the support sets are correctly identified.

Based on Theorem 3.4, for sufficient large block-sizes, it is possible to learn the correct coeffi-

cients with only one burst and one time-step. In Table 5, we display the relative errors Ec, LBP for

the Burgers’ Equation and the Gray-Scott Equation using one burst and varying the block-sizes.

The block-sizes are chosen so that the linear systems remain under-determined (see second columns

in Table 5). In both examples, starting with a small block size leads to a high relative error, but

as the block-size increases the relative error decreases.

For comparison, we calculate the least-square solution:

cls = argmin
c
||Ac− V ||2,

where A is the dictionary in the monomial basis and V is the velocity matrix. The relative error

(a) True evolution of u (b) Learned evolution of u (c) Difference in u

(d) True evolution of v (e) Learned evolution of v (f) Difference in v

Figure 6: The Gray-Scott Equation, Example 3: (a)(d) The true evolution at T = 1000
using Equation (28). (b)(e) The learned evolution at T = 1000 using Equation (27). (c)(f) The
difference between the true evolution and the learned evolution. The location of the regions are
nearly identical. The errors are due to a difference in magnitude.
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associated with the least-squares solution is denoted by Ec,LS. In Table 6, we display Ec, LS for

the Burgers’ Equation and the Gray-Scott Equation corresponding to the same examples found in

Table 5. The least-squares solution produces large errors since the resulting coefficient vector is

dense (overfitted), leading to meaningless results.

Table 1: Parameters used in the computational qualitative experiments in Section 5.1.

(a) Parameters in matrix constructions.

The Lorenz 96 Equation
Example 1 Example 2 Example 3

Block size 25 25 45

Number of bursts 2 4 4

Localization of the dictionary 10 10 10

Basis 3rd order Legendre 3rd order Legendre 3rd order Legendre

Size of the dictionary n×N 50× 2040 100× 2024 204× 2024

(b) Parameters in Problem (L-BPσ).

The Lorenz 96 Equation
Example 1 Example 2 Example 3

σ
var=0.2% 0.3515 0.53575 0.4075
var=0.1% 0.3607 0.5074 0.7143
var=0.05% 0.3380 0.5002 0.6888

Table 2: Parameters used in the computational qualitative experiments in Sections 5.2-5.3.

(a) Parameters in matrix constructions.

The Burgers’ Equation The Gray-Scott Equation

Block size 7× 7 7× 7

Number of bursts 4 3

Localization of the dictionary 5× 5 3× 3

Basis 2nd order Legendre 3rd order Legendre

Size of the dictionary n×N 196× 351 147× 1330

(b) Parameters in Problem (L-BPσ). For the Gray-Scott Examples, the top value is the u-
component and the bottom value is the v-component.

The Burgers’ Equation
The Gray-Scott Equation

Example 1 Example 2 Example 3

σ 26.3609
5.5707× 10−5 6.3055× 10−5 6.3321× 10−5

5.2655× 10−5 6.0194× 10−5 6.0579× 10−5
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Table 3: Errors associated with the computational experiments in Section 5.1.
The Lorenz 96 Equation

Example 1 Example 2 Example 3

Size of the dictionary n×N 50× 2040 100× 2024 204× 2024

Sampling rate n/N × 100% 2.47% 4.94% 10.08%

Ec, LBP

var=0.2% 0.0276 0.0201 0.0185
var=0.1% 0.0265 0.0197 0.0175
var=0.05% 0.0254 0.0170 0.0165

Table 4: Errors associated with the computational experiments in Sections 5.2-5.3. For the Gray-
Scott examples, the top value is the u-component and the bottom value is the v-component.

(a) Relative error, Ec, LBP

Burgers’ Equation
Gray-Scott Equation

Example 1 Example 2 Example 3

0.0102
1.3775× 10−5 1.6550× 10−5 1.6382× 10−5

1.6284× 10−5 1.5525× 10−5 1.5362× 10−5

(b) Relative error, Eu

Burgers’ Equation
Gray-Scott Equation

Example 1 Example 2 Example 3

0.0038
0.0353 0.0856 0.0132
0.1416 0.1221 0.0453

Table 5: Relative error Ec, LBP with one burst and varying block-sizes.

(a) Burgers’ Equation

Block size Size of the dictionary Ec, LBP

7× 7 49× 351 0.3285

9× 9 81× 351 0.0212

11× 11 121× 351 0.0187

15× 15 225× 351 0.0100

(b) The Gray-Scott Equation.

Block size Size of the dictionary
Ec, LBP

u-component v-component

15× 15 225× 1330 7.1278× 10−1 2.6170× 10−1

21× 21 441× 1330 2.0613× 10−4 2.4336× 10−4

27× 27 729× 1330 1.4427× 10−5 2.4541× 10−5
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Table 6: Relative error Ec, LS with one burst and varying block sizes.

(a) Burgers’ Equation

Block size Size of the dictionary Ec, LS
7× 7 49× 351 1.3633

9× 9 81× 351 1.7804

11× 11 121× 351 2.8562

(b) The Gray-Scott Equation.

Block size Size of the dictionary
Ec, LS

u-component v-component

15× 15 225× 1330 5.8483 7.7621

21× 21 441× 1330 6.7622 7.5338

27× 27 729× 1330 5.9542 2.9482

6 Conclusion and Future Directions

In this work, we presented an approach for extracting the governing equation from under-sampled

measurements when the system has structured dynamics. We showed that permuting i.i.d randomly

sampled bursts and restructuring the associated dictionary yields an i.i.d. random sampling of a

bounded orthogonal system, thus using a Bernstein-like inequality with a coherence condition, we

show that the recovery is exact and stable. In addition, when the noise is sufficiently low, then

the support of the coefficients can be recovered exactly, i.e. the terms in the governing equation

can be exactly identified. The computational examples also highlight ways to extend the learning

approach to larger systems and multi-component systems (where the cyclic structural condition

must be carefully applied).

The structural assumption is valid for many dynamic processes, for example, when the data

comes from a spatially-invariant dynamic system. In the algorithm and results, we made the

assumption that one can sample a sub-block of the data to reasonable accuracy, in order to calculate

derivatives accurately and so that the dictionary remains a bounded orthogonal system with respect

to the given sampling measure. This is a weak assumption since the size of the sub-block is small.

Thus, given noisy data, the sub-block could be the result of a pre-processing routine that has de-

noised and down-sampled the data (with the removal of outliers). The details on the pre-processing

requirements is left for future investigations.

In future work, we would like to relax the requirements from cyclic structures to more general

structures, while maintaining the very low-sampling requirement. An open question in the burst

framework is how to quantify the trade-off between the burst size and the number of trajectories.

This was not discussed in the numerical results but is of intrinsic importance to learning governing

equations. In particular, if one has freedom to sample the initial condition but is limited by the

number of samples along each trajectory or if one has freedom to sample along trajectories but is

limited by the number of trajectories then it would be helpful to have theoretical estimates on the

recovery rates. Lastly, the parameter σ > 0 used in the constraint must be estimated from the
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data. It may be possible to learn σ for a given dataset.
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Appendix

Since the data is not independent, we cannot directly apply random matrix theory utilizing the

standard Bernstein inequality. There are large deviations theorems for sums of “locally dependent”

centered random variables. We recall and rephrase Theorem 2.5 from [14] for our purposes.

Theorem 6.1 (Theorem 2.5 from [14]). Suppose that Y =
n∑
i=1

Yi and that all Yi have the same

distribution with Yi − EYi ≤ M for some M > 0. Suppose further that S = nV ar(Yi), and

4 = 40 + 1, where 40 is the maximal degree of the dependency graph Γ for {Yi}. Then

P (Y − EY ≥ τ) ≤ exp

(
−τ

2(1−4/(4n))

24(S +Mτ/3)

)
. (29)

Note that when 4 = 1, this reduces essentially to the standard Bernstein inequality for i.i.d.

random variables. For our problem, the dependency graph Γ has an edge between two vertices Yi
and Yj if they have an index in common.
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