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Abstract. We formulate a penalty method for the obstacle problem associated with a nonlinear
variational principle. It is proven that the solution to the relaxed variational problem (in both the
continuous and discrete settings) is exact for finite parameter values above some calculable quantity.
To solve the relaxed variational problem, an accelerated forward-backward method is used, which
ensures convergence of the iterates, even when the Euler-Lagrange equation is degenerate and non-
differentiable. Several nonlinear examples are presented, including quasi-linear equations, degenerate
and singular elliptic operators, discontinuous obstacles, and a nonlinear two-phase membrane problem.
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1. Introduction
The obstacle problem is a classical model for the equilibrium state of an elastic

membrane which is displaced by a physical obstacle. Typically, these problems are
modeled via a variational principle along with an inequality constraint that represents
the physical obstacle. Obstacle problems arise from many physical systems including
elastic-plastic torsion, phase transition, membrane-fluid interaction, and shallow ice
sheets [40, 33, 39, 70].

One general form for the obstacle problem is:

min
u≥ϕ

∫
Ω

L(x,u,∇u)dx.

where Ω⊂RN , ϕ is the obstacle, and L is the Lagrangian. The Euler-Lagrange equation
for the constrained problem yields a variational inequality, and the boundary of the
contact set {u=ϕ} is a free boundary, see for example [40, 33]. Classical theory on the
obstacle and related free boundary problems can be found in [19, 45, 17, 14, 16, 30, 15,
18, 54]. Some recent theory on the obstacle problem for fractional Laplacian include
[65, 20] and integro-differential operators [21].

Numerical methods for the obstacle problem typically focus on solving the varia-
tional inequality that appears from the first variation of the constrained problem. In
[36], the variational inequality is solved by using a multigrid algorithm. In [37], a piece-
wise linear finite element method with a multilevel preconditioner is used to solve the
problem. A predictor-corrector continuation method to solve the variational inequality
is presented in [28]. Another piecewise linear finite element solver for elliptic variational
inequalities using monotone multigrid methods can be found in [41, 42]. In [26], a piece-
wise linear finite element method applied to elliptic obstacle problems is constructed
with the use of positivity preserving interpolation. In [43], a posteriori error estimates
for self-adjoint elliptic obstacle problems are presented. The authors included an extra
term, the sum of local residuals on certain nodes, to measure the discrepancy associated
with the discrete free boundary.

Another popular method for solving the variational inequality is via the Schwarz
domain decomposition, for example [67, 3, 2]. For the variational inequality related to
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the one-body contact problem, two error estimators are proposed and analyzed in [71].
In [27], the authors propose an adaptive finite element method using bisection grids
for Poisson’s equation with obstacles. It is shown that the method yields an (almost)
uniform convergence rate in terms of the objective function. An alternative approach
is presented in [46], which uses the level set method to capture the free boundary (the
contact set {u=ϕ}) thereby avoiding the variational inequality. The Euler-Lagrange
equation for the clamped plates model results in biharmonic equations, making the finite
element discretization more challenging.

The obstacle problem can also be relaxed to an unconstrained problem with the
addition of a penalty term. One example can be found in [64], which uses an L2-like
penalty parameterized with a coefficient equal to 1

ε . Error rates are established in
relation to the parameter ε (which is coupled to the grid spacing h) and requires that
the penalty parameter be O(h−2). Therefore, the relaxed problem is not exact even in
the smooth obstacle case. In [31], a finite element approximation with an L2 penalty is
analyzed for the Laplacian obstacle problem. As expected the relaxed problem, using
an L2 penalty, requires that the parameter goes to infinity in order for the solution
to be exact. In [35], the obstacle constraint is included in the objective function by
using a Lagrange multiplier, and the resulting saddle point problem is smoothed in
order to be solved numerically. In [7], two numerical schemes are proposed for the two-
phase membrane problem, which involves non-differentiable terms similar to a double-
penalty. In one of their proposed methods, the non-differentiable terms are relaxed
using a smooth approximation.

Similar to the penalty methods, we relax the constrained minimization by introduc-
ing a term in the energy which encourages the solution to satisfy the constraint. In this
work, we focus on the nonlinear (possibly degenerate) elliptic variational problem. For
related theory and numerics for the linear elliptic case, see [69]. In a related work [72],
the L1 penalty from [69] was applied to the obstacle problem associated with minimal
surfaces. The penalty used in [69] is related to the L1 norm of the difference between
the obstacle and the solution. Unlike the penalties found in the literature, the L1-like
penalty is non-differentiable; however, it is exact in the sense that the solution of the
relaxed problem agrees with the constrained minimization.

Variational methods using the L1 and related norms for scientific computing and
PDEs have appeared recently in the literature, for example [58, 38] for multiscale PDEs,
[48, 52, 53] for quantum models, and in [10, 1, 12, 13, 56] for low-rank approximations to
dynamic systems. The difficulty in the theory is due to the fact that the L1 term yields
a subdifferential in the Euler-Lagrange equation. For some related theoretical results
on the interaction between PDEs and subgradients of the L1 norm, see for example
[22, 8, 9]. Also, recently L1 and L0 penalties have been used for sparse recovery of
governing equations from dynamic data [11, 68, 59, 55, 60, 61, 62].

1.1. Contribution of this work. In this work, we present a formulation
of the obstacle problem for nonlinear variational models using an L1 penalty from
[69]. Specifically, we generalize the method to non-smooth variational problems and
investigate the applicability of L1 penalties to degenerate elliptic equations. The L1

penalty formulation and motivation is given in Section 2. In Section 3, solutions of the
relaxed variational problem are shown to be exact for penalty parameters larger than
a known (finite) lower bound. A characterization of the minimizers with respect to the
penalty parameter is done for the continuous and discrete cases. This shows some of the
advantages of this approach over other methods; in particular, the penalty parameter
may be fixed relative to the grid spacing and the initial data does not need to be in the
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feasible set. In Section 4, a numerical scheme for solving nonlinear variational problems
is presented with results shown in Section 5. The algorithm and approach are robust
and easy to implement. It is worth noting that the proximal operators related to the
various L1 penalties are derived in the Appendix.

2. Variational Problem Consider the following functional, F (u), defined over
the set of functions C={u∈B, u=g on ∂Ω} (where B is an appropriate Banach space
and Ω⊂Rn):

F (u) :=

∫
Ω

L(x,u,∇u)dx. (2.1)

The Lagrangian L(x,u,z) is assumed to be jointly convex in (u,z), proper, and lower
semi-continuous. We write the obstacle problem as a constrained minimization:

u∗= argmin
u∈K

F (u),

where K={u≥ϕ, u∈C}. For simplicity, it is assumed that the obstacle remains below
the data on the boundary, i.e. ϕ≤g on ∂Ω. Let DF be the derivative associated with
the Gâteaux differentiable functional F , i.e.

d

dε
F (u+εv)

∣∣
ε=0

= 〈DF (u),v〉 .

Then the minimization problem is equivalent to finding u∗∈K such that:

〈DF (u∗),u∗−v〉≥0, ∀v∈K. (2.2)

For more details on the variational inequality, Equation 2.2, see for example [40].
We relax Equation 2.1 by introducing a continuous (but non-differentiable) penalty

term:

Eµ(u) :=F (u)+µP (u) =F (u)+µ||(ϕ−u)+||L1(Ω)

=

∫
Ω

L(x,u,∇u)dx+µ

∫
Ω

(ϕ−u)+ dx (2.3)

where µ>0, P (u) = ||(ϕ−u)+||L1(Ω) is the penalty term, and x+ = max(x,0). The min-
imizer of Equation 2.3 is denoted by

uµ := argmin
u∈C

Eµ(u).

We refer to Equation 2.3 as the relaxed problem, in the sense that the obstacle con-
straint has been removed and incorporated into the functional (thereby “relaxing” the
feasible set). Since the penalty term has a set-valued subdifferential, the Euler-Lagrange
equation of Equation 2.3 is a differential inclusion:

−DF (u)∈µ∂(ϕ−u)+. (2.4)

The subdifferential on the RHS of Equation 2.4 can be identified as follows:

∂(ϕ−u)+ =


0, if ϕ<u,

[−1,0], if ϕ=u,

−1, if ϕ>u,
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Note that the proposed relaxation is consistent in the sense that: when u∈K, the
differential inclusion (and the corresponding variational problem) is equivalent to the
obstacle problem, Equation 2.1. In the region where the obstacle constraint is not
satisfied, the penalty term contributes a constant force of −µ to the differential equation.

Although the relaxed problem is non-differentiable, it is of practical interest since
it has a simple proximal operator [5, 24, 34] (also known as the resolvent (I+λ∂P )−1):

u= proxλP v= (I+λ∂P )−1(v)

= argmin
u∈B

∫
Ω

(ϕ−u)+ +
1

2λ
(u−v)2dx

=


v+λ, if ϕ>v+λ

ϕ, if v≤ϕ≤v+λ

v, if ϕ<v

Since the proximal operator has a simple, explicit form, this lends itself well to many
convex optimization algorithms, which typically rely on applying the proximal operator
within an iterative scheme (see Section 4).

2.1. Example

In Section 3, we will show that if µ≥||DF (ϕ)||L∞ , then the minimizer of the penalty
problem is exact, under some assumptions on the unconstrained problem. As a moti-
vating example, consider the simple obstacle problem:

min
u≥ 1

2

∫ 1

−1

1

4

∣∣u−x2
∣∣4 dx.

The solution to the unconstrained problem is u(x) =x2, and the solution to the con-
strained problem is:

u∗(x) =

{
x2, if |x|≥ 1√

2
1
2 , if |x|< 1√

2
.

Relaxing the problem by introducing the penalty yields the unconstrained minimization:

min
u

∫ 1

−1

1

4

∣∣u−x2
∣∣4 +µ

(
1

2
−u
)

+

dx. (2.5)

To derive the minimizer of Equation 2.5, denoted by uµ, we consider three regimes
depending on the constraint. In the first case, consider the points in the set

{
u(x)> 1

2

}
,

then the derivative of Equation 2.5 is zero only if u(x) =x2. In the second case, consider
the points

{
u(x)< 1

2

}
, then setting the derivative of Equation 2.5 to zero yields:

(
u−x2

)3−µ= 0

The solution in this regime is equal to u(x) =x2 +µ
1
3 . The last case to consider is the

contact set where u(x) = 1
2 , which occurs when

√(
1
2−µ

1
3

)
+
< |x|< 1√

2
. Altogether the
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solution to the relaxed problem is:

u∗µ(x) =


x2, if |x|≥ 1√

2

1
2 , if

√(
1
2−µ

1
3

)
+
< |x|< 1√

2

x2 +µ
1
3 , if

√(
1
2−µ

1
3

)
+
≥|x|.

Examples for various µ values are provided in Figure 2.1. Comparing the relaxed uµ
and exact u∗ solutions, we see that the region in which uµ(x) 6=u∗(x) is given by the

set

{
|x|<

√
( 1

2−µ
1
3 )+

}
, which vanishes when µ≥ 1

8 . By examining the bound for µ:

µ≥
∥∥∥∥DF (1

2

)∥∥∥∥
L∞(−1,1)

=

∥∥∥∥∥
(

1

2
−x2

)3
∥∥∥∥∥
L∞(−1,1)

=
1

8
,

we can conclude that the bound for µ is sharp.

Fig. 2.1. Solution uµ to Equation 2.5 for various µ, in order: µ= 0, 1
128

, 1
32

, 1
16

, and 1
8

.
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3. Characterization of minimizers
Consider the following relaxed variational problem:

Eµ(u) :=

∫
Ω

L(x,u,∇u)dx+µ

∫
Ω

(ϕ−u)+ dx. (3.1)

We will show that there exists a finite value for µ, depending on the obstacle ϕ and
DF , such that the minimizer of Equation 3.1 agrees with the minimizer of Equation 2.1
(over u∈K). Before doing so, we will assume several properties of the obstacle problem
hold. First, assume that:

(A1) Both the constrained problem, Equation 2.1, and the relaxed problem, Equa-
tion 3.1, have unique minimizers, respectively.

(A2) The functional, F (u), is Gâteaux differentiable and convex, with the associated
derivative denoted by DF (u), i.e.

d

dε
F (u+εv)

∣∣
ε=0

= 〈DF (u),v〉 .

where the inner product is the dual pairing of L∞(Ω) and L1(Ω).
The second assumption ensures that for any two functions v,w∈C⊂L1(Ω), we have:

F (v)−F (w)−〈DF (w),v−w〉≥0.

The arguments below could include the case where DF is set-valued; however, for
simplicity, we assume that it is a singleton. This is not essential to the proof. In
addition to (A1-A2), we assume that C={u∈B, u=g on ∂Ω⊂Rn} where

(A3) B is a Banach space with the property: if u∈B, then u+∈B.
Many Banach spaces of functions satisfy (A3). For example, let Ω be a Lipschitz and
open set in Rn, then (A3) holds for the following spaces:

• Lp(Ω) and W 1,p(Ω) for p∈ [1,∞], see [66],
• Hs(Ω) for s< 3

2 , see [6],
• Sobolev Spaces W s,p(Ω) for p∈ [1,∞) and s∈ [1,1+p−1), see [6],
• Besov Spaces Bsq,p(Ω) for p,q∈ [1,∞) and s∈ [1,1+p−1), see [57],
• Bounded Variation BV (Ω) and Bounded Hessian BH(Ω), see [57].

Note that (A3) does not hold for W 2,p(Ω) due to jumps in the gradient.

Theorem 3.1. Let u∗ be the unique minimizer to the constrained problem, Equation 2.1,
and uµ be the unique minimizer to the relaxed problem, Equation 3.1. Suppose that
assumptions (A1-A3) hold and that DF is bounded in L∞(Ω) at ϕ∈L1(Ω). If µ≥
‖DF (ϕ)‖∞, then uµ=u∗.

Before detailing the proof, it is important to note that the assumption of smooth-
ness, i.e. that ϕ∈L1(Ω) and that DF (ϕ)∈L∞(Ω) is essential for this argument. How-
ever, it may be possible to provide a more general result.

Proof. For all v∈C, define the auxiliary function:

w :=v+(ϕ−v)+ =

{
v, if v≥ϕ
ϕ, if v<ϕ.

By (A3), since v,ϕ∈C, we have that w∈C and by construction w≥ϕ. Therefore, the
relaxed functional is simply:

Eµ(w) =F (w)+µ

∫
Ω

(ϕ−w)+ dx =F (w).
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By (A2), since F is Gâteaux differentiable and convex, we have that:

F (v)−F (w)−〈DF (w),v−w〉≥0 (3.2)

holds. Therefore, the functional Eµ(u) can be bounded from above using Equation 3.2:

Eµ(w) =F (w)≤F (v)−〈DF (w),v−w〉
=F (v)−〈DF (w),−(ϕ−v)+〉
=F (v)+〈DF (w),(ϕ−v)+〉

where the equality holds since v−w=−(ϕ−v)+. We must remove the dependence of
the derivative, DF , on the unknown function, w. To do so, we note that the second term
is non-zero, (ϕ−v)+ 6= 0, precisely when ϕ>v. We can substitute w=v+(ϕ−v)+ =ϕ
within the dual pairing. Therefore,

Eµ(w)≤F (v)+〈DF (ϕ),(ϕ−v)+〉

≤F (v)+ ||DF (ϕ)||L∞(Ω)

∫
Ω

(ϕ−v)+ dx

≤F (v)+µ

∫
Ω

(ϕ−v)+ dx

=Eµ(v).

The inequality above holds for all v∈C as long as µ≥||DF (ϕ)||L∞(Ω). Taking v=uµ,
we have:

Eµ(uµ+(ϕ−uµ)+)≤Eµ(uµ).

Since uµ is the unique minimizer, then (ϕ−uµ)+ = 0 must hold. Therefore, the mini-
mizer to the relaxed problem satisfies the constraint, uµ≥ϕ, and we have exactness in
the sense that uµ=u∗.

Theorem 3.1 shows that the relaxed problem is exact for finite values of the param-
eter, which can be determined completely from the given information. A similar result
holds for the discrete problem. Suppose we discretize the problem by taking N uniformly
distributed points with grid spacing h, contained in the domain Ω⊂Rn. For simplicity,
we take piecewise linear interpolants for all discrete functions. The discretization of
Equation 2.1 is denoted by Fh(uh) and the minimizer is denoted by:

u∗,h= argmin
uh∈Kh

Fh(uh) (3.3)

where Kh=
{
uh≥ϕh, u∈Ch

}
, Ch is an appropriate discretization of the continuous

Banach space, and h>0 (the grid is taken to be uniform). The discrete obstacle,
denoted by ϕh, is simply the linear interpolant of the continuous obstacle restricted to
the discrete grid. Let Gh be a consistent, stable, and monotone numerical approximation
to DF .

The relaxed problem, Equation 3.1, is discretized by:

Ehµ(uh) :=Fh(uh)+µhn
N∑
j=1

(ϕhj −uhj )+ (3.4)
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where the penalty is approximated using piecewise constant quadrature over a uniform
grid indexed by j. We denote the minimizer of Equation 3.4 by:

uhµ= argmin
uh∈Ch

Ehµ(uh)

With these assumptions, we can guarantee a similar result for the discrete obstacle
problem. The theorem below provides the main condition needed for the numerical
experiments in this work.
Theorem 3.2. Suppose uhµ and u∗,h are the unique minimizers to the relaxed and con-

strained discrete obstacle problems, respectively. Let Fh :RN→R be a convex function
whose derivative Gh is monotone in the sense that for any vh,wh∈RN we have:〈

Gh[wh]−Gh[vh],wh−vh
〉
h
≥0

where 〈·, ·〉h is the discrete inner product. If

µh≥‖Gh[ϕh]‖∞,h := max
j=1,2,...,N

∣∣Ghj [ϕh]
∣∣ ,

then uhµ=u∗,h.

Proof. For all vh∈Ch, define the auxiliary function:

wh :=vh+(ϕh−vh)+.

The energy at wh reduces to:

Ehµ(wh) =Fh(wh)+µhn
N∑
j=1

(ϕhj −vhj )+ =Fh(wh)

By the assumptions that Fh is convex on RN and has a monotone derivative, we have
the discrete inequality:

Fh(vh)−Fh(wh)−
〈
Gh[wh],vh−wh

〉
h
≥0

Therefore, a similar bound for the relaxed function holds:

Ehµ(wh)≤Fh(vh)−
〈
Gh[wh],vh−wh

〉
h

=Fh(vh)+
〈
Gh[wh],(ϕh−vh)+

〉
h

Since (ϕh−vh)+ 6= 0 only when ϕh≥vh, we have wh=vh+(ϕh−vh)+ =ϕh within the
discrete inner product. Therefore,

Ehµ(wh)≤Fh(vh)+
〈
Gh[ϕh],(ϕh−vh)+

〉
h

=Fh(vh)+hn
N∑
j=1

Ghj [ϕh](ϕhj −vhj )+

≤Fh(vh)+

(
max
j

∣∣Ghj [ϕh]
∣∣) hn N∑

j=1

(ϕhj −vhj )+


≤Fh(vh)+µhn

N∑
j=1

(ϕhj −vhj )+

=Ehµ(vh)
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If we take vh=uhµ, then the following inequality holds:

Ehµ(uhµ+(ϕh−uhµ)+)≤Eµ(uhµ).

Since uhµ is the unique minimizer of Ehµ , (ϕh−uhµ)+ = 0. Therefore the constraint holds:

uhµ≥ϕh and the relaxed minimizer is exact uhµ=u∗,h.

Since Theorem 3.2 requires applying Gh to obstacle ϕh, the obstacle must be suffi-
ciently smooth. In the case where the obstacle is discontinuous, the parameter µh will
grow as h→0. In particular, let Gh be a Lipschitz function with Lipschitz constant
Lh and let the obstacle and solution be bounded by k in the infinity norm, then it can
be shown that as long as µh≥2kLh, the relaxed minimizer uhµ is exact. Note that Lh

will typically scale like 1
h2 . The results presented here in the finite dimension case are

similar to those found in [47, 32].

4. Numerical Scheme

For the numerical scheme, we use the convexity of the discrete energy, along with
the simple proximal operator to construct an iterative method to solve the discrete
optimization. The derivative of Fh is approximated explicitly, while the penalty is
approximated implicitly, leading to what is known as the Forward-Backward algorithm.
For each problem below we provide a monotone (and convergent) approximation to
Gh (the derivative of Fh). Monotone discretization of partial differential equations are
typically non-differentiable [51], therefore treating this term in an explicit manner is
expected. However, if one has an implicit solver for Gh, then it is possible to solve
the optimization using a fully implicit method, for example using the Douglas-Rachford
algorithm. The algorithm used here is stated below.

Forward-Backward Algorithm

Given: u0 and parameters µ and dt

while ||un−un−1||∞>tol do

un+1 = proxµdtP (un−dtGh(un))

end while

It is known that the foward-backward algorithms decreases the energy at a rate of
O(n−1) (where n is the iteration index), see [50]. A slight modification of the algorithm is
typically preformed by introducing an extrapolation step with extrapolation parameter

αn=
tn−1

tn+1
, where tn= n+a−1

a , see [50, 5]. As long as a>2 and the energy is convex,

lower semi-continuous, and proper, then the sequence of iterates un generated by the
accelerated foward-backward algorithm decreases the energy by:

Ehµ(un)−Ehµ(u∗,hµ )≤ c

n2

and the discrete iterates converge weakly to the minimizer [25]. In both algorithms, the
time-step is taken to be 0<dt< 1

Lh , where Lh is the Lipschitz constant of Gh.
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Accelerated Forward-Backward Algorithm

Given: u0 and parameters µ, tol, and, a dt

while ||un−un−1||∞>tol do

αn=
tn−1

tn+1
, where tn= n+a−1

a

vn=un+αn(un−un−1)

un+1 = proxµdtP (vn−dtGh(vn))

end while

The only parameter that is needed is a; however, any value above 2 produces con-
vergent results. Other possible algorithms that could be used to solve the optimization
include [24, 49, 34, 23]. Note that the accelerated algorithm was applied to degenerate
elliptic problems in [63].

5. Results In each of the examples presented below, the value for µh is chosen
to ensure that it satisfies the bound for exactness from Theorems 3.1 and 3.2. The
time-step, dt, is chosen to be less than the Lipschitz constant of Gh. We also provide
a monotone and convergent discretization for Gh. The accelerated forward-backward
method terminates when the maximum difference between two consecutive iterates is
less than a set tolerance, denoted tol, which will be specified for each example. In all of
the examples presented here, the computational time is on the order of a few seconds
or less.

5.1. Semi-Linear Problem For a semi-linear example, we use the following
functional:

F1(u) =

∫
Ω

1

2
|∇u|2 +

1

4
u4 +uf dx

which is approximated by using forward differences and piecewise constant quadrature:

Fh1 (u) =
∑
i,j

1

2
|ui+1,j−ui,j |2 +

1

2
|ui,j+1−ui,j |2 +

h2

4
u4
i,j+h2ui,j fi,j

The derivative of Fh1 is:

Gh1 (u) =− 1

h2
(ui+1,j+ui,j+1 +ui−1,j+ui,j−1−4ui,j)+u3

i,j+fi,j

which is consistent with the continuous equation DF1(u) =−∆u+u3 +f .
Example 1: The first example is solved over the domain [−1,1]2, with obstacle

ϕ= 5e−5(x2+y2), forcing term f = 1, and the boundary condition u= 0. The penalty
parameter is set to µh= 250, the tolerance is set to tol= 6×10−7, and the time-step

is set to dt= h2

10 . The over-relaxation parameter for the algorithm is assigned as a= 5.
The calculations are done using various grid sizes, and the computed solution using
h= 0.0078 (grid size is 256 by 256) is shown in Figure 5.1 along with a plot of the log of
the maximum difference between two consecutive iterates (which is used as the stopping
criterion for the iterative algorithm). In Table 5.1, the accuracy of the discretization
applied to this problem is found to be approximately O(h1.02).
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Fig. 5.1. Left: The numerical solution for Example 1 with h= 0.0078 (grid size is 256 by 256),

µ= 250, tol= 6×10−7, obstacle ϕ= 5e−5(x2+y2), and f = 1. Right: The log of the maximum difference
between consecutive iterates (i.e log10(||un−un−1||∞)).

Fig. 5.2. Left: The numerical solution for Example 2 on a grid of h= 0.0078 (grid size is 256
by 256), µ= 5000, tol= 6×10−7, obstacle ϕ= 5χx2+0.75y2≤0.25, and f = 1. Right: The log of the

maximum difference between consecutive iterates (i.e log10(||un−un−1||∞).

Example 2: For the second example, we solve the problem on [−1,1]2, setting
the obstacle to ϕ= 5χx2+0.75y2≤0.25. Since the obstacle is discontinuous, the param-
eter µh grows unbounded as h→0+. To handle this case, the penalty parameter is
set to µ= 5000 to ensure that the parameter remains above the discrete estimate (see
Theorem 3.2) for all grid sizes tested here. The forcing term and boundary condition

are both set to zero, the tolerance tol= 6×10−7, and the time-step dt = h2

10 . The over-
relaxation parameter for the case is set to a= 5. In Figure 5.2, the numerical solution

h 0.1333 0.0645 0.0317 0.0157 0.0078
Error Ratio in L∞ 1.0564 1.0477 0.9979 1.0030 1.0039

Table 5.1. Error analysis for Example 1. The error ratio = log2

(
||uh−u2h||∞
||u2h−u4h||∞

)
for several

grid sizes is examined. The parameters are fixed at µ= 250, tol= h2

100
, dt = h2

10
, and a= 5. The order

of accuracy for this example is approximately O(h1.02).
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Fig. 5.3. The numerical solution for Example 3 with h= 0.0156 (grid size is 128 by 128), p= 4,

µ= 1000, tol= hp

250
, and the obstacle is ϕ=χ|x|≤0.5. Right: A log plot of the error in L∞ (red), L2

(black), and H1 (blue) between the exact solution and the iterates for a fixed grid size.

is graphed on a 256 by 256 sized grid along with the log of the maximum difference
between consecutive iterates. The oscillatory behavior found in the plot of the differ-
ence between consecutive iterates is directly related to the extrapolation used in the
iterative scheme. The accuracy of the discretization applied to this problem is found
to be approximately O(h0.95), see Table 5.2. This example shows that even when the
obstacle is discontinuous, this approach is applicable.

5.2. Quasi-Linear Problem
For a quasi-linear example, we use the anisotropic W 1,p semi-norm:

F2(u) =

∫
Ω

1

p
|∇u|p1 +uf dx

for p>1 and for a given force f . The functional F2 is approximated using half-step
centered differences and piecewise constant quadrature:

Fh2 (u) =
∑
i,j

hp−2

p
|ui+ 1

2 ,j
−ui− 1

2 ,j
|p+

hp−2

p
|ui,j+ 1

2
−ui,j− 1

2
|p+h2ui,j fi,j

h 0.0317 0.0157 0.0078 0.0039
Error Ratio in L∞ 0.7438 0.8100 1.0576 1.2056

Table 5.2. Error analysis for Example 2. The error ratio = log2

(
||uh−u2h||∞
||u2h−u4h||∞

)
for several

grid sizes is examined. The parameters are fixed at µ= 5000, tol= h2

100
, dt = h2

10
, and a= 5. The order

of accuracy for this example is approximately O(h0.95).

h 0.2857 0.1333 0.0645 0.0317 0.0157 0.0078
Error in L∞ 0.0733 0.0509 0.0286 0.0151 0.0077 0.0039

Table 5.3. Error analysis for Example 3. The error = ||uh−uhexact||∞ for several grid sizes is

examined. The parameters are fixed at p= 4, tol= hp

250
, dt = hp

10
, and a= 15. The order of accuracy for

this example is approximately O(h0.83).
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The corresponding derivative is:

Gh2 (u) =− 1

hp
|ui+1,j−ui,j |p−2 (ui+1,j−ui,j)−

1

hp
|ui−1,j−ui,j |p−2 (ui−1,j−ui,j)

− 1

hp
|ui,j+1−ui,j |p−2 (ui,j+1−ui,j)−

1

hp
|ui,j−1−ui,j |p−2 (ui,j−1−ui,j)+fi,j

The equation above is consistent with the continuous derivative:

DF2(u) =−(|ux|p−2ux)x−(|uy|p−2uy)y+f

which is known as the anisotropic p-Laplacian, [29]. The discrete equation is monotone,
consistent, and stable (thus convergent by [4, 44, 51]). The obstacle problem associated
with the p-Lapace’s equation is related to shallow ice sheet models, see [39, 70].

Example 3: In Figure 5.3, we solve the p= 4 problem on the domain [0,2]2, setting
the obstacle to the indicator function ϕ=χ|x|≤0.5 and the forcing term f = 1. It can be
shown that the exact solution is:

u∗(x,y)≈


3
4 |x+7.75086| 43 −11.50434, if x<0.5

1, if 0.5≤x≤1.5
3
4 |−x+9.75086| 43 −11.50434, if x>1.5.

with the corresponding boundary condition. The penalty parameter is set to µ= 1000,

with the same argument as in Example 2. The tolerance is set to tol= h4

250 and the time-

step is set to dt = h4

10 . The over-relaxation parameter for the algorithm is set to a= 15.
In Figure 5.4, the numerical solution is computed for a 256 by 256 sized grid along with
a plot of the L∞ (red, dotted), L2 (black, solid), and H1 (blue, lined) errors between
the iterates and the exact minimizer u∗. Using the exact minimizer as a reference, the
order of accuracy is estimated to be O(h0.83), see Table 5.3. This order of accuracy is
expected, since the Euler-Lagrange equation contains a degenerate second order elliptic
operator. It is important to note that this problem poses some difficulties. The p-
Laplacian is a degenerate elliptic operator and thus a monotone numerical scheme is
needed for convergence (as h→0+). The obstacle is discontinuous, which can effect the
regularity of the solution. However, the proposed method applied to this example still
converges to the exact solution and achieves (nearly) first order accuracy.

Example 4: For a second degenerate example, we solve the p= 3 problem on [0,2]2,

setting the obstacle to ϕ= 2e−15((x−1)2+(y−1)2). The force and boundary conditions are

both set to zero. The parameters are fixed at: µ= 500, tol= h3

100 , and dt= h3

10 . The over-
relaxation parameter for the algorithm is set to a= 15. In Figure 5.4, the numerical
solution is plotted on a 256 by 256 grid along with the log of the maximum difference
between consecutive iterates. The oscillatory behavior found once again is due to the
over-relaxation term over-estimating the descent direction in the iterative algorithm.
The accuracy of the numerical scheme is estimated to be O(h1.13), see Table 5.4. Since
the obstacle and solution are smooth, this improved accuracy can be expected.

Example 5: For a singular elliptic obstacle problem, we consider the case when
p= 1.25. To avoid dividing by zero, terms like |ui+1,j−ui,j |p−2 are replaced by(

|ui+1,j−ui,j |2 +10−10
)p/2−1

.

The domain is [−1.5,1.5]2, the obstacle is taken to be four randomly sampled bump
functions (see Figure 5.5), and the force and boundary conditions are set to zero. The
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Fig. 5.4. Left: The numerical solution for Example 4 on a grid of h= 0.0078 (grid size is 256 by

256), µ= 250, p= 3, and obstacle ϕ= 2e−15((x−1)2+(y−1)2). Right: The log of the maximum difference
between consecutive iterates (i.e log10(||un−un−1||∞).

parameters are fixed at: µ= 500, tol= 10−4, and dt = h2

15 . The over-relaxation parameter
for the algorithm is set to a= 15. In Figure 5.5, the numerical solution is plotted on a
256 by 256 grid (bottom) and the corresponding obstacle (top). The accuracy of the
numerical scheme is estimated to be O(h0.67), see Table 5.5. This accuracy is expected,
since the operator is singular. In terms of the convergence, although the operator is
singular and the obstacles form sharp peaks (discretely), the method is still able to
construct a solution which respects the constraint (there is no cross-over between the
solution and the obstacle).

5.3. Double Obstacle Problem We also consider the double obstacle problem:

min
ϕ1≤u≤ϕ2

{
F (u) =

∫
Ω

L(x,u,∇u)dx

}
(5.1)

h 0.0645 0.0317 0.0157 0.0078 0.0039
Error Ratio in L∞ 1.8111 0.7579 1.0715 1.0103 0.9885

Table 5.4. Error analysis for Example 4. The error ratio = log2

(
||uh−u2h||∞
||u2h−u4h||∞

)
for several

grid sizes is examined. The parameters are fixed at µ= 250, tol= h2

100
, dt = h2

10
, and a= 5. The order

of accuracy for this example is approximately O(h1.13).

h 0.0968 0.0476 0.0236 0.0118
Error Ratio in L∞ 0.6268 0.7091 0.8255 0.5212

Table 5.5. Error analysis for Example 5. The error ratio = log2

(
||uh−u2h||∞
||u2h−u4h||∞

)
for several

grid sizes is examined. The parameters are fixed at µ= 500, tol= 10−4, dt = h2

15
, and a= 15. The order

of accuracy for this example is approximately O(h0.67).
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Fig. 5.5. Graphs for Example 5. Top: The obstacle is chosen as the linear combination of four
random bump functions. Note that two of the bumps are close to each other. Bottom: The numerical
solution with h= 0.0118 (grid size is 256 by 256), µ= 500, p= 1.25, and tol= 10−4.

where the solution is constrained between two functions. The penalty takes the form:∫
Ω

µ1(ϕ1−u)+ +µ2(u−ϕ2)+dx,

and the algorithm stays the same, except that the proximal operator from the previous
examples is replaced by the proximal operator for the penalty above (see Appendix 7.2).

Example 6 & 7: Using F2 with p= 4, we compute the numerical solution to the
double obstacle problem. The domain is [−1,1]2, the obstacles for Example 6 are ϕ1 =
1.5−15((x−0.5)2 +y2) and ϕ2 =−1.5+15((x+0.5)2 +y2) and, for Example 7, are ϕ1 =
1.5−10

√
(x−0.5)2 +y2 and ϕ2 =−1.5+10

√
(x+0.5)2 +y2. The parameters are fixed

at: µ= 5000, tol= 10−7, and dt = h4

10 . The over-relaxation parameter for the algorithm
is set to a= 15. In Figure 5.6, the obstacles are plotted in blue and the numerical
solutions are displayed as gray meshes. The accuracy for Example 6 is estimated to be
O(h0.90), see Table 5.6. For Example 7, it is important to note that even though the
cones form sharp peaks, the computed solution remains between the two obstacles (no
cross-over is observed).

5.4. Nonlinear Two-Phase Membrane Problem
An anisotropic nonlinear version of the two-phase problem [7] is as follows:

min
u

∫
Ω

1

p
(|ux|p+ |uy|p)+µ1u+ +µ2(−u)+dx (5.2)
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Fig. 5.6. Double obstacle problem. Obstacles are in blue, the solutions are displayed as gray
meshes. Example 6 is on the left and Example 7 is on the right. The computational times are similar
between the two examples (Example 6 took 0.241 seconds and Example 7 took 0.254 seconds), even
though the regularities differ.

where µ1 and µ2 are positive parameters. This can be viewed as a soft obstacle problem
since the parameters are prescribed and not directly used to enforce the constraint. The
two-phase membrane problem shows an additional motivation for the penalty term used
here, in particular, that it arrises naturally in physical models.

Example 8: In Figure 5.7, we consider the problem with p= 3 (right) and p= 4

(left). The parameters are set to h= 0.0078, µ1 =µ2 = 1, tol= 10−8, dt = h4

10 , and a= 15.
Three regions form: the positive values of the solution (warm), the negative (cold), and
the regime where u is identically zero (green). The regions are separated by triple-
junction like structures. As p is varied, the numerical method remains stable.

In Figure 5.8, the parameter p is varied: p= 2,3,4, and an image of the solution is
shown (left column). Zoomed in images of the triple-junction-like structure are plotted
as well (right column). We observe the “opening” of the triple-junction-like structure
seen in the linear problem (top). Note that when p= 4, the gap between the two signed
regions are on the order of the grid spacing.

h 0.0645 0.0317 0.0157 0.0078
Error Ratio L∞ 0.9851 0.6528 0.9693 0.9954

Table 5.6. Error analysis for Example 6. The error ratio = log2

(
||uh−u2h||∞
||u2h−u4h||∞

)
for several

grid sizes is examined. The parameters are fixed at µ1 =µ2 = 5000, tol= 10−7, dt = h4

10
, and a= 15.

The order of accuracy for the problem is approximately O(h0.90).

h 0.0645 0.0317 0.0157 0.0078
Error Ratio in L∞ 1.00 1.00 1.00 1.00

Table 5.7. Error analysis for Example 8. The error ratio = log2

(
||uh−u2h||∞
||u2h−u4h||∞

)
for several

grid sizes is examined. The parameters are fixed at µ1 =µ2 = 1, tol= 10−8, dt = h4

10
, and a= 15. The

order of accuracy for the problem is approximately O(h1.00).
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Fig. 5.7. The numerical solution for Example 8 on a grid of h= 0.0078 (grid size is 256 by 256),

µ1 =µ2 = 1, tol= 10−8, dt = h4

10
, and a= 15, where the “obstacles” are identically zero. Left: p= 3,

Right: p= 4.

6. Conclusion We proposed an exact relaxation for the obstacle problem associ-
ated with nonlinear variational models. In both the continuous and discrete settings, the
relaxation parameter µ can be calculated from the given data, and thus the method can
be considered as “parameter-free”. To compute the solution numerically, an accelerated
variant of the forward-backward algorithm is used. This is made possible by the simplic-
ity of the proximal operators associated with the penalty terms. Since the derivatives of
the unconstrained problem may be degenerate or singular, they are taken explicitly in
the algorithm as a forward iteration. This can be made implicit by using, for example,
the Douglas-Rachford algorithm, as was done in the linear case. Several examples were
presented, including a quasi-linear equation, constrained anisotropic p-Laplacians, the
nonlinear double obstacle problem, and the nonlinear two-phase membrane problem.
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Fig. 5.8. The numerical observation of the “opening” of the triple junction as a function of p for
Example 8. The first row p= 2, second row p= 3, and third row p= 4. The left column is the solution,
the right column is the zoomed-in images.

7. Appendix For completeness, we include a brief derivation of the proximal
operators for the penalty terms. These operators are related to the “shrink” function
found in L1 optimization.

7.1. Proximal Operator for a Single Obstacle The proximal operator for
the penalty term with a single obstacle is defined as:

u= proxλP v

= argmin
u

∫
Ω

(ϕ−u)+ +
1

2λ
(u−v)2dx.



H. Schaeffer 19

To derive an explicit form for the minimizer, first consider the two regimes where u>ϕ
and u<ϕ. In the first case, where u>ϕ, the minimization can be solved directly:

u= argmin
u

∫
Ω

(ϕ−u)+ +
1

2λ
(u−v)2dx

= argmin
u

∫
Ω

1

2λ
(u−v)2dx

=v.

In the second case, where u<ϕ, the minimization becomes:

u= argmin
u

∫
Ω

(ϕ−u)+ +
1

2λ
(u−v)2dx

= argmin
u

∫
Ω

ϕ−u+
1

2λ
(u−v)2dx.

The functional is differentiable (within the domain u<ϕ) and thus by taking the deriva-
tive and setting it to zero it can be shown that:

u=v+λ.

The contact set case, u=ϕ, is trivial. Altogether, the proximal operator for a single
obstacle is:

u=


v+λ, if ϕ>v+λ

ϕ, if v≤ϕ≤v+λ

v, if ϕ<v.

7.2. Proximal Operator for the Double Obstacle The proximal operator
for the penalty term for the double obstacle problem is defined as:

u= argmin
u

∫
Ω

µ1(ϕ1−u)+ +µ2(u−ϕ2)+ +
1

2
(u−v)2 dx,

where ϕ2>ϕ1. We consider several cases relating the solution to the obstacles. For the
first case, when u>ϕ2, the minimization can be solved directly:

u= argmin
u

∫
Ω

µ1(ϕ1−u)+ +µ2(u−ϕ2)+ +
1

2
(u−v)2 dx

= argmin
u

∫
Ω

µ2(u−ϕ2)+
1

2
(u−v)2 dx

=v−µ2.

For the second case, when u<ϕ1 the minimization can also be solved directly:

u= argmin
u

∫
Ω

µ1(ϕ1−u)+ +µ2(u−ϕ2)+ +
1

2
(u−v)2 dx

= argmin
u

∫
Ω

µ1(ϕ1−u)+
1

2
(u−v)2 dx

=v+µ1.
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The third case ϕ1<u<ϕ2, results in:

u= argmin
u

∫
Ω

µ1(ϕ1−u)+ +µ2(u−ϕ2)+ +
1

2
(u−v)2 dx

= argmin
u

∫
Ω

1

2
(u−v)2 dx

=v.

The contact set cases, u=ϕ1 or u=ϕ2, are trivial. Altogether, we have:

u=



v−µ2, if ϕ2 +µ2≤v
ϕ2, if ϕ2≤v<ϕ2 +µ2

v, if ϕ1≤v≤ϕ2

ϕ1, if ϕ1−µ1≤v<ϕ1

v+µ1, if v<ϕ1−µ1.
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