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Abstract

We investigate a family of regression problems in a semi-supervised setting. The task is
to assign real-valued labels to a set of n sample points, provided a small training subset of
N labeled points. A goal of semi-supervised learning is to take advantage of the (geometric)
structure provided by the large number of unlabeled data when assigning labels. We consider
random geometric graphs, with connection radius ε(n), to represent the geometry of the data
set. Functionals which model the task reward the regularity of the estimator function and impose
or reward the agreement with the training data. Here we consider the discrete p-Laplacian
regularization.

We investigate asymptotic behavior when the number of unlabeled points increases, while the
number of training points remains fixed. We uncover a delicate interplay between the regularizing
nature of the functionals considered and the nonlocality inherent to the graph constructions. We
rigorously obtain almost optimal ranges on the scaling of ε(n) for the asymptotic consistency
to hold. We prove that the minimizers of the discrete functionals in random setting converge
uniformly to the desired continuum limit. Furthermore we discover that for the standard model
used there is a restrictive upper bound on how quickly ε(n) must converge to zero as n→∞. We
introduce a new model which is as simple as the original model, but overcomes this restriction.

Keywords and phrases. p-Laplacian, regression, asymptotic consistency, asymptotics of discrete
variational problems, Gamma-convergence, PDE on graphs, nonlocal variational problems
Mathematics Subject Classification. 49J55, 49J45, 62G20, 35J20, 65N12

1 Introduction

Due to its applicability across a large spectrum of problems semi-supervised learning (SSL) is an
important tool in data analysis. It deals with situations when one has access to relatively few labeled
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points but potentially a large number of unlabeled data. We assume that we are given N labeled points
{(xi, yi) : i = 1, . . . , N, xi ∈ Rd, yi ∈ R} and n−N points xi, i = N + 1, . . . , n drawn from a
fixed, but unknown measure, µ supported in a compact subset of Rd. The goal is to assign labels to the
unlabeled points, while taking advantage of the information provided by the unlabeled points when
designing the estimator. In particular the unlabeled points carry information on the structure of µ, such
as the geometry of its support, which can lead to better estimators. To access the information on µ in a
way that carries over to high dimensions, we build a graph whose vertices are data points and connect
them if they are close enough, that is if they are within some distance ε > 0. More generally the edge
weights are prescribed by using a decreasing function η : [0,∞) → [0,∞) with limr→∞ η(r) = 0.
For fixed scale ε > 0 we set the weights to be

Wij = ηε(|xi − xj |)

where ηε = 1
εd
η(·/ε).

The regression problem is to find an estimator u : Ωn := {xi : i = 1, . . . , n} → R which agrees
with preassigned labels. To solve the regression problem one considers objective functions which
penalize the lack of smoothness of u and take the structure of the graph into account. In particular here
we consider the functionals which generalize the graph Laplacian, namely the graph p-Laplacian. A
particular objective function we consider is

(1) E(p)
n (f) =

1

εpnn2

n∑
i,j=1

Wij |f(xi)− f(xj)|p.

We consider minimizing E(p)
n (f) under the constraint that

(2) f(xi) = yi for all i = 1, . . . , N.

A numerically computed example of the minimizer of the functional is shown on Figure 1(a).
We investigate the asymptotic behavior in the limit when the number of unlabeled data goes to

infinity, which is consistent with semi-supervised learning paradigm of having few labeled points
and an abundance of unlabeled data. As n → ∞, ε(n) → 0 to increase the resolution and limit the
computational cost. Namely as ε(n) is the length scale over which the information on µ is averaged,
taking ε(n) to zero insures that the finer scales of µ are resolved as more data points become available.

We assume that µ has density ρ which has a positive lower bound on an open set Ω and is zero
otherwise. While in this paper we consider data which are distributed in the set of full dimension, we
remark that there are no essential difficulties to extend the results to manifold setting, namely one
where µ is a measure supported on compact manifoldM of dimension d embedded in RD. such
extension has already been done for related problems concerning the graph laplacian [29], where the
modification of background results (such as optimal transportation estimates) has been carried out.

The continuum limiting problem corresponds to minimizing

(3) E(p)
∞ (f) = σ

∫
Ω
|∇f(x)|p ρ2(x) dx

where σ is a constant that depends on η, subject to constraint that f(xi) = yi for i = 1, . . . , N . A
numerically computed minimizer of the functional is shown in Figure 1(b). Finiteness of E(p)

∞ (f)
implies that f lies in the Sobolev space W 1,p(Ω). For the constraints to make sense it is needed that
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(a) Minimizer of (1) under constraint (2) for ε =
0.058 and η = 1[0,1] and n = 1280. The grid is to
aid visualization.
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(b) Minimizer of the continuum functional (3) under
constraint (2).

Figure 1: 2D numerical experiment for measure µ with density one on [0, 1]2, training data x1 = (0.2, 0.5) and
x2 = (0.8, 0.5) and labels y1 = 0 and y2 = 1, and p = 4.

pointwise evaluation of functions is well defined, which is the case only if p > d, when the Sobolev
embedding ensures that functions in W 1,p are continuous. When p ≤ d and d > 1, one cannot
expect to be able to impose pointwise data. Indeed spikes were in observed in discrete models with
graph-Laplacian-based regularizations (that is for p = 2) by Nadler, Srebro, and Zhou in [41] who
also argued that they arise since there exist functions with arbitrarily small energy E(p)

∞ (f), for p = 2,
which agree with labels on the training set. In [16] El Alaoui, Cheng, Ramdas, Wainwright, and Jordan
go a step further and suggest p = d as the transition point between the regime where spikes appear and
where solutions are “smooth”. They argue, based on Sobolev embedding theorem, that for p ≤ d the
minimizers of E(p)

n (f) can develop spikes as n→∞, while for p > d they should not develop spikes
(the authors consider p ≥ d + 1, but the same argument applies for p > d). The authors also argue
that for data purposes taking p > d and close to d is optimal since as p→∞ the solution forgets the
information provided by the unlabeled points and only depends on the labeled ones.

Our initial goal was to verify the conclusions of [16]. More precisely to show that minimizers
of E(p)

n (f), constrained to agree with the provided labels, converge, in the appropriate topology, to
minimizers of E(p)

∞ (f), which also respect the labels, as n→∞ when p > d, and that they develop
spikes when p ≤ d. However we discovered an additional phenomenon, namely that the undesirable
spikes in the minimizers to graph p-Laplacian can occur even when p > d.

Namely [16] shows pointwise convergence of the form

lim
ε→0

lim
n→∞

E(p)
n (f) = E(p)

∞ (f),

when f is smooth enough. However considering a fixed function f is not sufficient to conclude that
the constrained minimizers of E(p)

n converge to constrained minimizers of E(p)
∞ . In fact answering that

question requires a set of tools from applied analysis which we discuss below. We show, roughly
speaking, that for d ≥ 3 the convergence of minimizers holds if and only if

(4)
(

1

n

) 1
p

� εn �
(

log n

n

) 1
d

as n→∞.
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The lower bound above is related to the connectivity of the graph constructed and was well understood,
[32, 33]. Our lower bounds for d = 1, 2 contain additional correction terms and are not optimal. Our
upper bound implies that the models are in fact not consistent for a large family of scalings of ε on n
that were thus far thought to ensure consistency (namely for 1� εn � n−1/p). Our work indicates
that careful analytical approaches are needed and are in fact capable of providing precise information
on asymptotic consistency of algorithms.

In the “ill-posed” regime εpnn→∞, under the usual connectivity requirement (which when d ≥ 3
reads εdn

n
logn → ∞), we are still able to establish the asymptotic behavior of algorithms. Namely

we show that minimizers of E(p)
n (f) with constraints converge, along subsequences, as n → ∞

and εn → 0 to a minimizer of E(p)
∞ (f) without constraints. That is, the labels are forgotten in the

limit as n → ∞. This explains why, for large n, minimizers of E(p)
n are ‘spikey’. The need to

consider subsequences in the limit is due to the fact that minimizers of E(p)
∞ (f) without constraints are

nonunique.
While the degeneracy of the problem when p ≤ d was known, [16], we believe that degeneracy

when p > d and εpnn → ∞ is a new and at first surprising result. The heuristic explanation for the
appearance of spikes is that the discrete p-Laplacian does not share the regularizing properties of
the continuum p-Laplacian. Namely the discrete p-Laplacian still involves averaging over the length
scale ε and thus more closely resembles an integral operator (one in (14) to be precise). This allows
high-frequency irregularities to form, without paying a high price in the energy. In particular, if we
consider one labeled point taking the value 1, say fn(x1) = 1, while fn(xi) = 0 for all i ≥ 2 then

E(p)
n (fn) =

2

εpnn2

n∑
j=2

1

εdn
η

(
|x1 − xj |

εn

)
=

2

εpnn
ηεn ∗ µn(x1)→ 0

as n→∞, when εpnn→∞. Note that fn exhibits degeneracy while E(p)
n (fn)→ 0.

In addition to the constrained problem above we also consider the problem where the agreement
with the labels provided is imposed through a penalty term. Our results and analysis are analogous.

Using the insights of our analysis, we define a new model which is quite similar to the original
one, but for which the asymptotic consistency holds with only upper bound requirement being that
εn → 0 as n→∞.

To prove our results we use the tools of calculus of variations and optimal transportation. In
particular we use the setup for convergence of objective functionals defined on graphs to their contin-
uum limits developed in [32]. This includes the definition of the proper topology (TLp) to compare
functionals defined on finite discrete objects (graphs) with their continuum limits. However the TLp

topology, which is an extension of the Lp topology, is not strong enough to ensure that the labels
are preserved in the limit. For this reason we also need to consider a stronger topology, namely the
one of uniform convergence. Proving the needed local regularity results for the discrete p-Laplacian
(Lemma 4.1) and the compactness results needed to ensure the locally uniform convergence are the
main technical contributions of the paper. We note that to the best of our knowledge, our results are
the first where one proves (locally) uniform convergence of minimizers of nonlinear functionals in
random discrete setting to the minimizers of the corresponding continuum functional.

We note that our results on asymptotic behavior of minimizers do not provide any error estimates
for finite n and do not provide precise guidance on what ε would lead to best approximation. In Section
6, we numerically investigate prototypical examples in one and two dimensions to shed some light on
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these issues. We numerically observe the the predicted critical scalings for εn given in (4). We also
numerically compare the results with our improved model (22). In investigating how precisely the
observed error depends on ε we find that the error is smallest when ε is quite close to the connectivity
radius on the graph. This is interesting and at first surprising. Rigorously explaining the phenomenon
is a in our opinion an valuable open problem.

The paper is organized as follows. We complete the introduction with a review on related works.
In Section 2 we give a precise description of the problem with the assumptions and state the main
results. Section 3 contains a brief overview of background results we use. This includes a description
of the TLp topology, which we use for discrete-to-continuum convergence, and a short overview of
Γ-convergence and optimal transportation. Section 4 contains the proofs of the main results given in
Section 2. In Section 5 we present an improved model that, while similar to the constrained problem
for E(p)

n (f), is asymptotically consistent with the desired limiting problem even when εn → 0 slowly
as n→∞. We conclude the paper with 1D and 2D numerical experiments in Section 6.

1.1 Discussion of Related Works

The approach to semi-supervised learning using a weighted graph to represent the geometry of the
unlabeled data and Laplacian based regularization was proposed by Zhu, Ghahramani, and Lafferty
in [61]. It fits in the general theme of graph-Laplacian based approaches to machine learning tasks
such as clustering, which are reviewed in [56]. See also [7] for a recent application to semi-supervised
learning. Zhou and Schölkopf [59] generalized the regularizers of [61] to include a version of the
graph p-Laplacian. The p-Laplacian regularization has also been used by Bühler and Hein in clustering
problems [9], where values of p close to 1 are of particular interest due to connections with graph cuts.
Graph based p-Laplacian regularization has found further applications in semi-supervised learning
and image processing [17–19]. These papers also make the connection to the∞-Laplacian, which is
closely related to minimal Lipschitz extensions [13].

While the approach of [61] has found many applications it was pointed out by Nadler, Srebro and
Zhou [41] that the estimator degenerates and becomes uninformative in d ≥ 2, when the number of
unlabeled data points n→∞. Almagir and von Luxburg [2] explored the p-resistances, the resulting
distance on graphs, and connections to the p-Laplace regularization. Based on their analysis they
suggested that p = d should be a good choice to prevent degeneracy in the n→∞ limit. El Alaoui,
Cheng, Ramdas, Wainwright, and Jordan [16] show that for p ≤ d the problem degenerates as n→∞
and spikes can occur. They argue that regularizations with high p ≥ d+ 1 are sufficient to prevent the
appearance of spikes as n→∞, and lead to a well-posed problem in the limit. Here we make part of
their claims rigorous, namely that if p > d then the asymptotic consistency holds only if εn converges
to zero sufficiently fast (εnnp → 0 as n→∞). If p > d and εnnp →∞ as n→∞ we prove that the
problem still degenerates as n→∞ and that spikes occur. We also introduce a modification to the
discrete problem (by modifying how the agreement with the assigned labels is imposed) which is well
posed when p > d without the need for εn to converge to 0 quickly.

There are other ways to regularize the SSL regression problems which ensure that no spikes occur.
Namely Belkin and Niyogi [4,5] consider estimators which are required to lie in the space spanned by a
fixed number of eigenvectors of the graph Laplacian. Due to the smoothness of low eigenvectors of the
Laplacian this prevents the formation of spikes. One can think of this approach in energy based setting
where infinite penalty has been imposed on high frequencies. A softer, but still linear, way to do this is
to consider (fractional) powers of the graph Laplacian, namely the regularity term Jn(u) = 〈cLαnf, f〉
where Ln is the graph Laplacian, and α > 0. This regularization was studied by Belkin and Zhou [60]
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who argue, again via regularity obtained by Sobolev embedding theorems, that taking α > d
2 prevents

spikes. However Dunlop, Stuart, and the authors have discovered that a similar phenomenon to one
described in this paper. Namely even when α > d

2 the limit may be degenerate, and spikes can occur,
if εn converges to zero slowly, namely if ε2α

n n→∞ as n→∞.

Our results fall in the class of asymptotic consistency results in machine learning. In general one is
interested the asymptotic behavior of an objective function posed on a random sample of n points, and
which also depends on a parameter ε, En,ε(fn) where fn is a real valued function defined at sample
points. The limit is considered as n→∞ while εn → 0 at appropriate rate. The limiting problem is
described by a continuum functional E∞(f) which acts on real valued functions supported on domains
or manifolds. Also relevant is the (nonlocal) continuum problem, E∞,ε(f) which describes the limit
n→∞ while ε > 0 is kept fixed.

The type of consistency that is needed for the conclusions, and the one we consider, is variational
consistency, namely that minimizers of En,εn(fn) converge to minimizers of E∞(f) as n→∞ while
εn → 0 at an appropriate rate. Proving such results includes choosing the right topology to compare
the functions on discrete domain fn with those on the continuum domain f .

Many works in the literature are interested in a simpler notion of convergence, namely that for a
fixed, sufficiently smooth, continuum function f it holds that En,εn(f)→ E∞(f) as n→∞ while
εn → 0 at an appropriate rate, where by En,εn(f) we mean that the discrete functional is evaluated
at the restriction of f to the data points. We call this notion of convergence pointwise convergence.
A somewhat weaker notion of convergence is what we here call iterated pointwise convergence,
namely considering limε→0 limn→∞En,ε(f). Also relevant for the problems based on linear operators
(namely the graph Laplacian) is spectral convergence which asks for the eigenvalues and eigenvectors
of the discrete operator to converge to eigenvalues and eigenfunction of the continuum one. This notion
of the convergence is typically sufficient for the kind of conclusions we are investigating (however our
problems are nonlinear).

Pointwise (and similar notions of) convergence of graph Laplacians was studied by Belkin and
Niyogi [6], Coifman and Lafon [12], Giné and Koltchinskii [35], Hein, Audibert and von Luxburg [37],
Hein [36], Singer [47], and Ting, Huang, and Jordan [54]. Spectral convergence was studied in the
works of Belkin and Niyogi [6] on the convergence of Laplacian eigenmaps, von Luxburg, Belkin,
and Bousquet [57] and Pelletier and Pudlo [42] on graph Laplacians, and of Singer and Wu [48] on
the connection graph Laplacian. In these works on spectral convergence either ε remains fixed as
n → ∞ or ε(n) → 0 at an unspecified rate. The precise and almost optimal rates were obtained
in [33] using variational methods. Further problems involve obtaining error estimates between discrete
and continuum objects. Laplacians on discretized manifolds was studied by Burago, Ivanov and
Kurylev [10] who obtain precise error estimates for eigenvalues and eigenvectors. Related results on
approximating elliptic equations on point clouds have been obtained by Li and Shi [39], and Li, Shi,
Sun, [40]. Error bounds for the spectral convergence of graph Laplacians have been considered by
Wang [58] and García Trillos, Gerlach, Hein and one of the authors [29]. Regarding graph p-Laplacians,
the authors of [16] obtain iterated pointwise convergence of graph p-Laplacians to the continuum
p-Laplacian. Finally we mention that for a different type of problems, namely for nondominated
sorting, of Calder, Esedoḡlu, and Hero [11] have obtained uniform convergence of discrete solutions to
the solution of a continuum Hamilton-Jacobi equation.

To obtain the results on variational convergence of E(p)
n to E(p)

∞ needed to fully explain the
asymptotics of discrete regression problems we combine tools of calculus of variations (in particular Γ-
convergence) and optimal transportation. This approach to asymptotics of problems posed on discrete
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random samples was developed by García-Trillos and one of the authors [32,33]. In [32] they introduce
the TLp topology for comparing the functions defined on the discrete sets to the ones defined in the
continuum, and apply the approach to asymptotics of graph-cut based objective functions. We refer to
this paper for a description of the rich background of the works that underpin the approach. In [33]
the authors apply the approach to convergence of graph Laplacian based functionals. Consistency of
k-means clustering for paths with regularization was recently studied by Theil, Johansen and Cade,
and one of the authors [53], using a similar viewpoint. This technical setup has recently been used and
extended to studies on modularity based clustering [15], Cheeger and ratio cuts [34], neighborhood
graph constructions for graph cut based clustering [28], and classification problems [30, 52].

An alternative approach to related regression problems was developed by Fefferman and collabora-
tors, Israel, Klartag and Luli, who look for a function of sufficient regularity, that extends a function
f † : E → R to the whole of Rd in such a way as to minimize the norm of the extension. They show that
appropriate extensions exist and finding efficient constructions for f , for Cm regularity [21,25,26], and
for Sobolev regularity [22–24]. In the context of machine learning this is a supervised learning problem
and only makes use of the labeled data. In our context the problem is independent of {xi}ni=N+1 and
does not use the geometry of the unlabeled data.

2 Setting and Main Results

Let Ω be an open, bounded domain in Rd. Let {(xi, yi) : i = 1, . . . , N} with xi ∈ Ω and yi ∈ R be a
collection of distinct labeled points. Throughout the paper we consider N to be fixed. Considering a
model where N grows is an interesting problem, which we do not address here. We consider µ to be
the measure representing the distribution of data. We assume that suppµ = Ω and that µ has density ρ
with respect to Lebesgue measure. We assume that ρ is continuous and is bounded above and below by
positive constants on Ω.

We assume that unlabeled data, {xi}i=N+1,... are given by a sequence of iid samples of measure µ.
The empirical measure induced by data points is given by µn = 1

n

∑n
i=1 δxi . Let Gn = (Ωn, En,Wn)

be a graph with vertices Ωn = {xi : i = 1, . . . , n}, edges En = {eij}ni,j=1 and edge weights
Wn = {Wij}ni,j=1. For notational simplicity we will set Wij = 0 if there is no edge between xi and
xj .

We assume the following structure on edge weights

(5) Wij = ηε(|xi − xj |)

where ηε(|x|) = 1
εd
η
(
|x|
ε

)
, η : [0,∞) → [0,∞) is a nonincreasing kernel and ε = εn is a scaling

parameter depending on n. For example if η(|x|) = I|x|≤1 then ηε(|x|) is 1
εd

if |x| ≤ ε and 0 otherwise.
In this case vertices are only connected if they are closer than ε.

We consider two models: one where the agreement of the response with the training variables
is imposed as a constraint and the other where it is imposed via a penalty. We call these models
constrained and penalized.

In the constrained model we construct our estimator as the minimizer of

(6) E(p)
n (f) =

1

εpn

1

n2

n∑
i,j=1

Wij |f(xi)− f(xj)|p

among {f : Ωn → R} which satisfy the constraint f(xi) = yi for all i = 1, . . . , N .
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For technical reasons it is convenient to define the functional over all f and impose the constraint
in the following way

(7) E(p)
n,con(f) =

{
1
εpn

1
n2

∑n
i,j=1Wij |f(xi)− f(xj)|p if f(xi) = yi for i = 1, 2, . . . , N

∞ else.

We now turn to the penalized formulation. For q > 0 let

R(q)(f) =
N∑
i=1

|yi − f(xi)|q.

We define the estimator as the minimizer of

(8) S(p)
n (f) = E(p)

n (f) + λR(q)(f)

where λ > 0 is a tunable parameter.

We now introduce the continuum functionals that describe the limiting problems as n→∞. Let

(9) E(p)
∞ (f) =

{
ση
∫

Ω |∇f(x)|p ρ2(x) dx if f ∈W 1,p(Ω),

∞ else.

For p > d, Sobolev functions f ∈W 1,p are continuous and we can define

(10) E(p)
∞,con(f) =

{
E(p)
∞ (f) if f ∈W 1,p(Ω) and f(xi) = yi for i = 1, . . . , N

∞ else.

The constant ση above is defined, using e1 = [1, 0, . . . , 0]T , by

ση =

∫
Rd

η(|x|) |x · e1|p dx.

To describe the limit of the penalized model the large data limit we introduce

(11) S(p)
∞ (f) = E(p)

∞ (f) + λR(q)(f).

We note that functionals (10) and (11) are lower semi-continuous with respect to the Lp norm.
In addition, coercivity of both functionals follows from Sobolev embeddings. Coercivity and lower
semi-continuity imply existence of minimizers, e.g. [27, Theorem 3.6]. Strict convexity implies that
the minimizers are unique.

We are interested in asymptotic behavior of minimizers fn of the discrete models, say E(p)
n,con. We

say that E(p)
n,con is asymptotically consistent with E(p)

∞,con if the minimizers fn of E(p)
n,con converge as

n→∞ to a minimizer of E(p)
∞,con. One should note topology of the convergence fn → f∞ is not at

this stage clear.
We observe that since fn : Ωn → R, while f : Ω → R this issue is nontrivial. We use the TLp

topology introduced in [32] precisely to compare functions defined on different domains in a topology
consistent with Lp convergence. We define the convergence rigorously in Section 3.
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Another issue is the rate at which εn is allowed to converge to zero. If εn → 0 too quickly then
the graph becomes disconnected and hence it does not capture the geometry of Ω properly. The

connectivity threshold [43] is εn ∼
(

logn
n

) 1
d . We require (when d ≥ 3) εn �

(
logn
n

) 1
d which means

that our lower bound is almost optimal. We discovered that if εn → 0 too slowly the discrete functional
E(p)
n,con lacks sufficient regularity for the constraints to be preserved in the limit. The optimal upper

bound on εn is discussed in Theorem 2.1.

We now state our assumptions needed for the main results.

(A1) Ω ⊂ Rd is open, connected, bounded and with Lipschitz boundary;

(A2) The probability measure µ ∈ P(Ω) has continuous density ρ which is bounded above and below
by strictly positive constants in Ω;

(A3) There exists N labeled points: (xi, yi) ∈ Ω× R for i = 1, . . . , N ;

(A4) For i > N the data points xi, are iid samples of µ;

(A5) Let εn be a sequence converging to 0 satisfying the lower bound

εn �



√
log logn

n if d = 1

(logn)
3
4√

n
if d = 2(

logn
n

) 1
d if d ≥ 3;

(A6) The kernel profile η : [0,∞)→ [0,∞) is non-increasing;

(A7) η is positive and continuous at x = 0;

(A8) The integral
∫∞

0 η(t)|t|p+d dt is finite (equivalently ση =
∫
Rd η(|w|)|w · e1|p dw <∞).

The first main result of the paper is the following theorem. Its proof is presented in Section 4.

Theorem 2.1 (Consistency of the constrained model). Let p > 1. Assume Ω, µ, η, and xi satisfy the
assumptions (A1) - (A8). Let graph weights Wij be given by (5). Let fn be a sequence of minimizers
of E(p)

n,con defined in (10). Then, almost surely, the sequence (µn, fn) is precompact in the TLp metric.
The TLp limit of any convergent subsequence, (µnm , fnm), is of the form (µ, f) where f ∈W 1,p(Ω).
Furthermore,

(i) if nεpn → 0 as n→∞ then f is continuous and

(a) fnm converges locally uniformly to f , meaning that for any Ω′ ⊂⊂ Ω

lim
m→∞

max
{k≤nm : xk∈Ω′}

|f(xk)− fnm(xk)| = 0,

(b) f is a minimizer of E(p)
∞,con defined in (10),

(c) the whole sequence fn converges to f both in TLp and locally uniformly;

(ii) if nεpn →∞ as n→∞ then f is a minimizer of E(p)
∞ defined in (9).
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We note that in case (i) assumption (A5) and nεpn → 0 as n→∞ imply that n−1/p � ε� n−1/d

which is only possible if p > d. Therefore in case (i) we always have that functions f for which E(p)
∞

is finite are always continuous and thus it is possible to impose pointwise values of f , as needed to
define E(p)

∞,con in (10).
The result (i) establishes the asymptotic consistency of the discrete constrained model with the

constrained continuum weighted p-Laplacian model.
While the result (ii) looks similar its interpretation is different. It shows that the model “forgets”

the constraints in the limit. Namely E(p)
∞ only has the gradient term and no constraints! In particular its

minimizers are constants over Ω. What is happening is that fn develops narrow spikes near the labeled
points xi and becomes nearly constant everywhere else. In the TLp limit the spikes disappear.

This motivates referring to the scaling when npε→∞ as n→∞ as the degenerate regime. On
the other hand, we refer to the scaling of case (i) as the well-posed regime.

The other main result is the convergence in the penalized model. The proof is a straightforward
extension of Theorem 2.1 in the special case N = 0 (so that the constraint is not present). We include
the proof in Section 4.2.

Proposition 2.2. Let p > 1. Assume Ω, µ, η, and xi satisfy the assumptions (A1)-(A8). Let graph
weights Wij be given by (5). Let fn be a sequence of minimizers of S(p)

n defined in (8). Then, almost
surely, the sequence (µn, fn) is precompact in the TLp metric. The TLp limit of any convergent
subsequence, (µnm , fnm), is of the form (µ, f) where f ∈W 1,p(Ω). Furthermore,

(i) if nεpn → 0 as n→∞ then f is continuous and

(a) fn converges locally uniformly to f , meaning that for any Ω′ ⊂⊂ Ω

lim
n→∞

max
{k≤n : xk∈Ω′}

|f(xk)− fn(xk)| = 0,

(b) f is a minimizer of S(p)
∞ defined in (10),

(c) the whole sequence fn converges to f both in TLp and locally uniformly;

(ii) if nεpn →∞ as n→∞ then f is a minimizer of E(p)
∞ defined in (9).

Again the result of (i) is a consistency result, while (ii) shows that the penalization of the labels is
lost in the limit.

Remark 2.3. The above results (Theorem 2.1 and Proposition 2.2) could also be extended to p = 1, in
which case the limiting functional E(1)

∞ would be a weighted TV semi-norm E(1)
∞ = σηTV (·; ρ) where

TV (f ; ρ) = sup

{∫
Ω
fdivφ dx : |φ(x)| ≤ ρ2(x) ∀x ∈ Ω, φ ∈ C∞c (Ω;Rd)

}
.

A modification of the proofs contained here would prove the result, see also [32].

We recall that in Section 5 we propose an improved model that is well-posed when p > d without
requiring that nεp → 0.
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3 Background Material

In an effort to make this paper more self-contained we briefly recall three key notions our work relies
on. The first is Γ-convergence which is a notion of convergence of functionals developed for the
analysis of sequences of variational problems. The second is the notion of optimal transportation, and
the third is the TLp space which we use to define the convergence of discrete functions to continuum
functions.

3.1 Γ–Convergence

Γ-convergence was introduced by De Giorgi in 1970’s to study limits of variational problems. We
refer to [8, 14] for an in depth introduction to Γ-convergence. Our application of Γ-convergence will
be in a random setting.

Definition 3.1 (Γ-convergence). Let (Z, d) be a metric space and (X ,P) be a probability space.
For each ω ∈ X the functional E(ω)

n : Z → R ∪ {±∞} is a random variable. We say E(ω)
n Γ-

converge almost surely on the domain Z to E∞ : Z → R ∪ {±∞} with respect to d, and write
E∞ = Γ- limn→∞E

(ω)
n , if there exists a set X ′ ⊂ X with P(X ′) = 1, such that for all ω ∈ X ′ and

all f ∈ Z:

(i) (liminf inequality) for every sequence {fn}∞n=1 converging to f

E∞(f) ≤ lim inf
n→∞

E(ω)
n (fn), and

(ii) (recovery sequence) there exists a sequence {fn}∞n=1 converging to f such that

E∞(f) ≥ lim sup
n→∞

E(ω)
n (fn).

For ease of notation we will suppress the dependence of ω on on our functionals, that is we apply
the above definition to En = E(p)

n . The almost sure statement in the above definition does not play a
significant role in the proofs. Basically it is enough to consider the set of realizations of {xi}∞i=1 such
that the empirical measure converges weak∗. More precisely, we consider the set of realizations of
{xi}∞i=1 such that the conclusions of Theorem 3.3 hold.

The fundamental result concerning Γ-convergence is the following convergence of minimizers
result. The proof can be found in [8, Theorem 1.21] or [14, Theorem 7.23].

Theorem 3.2 (Convergence of Minimizers). Let (Z, d) be a metric space and En : Z → [0,∞] be a
sequence of functionals. Let fn be a minimizing sequence for En. If the set {fn}∞n=1 is precompact
and E∞ = Γ- limnEn where E∞ : Z → [0,∞] is not identically +∞ then

min
Z
E∞ = lim

n→∞
inf
Z
En.

Furthermore any cluster point of {fn}∞n=1 is a minimizer of E∞.

The theorem is also true if we replace minimizers with almost minimizers.

We note that Γ-convergence is defined for functionals on a common metric space. The next section
overviews the metric space we use to analyze the asymptotics of our semi-supervised learning models,
in particular it allows us to go from discrete to continuum.
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3.2 Optimal Transportation and Approximation of Measures

Here we recall the notion of optimal transportation between measures and the metric it introduces.
Comprehensive treatment of the topic can be found in books of Villani [55] and Santambrogio [45].

Given Ω is open and bounded, and probability measures µ and ν in P(Ω) we define the set Π(µ, ν)
of transportation maps, or couplings, between them to be the set of probability measures on the product
space π ∈ P(Ω×Ω) whose first marginal is µ and second marginal is ν. We then define the p-optimal
transportation distance (a.k.a. p-Wasserstein distance) by

dp(µ, ν) =


inf

π∈Π(µ,ν)

(∫
Ω×Ω
|x− y|p dπ(x, y)

) 1
p

if 1 ≤ p <∞

inf
π∈Π(µ,ν)

π- ess sup
(x,y)

|x− y| if p =∞.

If µ has a density with respect to Lebesgue measure on Ω, then the distance can be rewritten using
transportation maps, T : Ω→ Ω, instead of transportation plans,

dp(µ, ν) =


inf

π∈Π(µ,ν)

(∫
Ω
|x− T (x)|p dµ(x)

) 1
p

if 1 ≤ p <∞

inf
T]µ=ν

µ- ess sup
x
|x− T (x)| if p =∞.

where Tµ = ν means that the push forward of measure µ by T is measure ν, namely that T is Borel
measurable and such that for all U ⊂ Ω, open, µ(T−1(U)) = ν(U).

When p <∞ the metric dp metrizes the weak convergence of measures.
Optimal transportation plays an important role in comparing the discrete and continuum objects

we study. In particular we use sharp estimates on the∞-optimal transportation distance between a
measure and the empirical measure of its sample. In the form below, for d ≥ 2, they were established
in [31], which extended the related results in [1, 38, 46, 49]. For d = 1 the estimates are simpler, and
follow from the law of iterated logarithms.

Theorem 3.3. Let Ω ⊂ Rd be open, connected and bounded with Lipschitz boundary. Let µ be a
probability measure on Ω with density (with respect to Lebesgue) ρ which is bounded above and below
by positive constants. Let x1, x2, . . . be a sequence of independent random variables with distribution
µ and let µn be the empirical measure. Then there exists a constants C ≥ c > 0 such that almost
surely there exists a sequence of transportation maps {Tn}∞n=1 from µ to µn such that

c ≤ lim inf
n→∞

‖Tn − Id‖L∞(Ω)

δn
≤ lim sup

n→∞

‖Tn − Id‖L∞(Ω)

δn
≤ C

where

δn =



√
log log(n)

n if d = 1

(logn)
3
4√

n
if d = 2

(logn)
1
d

n
1
d

if d ≥ 3.

12



3.3 The TLp Space

The discrete functionals we consider (e.g. E(p)
n ) are defined for functions fn : Ωn → R where

Ωn = {xi : i = 1, . . . , n}, while the limit functional E(p)
∞ acts on functions f : Ω → R, where

Ω is an open set. We can view fn as elements of Lp(µn) where µn is the empirical measure of the
sample µn = 1

n

∑n
i=1 δxi . Likewise f ∈ Lp(µ) where µ is the measure with density ρ out of which

the points are sampled from. One would like how to compare f and fn in a way that is consistent with
Lp topology. To do so we use the TLp space was introduced in [32], where it was used to study the
continuum limit of the graph total variation (that is E(1)

n ). Subsequent development of the TLp space
has been carried out in [33, 50, 51].

To compare the functions fn and f above we need to take into account their domains, or more
precisely to account for µ and µn. For that purpose the space of configurations is defined to be

TLp(Ω) =
{

(µ, f) : µ ∈ P(Ω), f ∈ Lp(µ)
}
.

The metric on the space is

dpTLp((µ, f), (ν, g)) = inf

{∫
Ω×Ω
|x− y|p + |f(x)− g(y)|p dπ(x, y) : π ∈ Π(µ, ν)

}
where Π(µ, ν) the set of transportation plans defined in Section 3.2. We note that the minimizing π
exists and that TLp space is a metric space, [32].

When µ has a density with respect to Lebesgue measure on Ω, then the distance can be rewritten
using transportation maps, T instead of transportation plans,

dpTLp((µ, f), (ν, g)) = inf

{∫
Ω
|x− T (x)|p + |f(x)− g(T (x))|p dµ(x) : T#µ = ν

}
.

This formula provides a clear interpretation of the distance in our setting. Namely to compare functions
fn : Ωn → R we define a mapping Tn : Ω→ Ωn and compare the functions f̃n = fn ◦ Tn and f in
Lp(µ), while also accounting for the transport, namely the |x− Tn(x)|p term.

We remark that TLp(Ω) space is not complete and that its completion was discussed in [32]. In
the setting of this paper, since the corresponding measure is clear from context, we often say that fn
converges in TLp to f as a short way to say that (µn, fn) converges in TLp to (µ, f).

4 Regularity and Asymptotics of Discrete and Nonlocal Functionals

Here we present some of the key properties of the functionals involved that allow us to show the
asymptotic consistency of Theorem 2.1. A fundamental new issue (compared to say [33]) is that
constraints in E(p)

∞ are imposed pointwise on a set of µ measure zero. [The reason that these constraints
make sense is that for p > d the finiteness of E(p)

∞ (f) implies that f is continuous.] We note that the
TLp convergence used in [33] is not sufficient to imply that constraints are preserved. One needs
a stronger convergence, like the uniform one. This raises the question on how to obtain the needed
compactness of sequences fn, that is how to show that uniform boundedness of E(p)

n,con(fn) implies
the existence of a (locally) uniformly converging subsequence. Our approach combines discrete and
continuum regularity results. Namely we obtain in Lemma 4.1 a local control of oscillation of fn over
distances of order εn. In Lemma 4.2 we show that discrete functionals E(p)

n,con(fn) control the values
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of the associated nonlocal continuum functionals E(NL,p)
εn (f̃n) (defined in (14) below) applied to an

appropriate extrapolation f̃n of fn. A simple but important point is that the discrete functionals at fixed
n are always closer to a nonlocal functional with nonlocality at scale εn, than to the limiting functional.
The issue is that these nonlocal functionals do not share the regularizing properties of the limiting
functional. However we show in Lemma 4.3 that control of the nonlocal energy is sufficient to provide
regularity at scales larger than ε. Combining these estimates is enough to imply the compactness with
respect to (locally) uniform convergence, Lemma 4.5.

Lemma 4.1 (discrete regularity). Let p > 1. Assume Ω, µ, η, and xi satisfy the assumptions (A1) -
(A8). Let graph weights Wij be given by (5). Let Ωn = {xi}ni=1. For any fn : Ωn → R, we define
osc

(n)
ε (fn) : Ωn → R by

osc(n)
ε (fn)(xi) = max

z∈B(xi,ε)∩Ωn

fn(z)− min
z∈B(xi,ε)∩Ωn

fn(z).

For any α0 > 0, with probability one, there exist n0 > 0 and C > 0 (independent of n) such that for
any α ≥ α0, all n ≥ n0, all fn : Ωn → R, and all k ∈ {1, 2, . . . , n}(

osc(n)
αεn(fn)(xk)

)p
≤ CαpnεpnE(p)

n (fn),

where E(p)
n is defined by (6).

Proof. Let η̃(t) = a if 0 ≤ t < b and η̃(t) = 0 where a and b are chosen such that η̃ ≤ η. We can
furthermore choose b so that b ≤ α0. For all k ∈ {1, . . . , n} let

f̄n(xk) = max
z∈B(xk,

bεn
2

)∩Ωn

fn(z), x̄k ∈ argmax
z∈B(xk,

bεn
2

)∩Ωn

fn(z),

f
n
(xk) = min

z∈B(xk,
bεn
2

)∩Ωn

fn(z), xk ∈ argmin
z∈B(xk,

bεn
2

)∩Ωn

fn(z).

Note that osc
(n)
bεn
2

(fn)(xk) = f̄n(xk)− fn(xk) and for all x ∈ B
(
xk,

bεn
2

)
∩ Ωn

(i) f̄n(xk)− fn(x) ≥ 1

2
osc bεn

2
(fn)(xk),

or (ii) fn(x)− f
n
(xk) ≥

1

2
osc bεn

2
(fn)(xk).

Without a loss of generality we assume that (i) holds for at least half the points in B
(
xk,

bεn
2

)
∩ Ωn.
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Then,

E(p)
n (fn) ≥ 1

εp+dn n2

n∑
i,j=1

η̃

(
|xi − xj |

εn

)
|fn(xi)− fn(xj)|p

≥ 1

εp+dn n2

∑
j:|xj−x̄k|≤bεn

η̃

(
|x̄k − xj |

εn

)
|fn(xj)− fn(x̄k)|p

≥ a

εp+dn n2

∑
j:|xj−xk|≤ bεn

2

|fn(xj)− fn(x̄k)|p, since |xk − x̄k| ≤
bεn
2

≥ a

2p+1εp+dn n2

(
osc bεn

2
(fn)(xk)

)p
#

{
j : |xj − xk| ≤

bεn
2

}
=

a

2p+1εp+dn n

(
osc bεn

2
(fn)(xk)

)p
µn

(
B

(
xk,

bεn
2

))
.

(12)

where µn = 1
n

∑n
i=1 δxi . Now, for a transport map Tn : Ω → Ωn from µ to µn, satisfying the

conclusions of Theorem 3.3, we have

1

εdn
µn

(
B

(
xk,

bεn
2

))
=

1

εdn

∫
Ω
I{|Tn(x)−xk|≤ bεn

2
}ρ(x) dx

≥ infx∈Ω ρ

εdn

∫
Ω
I{|x−xk|≤ bεn

2
−‖Tn−Id‖L∞} dx

=
(

inf
x∈Ω

ρ(x)
)
Vol

(
B

(
0,
b

2
− ‖Tn − Id‖L∞

εn

))
.

(13)

We choose n0 such that for n ≥ n0 it holds that ‖Tn−Id‖L∞
εn

≤ b
4 . Combining (12) and (13) gives

(
osc bεn

2
(fn)(xk)

)p
≤ 2p+1εpnnE(p)

n (fn)

a
(

infx∈Ω ρ(x)
)
Vol

(
B
(
0, b4
)) =: C1ε

p
nnE(p)

n (fn).

For α > α0, using α0 ≥ b and applying the triangle inequality
⌊

2α
b

⌋
times, we obtain

(oscαεn(fn)(xk))
p ≤ C1

(⌊
2α

b

⌋
+ 1

)p
εpnnE(p)

n (fn) ≤ C1

(
3α

b

)p
εpnnE(p)

n (fn)

which completes the proof.

Lemma 4.2 (discrete to nonlocal control). Let p ≥ 1. Assume Ω, µ, η, and xi satisfy (A1) - (A8). Let
graph weights Wij be given by (5). Let constants a, b > 0 be such that for η̃(|x|) = a for |x| ≤ b
and η̃(|x|) = 0 otherwise it holds that η̃ ≤ η. Let Tn be a transport map satisfying the results
of Theorem 3.3 and let ε̃n = εn − 2‖Tn−Id‖L∞

b . Then there exists constants n0 > 0 and C > 0
(independent of n and fn) such that for all n ≥ n0

E(NL,p)
ε̃n

(fn ◦ Tn; η̃) ≤ CE(p)
n (fn; η)

where E(NL,p)
ε̃n

is defined by

(14) E(NL,p)
ε (f ; η) =

1

εp

∫
Ω

∫
Ω
ηε(|x− z|)|f(x)− f(z)|p dx dz.
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Proof. Assume
∣∣∣x−zε̃n ∣∣∣ < b then

|Tn(x)− Tn(z)| ≤ 2‖Tn − Id‖L∞ + |x− z| ≤ 2‖Tn − Id‖L∞ + bε̃n = bεn.

So, ∣∣∣∣x− zε̃n

∣∣∣∣ < b⇒
∣∣∣∣Tn(x)− Tn(z)

εn

∣∣∣∣ ≤ b
and therefore

η̃

(
|x− z|
ε̃n

)
≤ η̃

(
|Tn(x)− Tn(z)|

εn

)
≤ η

(
|Tn(x)− Tn(z)|

εn

)
.

Now,

E(NL,p)
ε̃n

(fn ◦ Tn) ≤ εdn

ε̃d+p
n

∫
Ω2

ηεn(|Tn(x)− Tn(z)|) |fn(Tn(x))− fn(Tn(z))|p dx dz

=
εd+p
n(

infx∈Ω ρ2(x)
)
ε̃d+p
n

E(p)
n (fn).

Since εn
ε̃n
→ 1 we are done.

In the next lemma we show that that boundedness of non-local energies implies regularity at scales
greater ε. This allows us to relate non-local bounds to local bounds after mollification.

Lemma 4.3 (nonlocal to averaged local). Assume Ω ⊂ Rd is open and bounded and p ≥ 1. Assume
that η : [0,∞) → [0,∞) is non-increasing, η(0) > 0 and η is continuous near 0. Then there exists
a constant C ≥ 1 and a mollifier J with supp(J) ⊆ B(0, 1) such that for all ε > 0, f ∈ Lp(Ω),
Ω′ ⊂⊂ Ω with dist(Ω′, ∂Ω) > ε it holds that

E(p)
∞ (Jε ∗ f ; Ω′) ≤ CE(NL,p)

ε (f).

where E(p)
∞ is defined by (9) and E(NL,p)

ε is defined by (14).

Proof. Let J be a radially symmetric mollifier supported in B(0, 1) and such that for some β > 0,
J ≤ βη and |∇J | ≤ βη. Without loss of generality we can assume supp(η) ⊂ B(0, 1). Let
Jε( · ) = J( · /ε)/εd and let gε = Jε ∗ f . For arbitrary x ∈ Ω with dist(x, ∂Ω) > ε we have

|∇gε(x)| =
∣∣∣∣∫

Ω
∇Jε (x− z) f(z) dz

∣∣∣∣
=

∣∣∣∣∣
∫

Ω
∇Jε (x− z) (f(z)− f(x)) dz −

∫
Rd\Ω

∇Jε (x− z) f(x) dz

∣∣∣∣∣
≤ β

εd+1

∫
Ω
η

(
x− z
ε

)
|f(z)− f(x)| dz +

1

εd+1

∫
Rd\Ω

∣∣∣∣(∇J)

(
x− z
ε

)∣∣∣∣ |f(x)| dz.

where the second line follows from
∫
Rd ∇J(w) dw = 0. For the second term we have

1

εd+1

∫
Rd\Ω

∣∣∣∣∇J (x− zε
)∣∣∣∣ |f(x)| dz = 0
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since for all z ∈ Rd \ Ω and x ∈ Ω with dist(x, ∂Ω) > ε it follows that |x − z| > ε and thus
∇J

(
x−z
ε

)
= 0. Therefore,

|∇gε(x)|p ≤ βp
(∫

Ω

1

ε
ηε(x− z) |f(z)− f(x)| dz

)p
≤ γp−1

η βp
∫

Ω
ηε(x− z)

|f(z)− f(x)|p

εp
dz

by Jensen’s inequality and where γη =
∫
B(0,1) η(w) dw. Hence,∫

Ω′
|∇gε(x)|p dx ≤ γp−1

η βp
∫

Ω

∫
Ω
ηε(|x− z|)

∣∣∣∣f(z)− f(x)

εp

∣∣∣∣p dz dx

≤ γp−1
η βpE(NL,p)

ε (f)

which completes the proof.

We prove the compactness property for bounded sequences. The convergence of a subsequence
is a consequence of being able to bound g̃n = Jεn ∗ (fn ◦ Tn) in W 1,p (hence the sequence {g̃n}n is
precompact in Lp(µ)) and show ‖fn ◦ Tn − g̃n‖Lp → 0.

Proposition 4.4 (compactness). Consider the assumptions and the graph construction of Lemma
4.1. Then with probability one, any sequence fn : Ωn → R with supn∈N E

(p)
n (fn) < ∞ and

supn∈N ‖fn‖L∞(µn) <∞ has a subsequence fnm such that (µnm , fnm), converges in TLp to (µ, f)
for some f ∈ Lp(µ).

Proof. Since E(p)
n (fn) ≥ CE(1)

n (fn) the compactness in TL1 follows from Theorem 1.2 in [32]. We
note that from the proof of Theorem 1.2 it follows that there in fact exists a subsequence fnm , and a
sequence of transportation maps Tnm ]µ = µnm such that

lim
m→∞

‖f − fnm ◦ Tnm‖L1(µ) + ‖Tnm − Id‖L∞(µ) = 0.

Since ‖f − fnm ◦ Tnm‖L∞(µ) ≤ M < ∞ for some M ∈ R, the convergence of fnm to f in TLp

follows by interpolation.

Lemma 4.5 (uniform convergence). Consider the assumptions and the graph construction of Lemma
4.1. Assume that εpnn→ 0 as n→∞, which, due to (A5), implies that p > d. Furthermore assume
that with probability one (µn, fn)→ (µ, f) in TLp metric as n→∞ and that supn∈N E

(p)
n (fn) <∞.

Then f ∈ C0,γ(Ω), with γ = 1− d
p > 0, and for all Ω′ ⊂⊂ Ω

max
{k : xk∈Ω′}

|f(xk)− fn(xk)| → 0 as n→∞.

Moreover, if for all k = 1, . . . , N , fn(xk) = yk for all n, it follows that f(xk) = yk.

Proof. Find constants a, b > 0 such that η̃(t) := a if |t| ≤ b and η̃(t) := 0 if |t| > b satisfies
η̃ ≤ η. Now we define f̃n = fn ◦ Tn where Tn is the transportation map satisfying the conclusions on
Theorem 3.3 and set ε̃n = εn − 2‖Tn−Id‖L∞

b . Then for n sufficiently large ε̃n > 0, and εn
ε̃n
→ 1. We

note that if |Tn(x)− Tn(z)| > bεn then

|x− z| ≥ |Tn(x)− Tn(z)| − 2‖Tn − Id‖L∞ > bεn − 2‖Tn − Id‖L∞ = ε̃nb.
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Hence, η̃
(
|x−z|
ε̃n

)
≤ η̃

(
|Tn(x)−Tn(z)|

εn

)
. Let E(NL,p)

ε̃ be the non-local Dirichlet energy defined in (14)
with ε = ε̃n and η = η̃. Then, by Lemma 4.2

E(NL,p)
ε̃ (f̃n) ≤ CE(p)

n (fn).

Hence, E(NL,p)
ε̃ (f̃n) is bounded and therefore, by Lemma 4.3 we have that E(p)

∞ (Jε̃n ∗ fn; Ω′) is
bounded for every Ω′ ⊂⊂ Ω. One can easily show ‖Jε̃n ∗ fn‖Lp(Ω′) ≤ ‖f̃n‖Lp and therefore Jε̃n ∗ f̃n
is locally bounded in W 1,p. We also note that since fn ◦ Tn converges to f in Lp(µ)

‖Jε̃n ∗ f̃n − f‖Lp(Ω′) ≤ ‖Jε̃n ∗ f̃n − Jε̃n ∗ f + Jε̃n ∗ f − f‖Lp(Ω′)

≤ ‖f̃n − f‖Lp(Ω) + ‖Jε̃n ∗ f − f‖Lp(Ω′) → 0 as n→∞.

Since Jε̃n ∗ f̃n → f in Lp(Ω′), by the compactness of the embedding of W 1,p(Ω′) into C0,γ (Morrey’s
inequality), for γ = 1− d

p , we have that

Jε̃n ∗ f̃n → f uniformly on Ω′ as n→∞.

Therefore, for each k ∈ {1, . . . , N}, Jε̃n ∗ f̃n converges uniformly to f on B(0, δ) for any δ such that
B(xk, δ) ⊂ Ω. For any x ∈ B(xk, 3ε̃n) ∩ Ωn we have (for a constant C)

|fn(xk)− fn(x)| ≤ osc3ε̃n(fn)(xk) ≤ osc4εn(fn)(xk) ≤
(

4pCE(p)
n (fn)nεpn

) 1
p → 0

by Lemma 4.1. It follows that

max
k=1,...,n

max
x∈B(xk,3ε̃n)∩Ωn

|fn(x)− fn(xk)| → 0.

To complete the proof we notice that for any Ω′ ⊂⊂ Ω

max
{k : xk∈Ω′}

|f(xk)− fn(xk)|

≤ max
{k : xk∈Ω′}

|f(xk)− Jε̃n ∗ f̃n(xk)|+ |Jε̃n ∗ f̃n(xk)− fn(xk)|

≤ ‖f − Jε̃n ∗ f̃n‖L∞(Ω′) + max
{k : xk∈Ω′}

∫
B(0,2ε̃n)

Jε̃n(xk − x) |fn(Tn(x))− fn(xk)| dx

≤ ‖f − Jε̃n ∗ f̃n‖L∞(Ω′) + max
{k : xk∈Ω′}

sup
x∈B(xk,3ε̃n)∩Ωn

|fn(x)− fn(xk)|

and the above converges to zero for all xk.

4.1 Asymptotic Consistency via Γ–Convergence

We approach proving Theorem 2.1 using Γ-convergence. Namely as pointed out in Section 3.1
convergence of minimizers follows from Γ-convergence and compactness. We use the general setup
of [32]. In particular we first establish in Lemma 4.6 that nonlocal functionals E(NL,p)

εn Γ-converge to
E(p)
∞ . We then state and prove the Γ-convergence of E(p)

n,con towards E(p)
∞ or E(p)

∞,con depending on how
quickly εn → 0 as n→∞. Steps of proving this claim rely on Lemma 4.6.
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Lemma 4.6 (continuum nonlocal to local). Let p > 1. Assume Ω satisfy the assumptions (A1) - (A2)
and η satisfies assumptions (A6) - (A8). Then E(NL,p)

ε , defined in (14), Γ-converges as n → ∞ in
Lp(Ω) to the functional E(p)

∞ defined in (9).

If ρ is constant and Ω is convex this result is contained in the appendix to [3]. For general Ω it
follows from Theorem 8 in [44]. We remark that while the functional in [44] appears different the
term |x− y|p which arises can be absorbed in the kernel. The results can be extended to general ρ in
a straightforward manner as has been done for p = 1 in Section 4 of [32] and has been remarked in
Proposition 1.10 in [33].

Theorem 4.7 (discrete to local Γ-convergence). Let p > 1. Assume Ω, µ, η, εn, and xi satisfy
the assumptions (A1) - (A8). Let graph weights Wij be given by (5). Let M ≥ maxi=1,...,N |yi|.
Then with probability one En,con , defined in (7), Γ-converges as n → ∞ in TLp metric on the set
{(ν, g) : ν ∈ P(Ω), ‖g‖L∞(ν) ≤M} to the functional{

E(p)
∞,con if limn→∞ nεpn = 0

E(p)
∞ if limn→∞ nεpn =∞

where E(p)
∞ is defined in (9) and E(p)

∞,con is defined in (10).

Restricting the space to the set of functions bounded by M is really needed only for the case
limn→∞ nεpn =∞. It is required since the functional E(p)

∞ is invariant under adding a constant and
thus the loss of constraints in the limit when limn→∞ nεpn =∞ would lead to loss of compactness,
without the restriction. We note that placing an upper bound on f is not restrictive in practice since
both discrete and continuum minimizers satisfy the bound.

We prove the liminf inequalities and the existence of a recovery sequence separately. Since
E(p)
∞ ≤ E(p)

∞,con the liminf inequalities needed can be stated in the following way.

Lemma 4.8. Under the same conditions as Theorem 4.7, with probability one, for any f ∈ Lp with
‖f‖L∞(µ) ≤M and any sequence fn → f in TLp with ‖fn‖L∞(µn) ≤M we have

(15) E(p)
∞ (f) ≤ lim inf

n→∞
E(p)
n (fn) ≤ lim inf

n→∞
E(p)
n,con(fn).

Furthermore if limn→∞ nεpn = 0 then

(16) E(p)
∞,con(f) ≤ lim inf

n→∞
E(p)
n,con(fn).

Proof. Let fn → f in TLp. The first inequality of (15) follows from Lemma 4.6 in the same way the
analogous result is shown for p = 1 in Section 5 of [32]. The second inequality follows from definition
of E(p)

n and E(p)
n,con

When limn→∞ nεpn = 0 the inequality (16) is a consequence of Lemma 4.5.

We now prove the existence of a recovery sequence. Since E(p)
∞ ≤ E(p)

∞,con we state it in the
following way.
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Lemma 4.9. Under the same conditions as Theorem 4.7, with probability one, for any function f ∈ Lp,
with ‖f‖L∞(µ) ≤M there exists a sequence fn satisfying fn → f in TLp with ‖fn‖L∞(µn) ≤M and

(17) E(p)
∞,con(f) ≥ lim sup

n→∞
E(p)
n,con(fn).

Furthermore if limn→∞ nε
p
n =∞ then

(18) E(p)
∞ (f) ≥ lim sup

n→∞
E(p)
n,con(fn).

Proof. The proof of the first inequality is a straightforward adaptation of the analogous result for p = 1
in Section 5 of [32]. The recovery sequence used is defined as a restriction of f to Ωn: fn(xi) = f(xi)
for all i = 1, . . . , n, and thus satisfies the constraints and ‖fn‖L∞(µn) ≤M .

The same argument and recovery sequence construction can be used to show that with probability
one, for any function f ∈ Lp, with ‖f‖L∞(µ) ≤M there exists a sequence fn satisfying fn → f in
TLp with ‖fn‖L∞(µn) ≤M and

(19) E(p)
∞ (f) ≥ lim sup

n→∞
E(p)
n (fn).

Let us now consider that case that nεpn →∞ as n→∞ and show the second inequality. Suppose
E(p)
∞,con(f) <∞ else the lemma is trivial. Let fn be the recovery sequence for (19).

We define f̂n : Ωn → R by

f̂n(xi) =

{
yi for i = 1, . . . , N,

fn(xi) for i = N + 1, . . . , n.

We note that f̂n → f in TLp with ‖f̂n‖L∞(µn) ≤M . To show (18) it suffices to show that

(20) lim
n→∞

E(p)
n (fn)− E(p)

n,con(f̂n) = 0.

We may write,∣∣∣E(p)
n (fn)− E(p)

n,con(f̂n)
∣∣∣ ≤ 1

εpn

2

n2

N∑
i=1

n∑
j=1

ηεn(|xi − xj |) | |f(xi)− f(xj)|p − |yi − f(xj)|p|

≤ 2p+1Mp

εpnn

N∑
i=1

1

n

n∑
j=1

ηεn(|xi − xj |)

(21)

Step 1. Let us consider first the case that η(t) = a if |t| < b and η(t) = 0 otherwise for some a, b > 0.
Then, using Theorem 3.3

1

n

n∑
j=1

ηεn(|xi − xj |) ≤
η(0)

εd
µn(B(xi, εb)

≤ η(0)

εd
µ(B(xi, εb+ ‖Id− Tn‖L∞))

≤ η(0)

(
εb+ ‖Id− Tn‖L∞

ε

)d
Vol(B(0, 1))‖ρ‖L∞ ≤ C.
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Combining this inequality with (21) implies (20).
Step 2. Consider now general η satisfying (A6)-(A8). Let

η̃(t) =

{
η(0) if |t| ≤ 1

η(t) otherwise.

Note that η̃ is radially nonincreasing, η̃ ≥ η, and that η̃((|x| − 1)+) ≤ η̃(|x|/2). Theorem 3.3 implies
that for n large ‖Id− Tn‖L∞ ≤ εn. Consequently

1

n

n∑
j=1

ηεn(|xi − xj |) ≤
1

n

n∑
j=1

η̃εn(|xi − xj |)

=
1

εdn

∫
Ω
η̃

(
|xi − Tn(y)|

εn

)
dµ(y)

≤ 1

εdn

∫
Ω
η̃

(
|xi − y|

2εn

)
dµ(y) ≤ C

where the penultimate inequality follows from |xi−Tn(y)|
εn

≥
(
|xi−y|−‖Tn−Id‖L∞

εn

)
+
≥
(
|xi−y|
εn
− 1
)

+
.

Again combining this estimate with (21) implies (20).

We now state the Γ-convergence result relevant for the penalized model S(p)
n .

Lemma 4.10. Under the conditions of Proposition 2.2 we have:

• (compactness) Any sequence fn : Ωn → R with supn∈N S
(p)
n (fn) + ‖fn‖L∞(µn) <∞ has, with

probability one, a subsequence fnm such that there exists f∞ ∈W 1,p with fnm → f∞ in TLp.

• (Γ-convergence, well-posed regime) If εpnn→ 0 then, with probability one, on the set (µn, fn)
with ‖fn‖L∞(µn) ≤M ,

Γ- lim
n→∞

(
E(p)
n + λR(q)

)
= E(p)

∞ + λR(q)

where the Γ-convergence is considered in TLp topology.

• (Γ-convergence, degenerate regime) If εpnn→∞ then, with probability one, on the set (µn, fn)
with ‖fn‖L∞(µn) ≤M ,

Γ- lim
n→∞

(
E(p)
n + λR(q)

)
= E(p)

∞ ,

where the Γ-convergence is considered in TLp topology.

Proof. The compactness follows directly from Proposition 4.4.
When εpnn→ 0, for the liminf inequality assume fn → f in TLp and lim infn→∞ E(p)

n (fn) <∞.
Then by Lemma 4.5 fn(xk)→ f(xk) for all k ∈ {1, . . . , N} and hence λR(q)(fn)→ λR(q)(f). By
(15) of Lemma 4.8 we have lim infn→∞

(
E(p)
n (fn) + λR(q)(fn)

)
≥ E(p)

∞ (f) +λR(q)(f). The limsup
inequality follows in a similar manner from equation (19) and Lemma 4.5.

If εpnn → ∞, then the liminf inequality follows from (15) of Lemma 4.8, while, the limsup
inequality follows directly from

lim sup
n→∞

E(p)
n (fn) + λR(q)(fn) ≤ lim sup

n→∞
E(p)
n,con(fn) ≤ E(p)

∞ (f)

and Lemma 4.9.
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4.2 Proofs of Theorem 2.1 and Proposition 2.2

The Γ-convergence and compactness results above allow us to prove Theorem 2.1. It is a general
result that Γ-convergence and compactness imply the convergence of minimizers (as well as of almost
minimizers) to a minimizer of the limiting problem, see [8, Theorem 1.21] or Theorem 3.2.

Proof of Theorem 2.1. Let fn be a minimizer of E(p)
n,con. Recall that M ≥ ‖y‖L∞(µn). Note that if

‖fn‖L∞(µn) > M then, since the graph is connected with high probability pn, such that
∑∞

n=1(1−
pn) < ∞, for f̂n = (fn ∧M) ∨ (−M) we have E(p)

n,con(f̂n) < E(p)
n,con(fn) which contradicts the

definition of fn. Thus with high probability ‖fn‖L∞ ≤ M for each n, hence we can restrict the
minimization to the set of (fn, µn) such that ‖fn‖L∞(µn) ≤M . This allows us to consider the setting
of Theorem 4.7.

By compactness result of Proposition 4.4 there exists a subsequence fnm converging in TLp to
f ∈ Lp(µ).

To prove (i) assume that nεpn → 0 as n → ∞. The uniform convergence of statement (a) then
follows from Lemma 4.5. The Γ-convergence result of Theorem 4.7 implies that f minimizes E(p)

∞,con.
Since the minimizer of E(p)

∞,con is unique the convergence holds along the whole sequence, thus
establishing statement (c).

To prove (ii) assume that nεpn → 0 as n → ∞. Again, Theorem 4.7 implies that f minimizes
E(p)
∞ .

The results of the Proposition 2.2 are proved by the same arguments; using Lemma 4.10 instead of
Theorem 4.7.

5 Improved Model

In Theorem 2.1 we proved that the model E(p)
n,con, defined in (7), is consistent as n → ∞ and lower

bounds (A5) hold, only if
1

np
� εn.

This upper bound is undesirable as it restricts the range of ε that can be used. Furthermore in a
nonasymptotic regime, for large but fixed finite n, it provides no guidance to what ε are appropriate
(small enough). Finally as our numerical experiments show, see Figures 2(a) and 3(a), the range of ε
for which the limiting problem is approximated well can be quite narrow. This problem is particularly
pronounced if p > d is close to d, which is the regime identified in [16] as the most relevant for
semi-supervised learning.

It would be advantageous to have another model, asymptotical consistent with E(p)
∞,con which would

not require an upper bound on εn (other than εn to converge to zero) as n→∞. Here we introduce a
new, related, model F (p)

n,con which has the desired properties, and whose minimizers can be computed
with the same algorithms as those for E(p)

n,con.
We define the set of functions which are constant near the labeled points:

C(δ)
n = {f : Ωn → R : f(xk) = yi whenever |xk − xi| < δ for i = 1, . . . , N}
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Let L = min{|xi − xj | : i 6= j}/2 and Rn = min{2εn, L}. The new functional is defined by

(22) F (p)
n,con(f) =

{
1
εpn

1
n2

∑n
i,j=1Wij |f(xi)− f(xj)|p if f ∈ C(Rn)

n

∞ else.

We note that for f ∈ C(Rn)
n , F (p)

n,con(f) = E(p)
n,con(f) and that F (p)

n,con(f) ≥ E(p)
n,con(f) for all f .

For the asymptotic consistency we still need to require p > d, since only then is the limiting model
E(p)
∞,con well defined. In Theorem 2.1 this followed from the assumption nεpn → 0 as n→∞. Since

we no longer require the upper bound on εn we need to require p > d explicitly.

Theorem 5.1 (Consistency of the improved model). Let p > d. Assume Ω, µ, η, and xi satisfy the
assumptions (A1) - (A8). Let graph weights Wij be given by (5). Let fn be a sequence of minimizers
of F (p)

n,con defined in (22). Then, almost surely, the sequence (µn, fn) is precompact in the TLp metric.
The TLp limit of any convergent subsequence, (µnm , fnm), is of the form (µ, f) where f ∈W 1,p(Ω)

is a minimizer of E(p)
∞,con defined in (10).

Proof of the theorem is a straightforward modification of the proof of Theorem 2.1. It relies on the
following Γ-convergence result.

Theorem 5.2 (discrete to local Γ-convergence). Let M ≥ maxi=1,...,N |yi|. Under the conditions
of Theorem 5.1, with probability one Fn,con Γ-converges as n → ∞ in TLp metric on the set
{(ν, g) : ν ∈ P(Ω), ‖g‖L∞(ν) ≤M} to the functional E(p)

∞,con.

We note that statement (15) of Lemma 4.8, and Proposition 4.4 hold for F (p)
n,con since E(p)

n,con ≤
F (p)
n,con. We now turn to proving the liminf property and the existence of recovery sequence needed to

show that F (p)
n,con Γ converges in TLp topology to E(p)

∞,con.

Lemma 5.3. Under the conditions of Theorem 5.1, with probability one, for any f ∈ L∞(µ) with
‖f‖L∞(µ) ≤M and any sequence fn → f in TLp with ‖fn‖L∞(µn) ≤M we have

(23) E(p)
∞,con(f) ≤ lim inf

n→∞
F (p)
n,con(fn).

Proof. Consider a sequence fn, uniformly bounded in L∞(µn) and convergent in TLp and such that
lim infn→∞F (p)

n,con(fn) < ∞. Without a loss of generality we assume limn→∞F (p)
n,con(fn) < ∞.

Note that in contrast to Lemma 4.8 we no longer require nεpn → 0 as n→∞. Therefore we can no
longer use the uniform convergence of Lemma 4.5.

Nevertheless since for n large fn = yi on B(xi, 2ε) and ‖Id − Tn‖L∞ < ε we conclude that
f̃n := fn ◦ Tn = yi on B(xi, ε) and consequently that for gn := Jεn ∗ f̃n it holds that gn(xi) = yi.
Furthermore note that ‖gn‖L∞ ≤ M . By bounds of Lemma 4.2 and Lemma 4.3, gn is uniformly
bounded in W 1,p(Ω′) for any Ω′ ⊂⊂ Ω. Arguing as in the proof of Lemma 4.5 we conclude that
gn → f in Lp(Ω). Since p > d, W 1,p is compactly embedded in the space of continuous functions.
This implies that gn uniformly converges to f on sets compactly contained in Ω. Therefore f(xi) = yi
for all i = 1, . . . , N . Combining this with statement (15) of Lemma 4.8 yields (23).

Lemma 5.4. Under the conditions of Theorem 5.1, with probability one, for any f ∈ L∞(µ) with
‖f‖L∞(µ) ≤M there exists a sequence fn → f in TLp with ‖fn‖L∞(µn) ≤M such that

(24) E(p)
∞,con(f) ≥ lim sup

n→∞
F (p)
n,con(fn).
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Proof. Assume ‖f‖L∞(µ) ≤ M and E(p)
∞,con(f) < ∞. Then f ∈ W 1,p(Ω) and since p > d, f is

continuous. Furthermore f(xi) = yi for all i = 1, . . . , N .
If there exists δ > 0 such that f ∈ W 1,p(Ω) satisfies f(x) = yi for all x ∈ B(xi, δ) and

i = 1, . . . , N then the proof of (24) is the same as the proof of (17). In particular one can use the
restriction of f to data points to construct a recovery sequence.

To treat general f inW 1,p(Ω) it suffices to find a sequence gn ∈W 1,p(Ω) satisfying the conditions
above, namely such that ‖gn‖L∞ ≤ M , gn(x) = yi for all x ∈ B(xi, δn) for a sequence δn ≥ R
converging to zero, which satisfies

(25) lim
n→∞

E(p)
∞,con(gn) = E(p)

∞,con(f).

We construct the sequence in the following way. Let θ be a cut-off function supported in B(0, 2). That
is assume θ : Rd → [0, 1] is smooth, radially symmetric and nonincreasing such that θ = 1 on B(0, 1),
θ = 0 outside of B(0, 2), and |∇θ| < 2. Define θδ(z) = θ(z/δ).

We first consider the case N = 1. Let

gn(x) = (1− θδn(x− x1))f(x) + θδn(x− x1)y1.

Then∣∣∣E(p)
∞,con(gn)− E(p)

∞,con(f)
∣∣∣ ≥ σn ∫

Ω
||∇gn|p − |∇f |p| ρ2 dx ≤ σn

∫
B(0,2δn)

(|∇gn|p + |∇f |p) ρ2 dx

We estimate∫
B(0,2δn)

|∇gn|pρ2 dx ≤ 2p
∫
B(0,2δn)

|(f(x1)− f(x))∇θδn(x− x1)|p + |∇f(x)|pρ2 dx

Using that f ∈ C0,1−d/p and furthermore, by the remark following Theorem 4 in Section 5.6.2 of [20]
we obtain∫
B(0,2δn)

|(f(x)− f(x1))∇θδn(x− x1)|pρ2(x) dx ≤ C1δ
p−d
n ‖∇f‖pLp(B(0,2δn))‖∇θδn‖

p
Lp(B(x1,2δn))

≤ C1‖∇f‖pLp(B(0,2δn))‖∇θ‖
p
Lp(Rd)

.

Since limn→∞
∫
B(0,4δn) |∇f(x)|pdx = 0, by combining the inequalities above we conclude that (25)

holds.
Generalizing to N > 1 is straightforward.

6 Numerical Experiments

The results of Theorem 2.1 show that when εpnn→ 0 then the solutions to the SSL problem (7) converge
to a solution of the continuum constrained problem (9), while when εpnn → ∞ they degenerate as
n → ∞. However, in practice, for finite n, this does not provide a precise guidance on what ε are
appropriate. We investigate, via numerical experiments in 1D and 2D, the affect of ε on solutions to (7)
in elementary examples. We also numerically compare the results with our improved model (22).
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(b) We plot the functions output by the algorithm
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Figure 2: 1D numerical experiments for (7) with p = 1.5, averaged over 100 realizations.

6.1 1D Numerical Experiments

Let µ be the uniform measure on [0, 1] and consider η defined by η(t) = 1 if t ≤ 1 and η(t) = 0
otherwise. We consider two different values of p: p = 1.5 and p = 2. The training set is {(0, 0), (1, 1)},
that is we condition on functions fn taking the value 0 at x1 = 0 and taking the value 1 at x2 = 1
(so N = 2). We avoid using p = 1 since any increasing function f with f(0) = 0 and f(1) = 1 is
a minimizer to the limiting problem. For p > 1 the solution to the constrained limiting problem is
f †(x) = x (note that this is independent of p). Since f † is continuous we can consider the following
simple-to-compute notion of error:

(26) err(p)
n (fn) = ‖fn − f †‖Lp(µn).
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Figure 3: 1D numerical experiments averaged over 100 realizations for (7) with p = 2.
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Figure 4: Error shifted by connectivity radius using the same results as in Figures 2 and 3.

To find minimizers of (7) we use coordinate gradient descent. The number of data points varies
from n = 80 to n = 5120. For each n, ε and p we consider 100 different realizations of the random
sample and plot the average results. When ε is too small the graph is disconnected and we should not
expect informative solutions, when ε is large we expect discontinuities to arise and cause degeneracy.
In Figure 2(a) and Figure 3(a) we plot the error as a function of ε for fixed n = 1280. We see clear
regions where ε is too small and where ε is too large, with the intermediate range producing good
estimators. Plots of minimizers for a particular ε in the “large-ε" region, show that they exhibit
discontinuities, as expected.

To measure how the transition point in ε where minimizers change behavior scale with n we define
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(b) We plot the functions output from the algorithm
corresponding to multiple realizations of the data
for n = 1280 and ε = 0.045 (marked in yellow in
Figure (a)).

Figure 5: 1D numerical experiments averaged over 100 realizations for model (22) with p = 2.

the following:

(i) Given a realization {xωi }ni=1 let εconn(n;ω) be the connectivity radius for the particular re-
alization, ω that is the smallest ε such that the graph with weights Wij = ηε(|xi − xj |) is
connected. The value εconn(n) = 1

M

∑M
i=1 εconn(n;ωi) is the connectivity radius averaged over

the realizations considered. We considered M = 100 realizations.

(ii) ε(p)
∗ (n) is the empirically best choice for ε, namely the ε that minimizes err

(p)
n (fn) where fn is

the minimizer of (7) with εn = ε; again averaged over M = 100 realizations.

(iii) ε(p)
upper(n) is the upper bound on ε for which the algorithm behaves well, which we identify as

the maximizer of the second derivative of −err
(p)
n (fn) with respect to ε, among ε ≥ ε

(p)
∗ (n).

While computing ε(p)
upper(n) we smooth the error slightly so that the method is robust to small

perturbations. As above the value is averaged over 100 realizations.

All of these points are highlighted in Figure 2(a) and Figure 3(a). In Figure 2(d) and Figure 3(d)
we plot how these values of ε scale with n. The best linear fit (based on five largest values of n) in the
log-log domain gives the following scalings

ε
(1.5)
∗ ≈ 2.719

n0.781
ε(1.5)

upper ≈
1.905

n0.683

ε
(2)
∗ ≈

3.472

n0.810
ε(2)

upper ≈
1.507

n0.513

εconn ≈
3.342

n0.879
.

We observe that asymptotic scaling established in Theorem 2.1 for ε(p)
upper is 1

n0.5 for p = 2 and 1
n0.667

for p = 1.5, which is very close to our numerical results. The true scaling in the connectivity of the
graph is log(n)

n , our numerical results behave approximately as 1
n0.879 . We note that if we use a linear fit

in the log-log domain over the same range as considered above then n
log(n) is approximated by 1

n0.859 .
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(a) Error (28) for n = 1280. Black line is the mean
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(b) We plot an example of a function output from the
algorithm corresponding to n = 1280 and ε = 0.06
(marked in yellow in Figure (a)). The grid is to aid
visualisation.

Figure 6: 2D numerical experiments averaged over 100 realizations for (7) with p = 2.

We observe that optimal choice ε(p)
∗ is quite close to the connectivity radius ε−εconn(n). Choosing

ε smaller than this results in a big error from a small number of realizations. To further investigate the
proximity of the connectivity radius and the optimal choice of ε we plot in Figure 4 the error as the
function of the size of ε relative to the connectivity radius. More precisely we consider err

(p)
n (fn; ε, ω),

where fn is the minimizer of (7) for given ε and realization ω, as a function of ε− εconn(n;ω) and
then average over M = 100 realizations. We observe that, for both p = 1.5 and p = 2, the error is the
smallest when ε is quite close to the connectivity radius. The slight difference is that for p = 1.5 there
is a short interval beyond the connectivity radius where the error is still decreasing.

Remark 6.1. The close proximity of the optimal epsilon to the connectivity radius, both for the original
model and the improved model (Figure 5[a]) and both in 1D and 2D (Figure 7[a]), is not obvious since
for ε small (i.e. relatively close to the connectivity radius) E(p)

n (f) is a poor approximation of E(p)
∞ (f),

even for f a fixed smooth function. Explaining the observed behavior of the error is an interesting
open problem, that we believe should be approached from the viewpoint to stochastic homogenization.

The improved model (22), for which we show results in Figure 5, is far more robust to the choice of
ε. We plot the error as a function of ε for n = 1280 and we see a much larger range in the admissible
choices of ε. To highlight the difference we plot in Figure 5(b) outputs from multiple realizations of
the data under the same conditions as for Figure 3(b), in particular we use the same choice of ε. Note
that the horizontal axis covers a much larger range on Figure 5(b). The comparison shows that model
(7) does not produce a reasonable output when ε & 0.04, while all outputs of (22) (when ε is larger
than the connectivity radius) are close to the truth.

6.2 2D Numerical Experiments

Let µ be the uniform measure on Ω = [0, 1]× [0, 1], and η(t) = 1 if |t| ≤ 1, η(t) = 0 otherwise. In
2D the critical value of p is p = 2, and we therefore choose to investigate p = 2 and p = 4. The
training set is x1 = (0.2, 0.5), x2 = (0.8, 0.5), with labels y1 = 0, y2 = 1. In contrast to the 1D
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Figure 7: 2D numerical experiments averaged over 100 realizations for (7) with p = 4.

(a) ε = ε
(4)
∗ (n) ≈ 0.0576. (b) ε = ε

(4)
upper(n) ≈ 0.0906. (c) ε = 0.2.

Figure 8: Realizations of (7) with p = 4 and n = 1280 for a select choices of ε. Only the part of the domain
near labeled point x2 is shown. The grids are to aid visualization.

example the solution to the continuum problem (10) (in the well-posed regime) depends on p and
furthermore cannot be solved analytically. To estimate the solution we discretised (10) on a uniform
grid and ran a gradient descent algorithm to approximate the minimiser. In the case when p = 4 we
plot our numerical approximation of the continuum minimizer to (10) in Figure 1(b). For p > 2 we
define the error by

(27) err(p)
n (fn) = ‖fn − fp,†‖Lp(µn)

where fp,† minimizes (10). In the ill-posed case (p ≤ 2) any constant function is a minimizer to the
continuum problem, in which case we define the error as

(28) err(p)
n (fn) = inf

c∈R
‖fn − c‖Lp(µn).

To find minimizers of (7) for p = 4 we use coordinate gradient descent. For p = 2 we use the
method of [61] that exactly solves the Euler Lagrange equation ((Lnf)i = 0, where Ln is the graph
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(b) Example graph in 2D for ε = ε
(4)
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1280.

Figure 9: Error dependency on the connectivity radius and the graph for optimal ε, for n = 1280 and p = 4.

Laplacian, for i > 2 and f1 = 0, f2 = 1). The number of data points varies from 80 to 5120. We use
100 different realizations of the data {xi}ni=1 for each n and each choice of ε.

Figure 6 shows the results in the ill-posed regime, for p = 2 and n = 1280. We observe that
the solutions form spikes in order to satisfy the constraints. Spikes are present for all ε beyond the
connectivity threshold, and grow as ε increases (recall that the solution to the continuum problem is a
constant and therefore the error decreasing indicates convergence to a constant solution with spikes
around the two training data points).

In Figures 1 and 7 show the results for p = 4 which is in the well-posed range. Figure 1(a)
presents the numerically computed discrete minimizer for the optimal radius ε = ε

(4)
∗ . We observe in

Figure 7(a) that, similarly to 1D, for ε below the average connectivity radius, or ε is large, the error
is high, and is the lowest for ε in between and close to connectivity threshold. In contrast to the 1D
results we do notice that the transitions between the well-posed and ill-posed regime is gradual.

The numerical scaling for ε(p)
∗ , ε(p)

upper, and εconn (with the same definitions of quantities as in the
1D experiments in the previous subsection) we find is

ε
(4)
∗ ≈

1.394

n0.452
ε(4)

upper ≈
0.654

n0.270
εconn ≈

1.368

n0.452
.

The connectivity radius should scale according to
√

log(n)
n , which is close to our observed rate

of n−0.452 (in fact when linear fitting log ε to logn
n one obtains εconn ≈ 0.829

(
logn
n

)0.526
). Our

theoretical predictions give the scaling of the upper bound as ε(4)
upper � n−0.25, close to our numerical

rate of n−0.270.
In Figure 8 we show instances of numerically computed minimizers of (7) for increasing values of

ε. They show that the breakdown of the numerical approximation of the continuum solution (shown in
Figure 10(c)) happens via development of spikes.

As in the 1D examples (shown on Figure 4) we investigate the proximity of the optimal radius
ε

(p)
∗ (n;ω) to the connectivity radius εconn(n;ω), where ω is the sample considered. In Figure 9 we
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(b) We plot an example of a function output from the
algorithm corresponding to n = 1280 and ε = 0.1
for the constraint set of size ε (marked in yellow in
Figure (a)). The grid is to aid visualisation.

Figure 10: Experiments for improved model (22) with n = 1280 and p = 4 averaged over 100 realizations.

plot the error, err
(p)
n (fn;ω), against ε − εconn(n;ω) for n = 1280 and p = 4, averaged over 100

samples. The phenomena we observe is similar to the 1D case; the error is large and highly variable
for ε below the connectivity radius. There is a sharp transition to the well-posed regime, as soon as the
graph is connected with the error increasing with ε. As we explain in Remark 6.1 it is an intriguing and
important open problem to explain why the error is the smallest for rather coarse graphs (Figure 9(b)).

Our theoretical result in Section 5 showed that minimizers of the improved model, (22), converge
as n→∞ to the correct solution if 1� εn � (lnn/n)1/d, regardless of how slowly εn → 0. Here
we numerically investigate two issues. One is how precisely does the error of the improved model
depend on ε for fixed n. The other is to compare the observed error of the improved model to the
original model. Recall that in the improved model we prove convergence when the labels are extended
around the training set to balls of radius 2ε. This is needed in our proof to ensure that spikes do
not form. Here we numerically investigate if extending the labels to smaller balls is sufficient to
prevent the spike formation. In particular in Figure 10(a) we display the error for fixed n = 1280 and
constraint ball radii 2ε, ε and ε/2. The numerics show that even radius ε/2 is sufficient to prevent
spike formation and that it allows for better approximation of the continuum solution. We also observe
that fixing the labels on larger sets can significantly impact the accuracy of approximation. This issue
is less pronounced for larger values of n, where the connectivity radius is small compared to distances
between the labeled points.
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