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Abstract

Standard measures of local deformation such as deformation gradi-
ent, strain, elastic deformation, and plastic deformation are dimensionless.
However, many macroscopic and submacroscopic geometrical changes ob-
served in continuous bodies result in the formation of zones across whose
boundaries significant changes in geometry can occur. In order to predict
the sizes of such zones and their influence on material response, theories
of elasticity and plasticity have been employed in which second gradients
of deformation, gradients of strain, as well as gradients of elastic or of
plastic deformation are taken into account. The theory of structured
deformations provides additive decompositions of first deformation gra-
dient and of second deformation gradient, valid for large deformations of
any material, in which each term has a multiscale geometrical interpre-
tation corresponding to the presence or absence of submacroscopic dis-
arrangements (non-smooth geometrical changes such as slips and void
formation). This article provides a field theory that broadens the ear-
lier field theory, elasticity with disarrangements, by including energetic
contributions from submacroscopic "gradient-disarrangements" (limits of
averages of jumps in gradients of approximating deformations) and by
treating particular kinematical conditions as internal constraints. An ex-
plicit formula is obtained showing the manner in which submacroscopic
gradient-disarrangements determine a defectiveness density analogous to
the dislocation density in theories of plasticity. A version of the new
field theory incorporates this defectiveness density to obtain a counter-
part of strain-gradient plasticity, while another instance of elasticity with
gradient-disarrangements recovers an instance of strain-gradient elasticity
with symmetric Cauchy stress. All versions of the new theory included
here are compatible with the Second Law of Thermodynamics.

Keywords: strain-gradient elasticity; strain-gradient plasticity; elas-
ticity with disarrangements; structured deformations; multiscale geome-
try; field theory
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1 Introduction

The widely used continuum theories of elasticity and plasticity in their earliest
formulations employ local geometrical measures of changes in shape that are
dimensionless: deformation gradient, strain, elastic deformation, and plastic
deformation. However, there are significant phenomena in continuous bodies
at macroscopic or at submacroscopic levels in which any number of zones may
form that carry significantly different geometrical changes from one zone to
another, including strain-localization in metals, in polymers, and in granular
materials [12] - [15] as well as fine mixtures of phases in a variety of solids
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[16] - [19]. Moreover, some materials exhibit responses to changes in shape that
depend upon the size of zones under consideration [20] - [23],[30].
When models of elasticity or plasticity employ dimensionless measures of

changes in shape, there is no apparent length-scale available to capture the
sizes of such deformation zones, and this absence of an inherent length-scale has
led to the introduction of spatial gradients of the dimensionless local measures
of changes in shape: second deformation gradient, strain-gradient, gradient of
elastic deformation, and gradient of plastic deformation [24] - [28]. In the case
of plasticity, the incorporation of the curl of plastic deformation as a measure of
dislocation density provides not only a length-scale but also a connection at the
continuum level to the submacroscopic presence of defects (see [29], Part XV,
for a variety of approaches).
The goal in this paper is to approach the introduction of a length scale

and its connections to submacroscopic geometrical changes through the use of
the multiscale geometry of structured deformations and through a broadening
of an associated field theory [1],[3]. That theory, elasticity with disarrange-
ments [3], itself broadens classical, finite elasticity by incorporating into the en-
ergetic response both the contributions at the macrolevel of smooth, submacro-
scopic changes and the contributions of non-smooth submacroscopic changes
(disarrangements) such as void formation and slips. Moreover, it allows for the
dissipation of energy in smooth motions of the body and reduces to finite elas-
ticity when restricted to motions that are free from disarrangements. Elasticity
with disarrangements [3] rests on the theory of first-order structured deforma-
tions [1] that provides and justifies an additive decomposition ∇g = G + M of
macroscopic deformation gradient ∇g into a part G without disarrangements
and a part M due to disarrangements. This additive decomposition is available
without restriction on the size of deformations or on the particular material
undergoing the structured deformations. Moreover, this decomposition incor-
porates disarrangements in the form of submacroscopic jumps in approximating
piecewise smooth deformations, but it does not incorporate disarrangements in
the form of submacroscopic jumps in the gradients of approximating deforma-
tions. In that respect, the theory [3] resembles the theories of elasticity and
plasticity in their earliest formulations, because the refined local measures of
multiscale deformation G and M arising in the theory of (first-order) struc-
tured deformations are dimensionless.
The remedy used here for incorporating submacroscopic jumps in gradients

of approximating deformations is to recast elasticity with disarrangements in
the broader context of second-order structured deformations [11]. That the-
ory goes beyond the first-order context by providing and justifying an additive
decomposition ∇G = G + M of the gradient ∇G of the deformation without
disarrangements into a part G without disarrangements and a part M due to
gradient-disarrangements. As in the case of first-order structured deformations,
this decomposition is valid for large deformations and for any material. How-
ever, both terms in this additive decomposition carry the dimension of reciprocal
length and so provide a variety of possible additional fields with precise multi-
scale geometrical interpretations and with the desired dimension of length. An
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appropriate choice of one or more such fields then can be incorporated into the
consititutive assumptions underlying elasticity with disarrangements to arrive
eventually at an enriched version of that field theory.
Our main goal in this paper is to provide the detailed steps that lead from

elasticity with disarrangements [3] to the enriched field theory "elasticity with
gradient-disarrangements". In Section 2 we review the multiscale geometry of
structured deformations and the ingredients required for the derivation of the
field relations of elasticity with disarrangements [3]. The principal ingredient
that permits one eventually to close the system of field equations is a tenso-
rial consistency relation for stresses. The consistency relation follows from a
unique, additive and universal decomposition of continuum fluxes that is in-
duced by submacroscopic disarrangements [10]. In this manner, one obtains an
additional tensorial relation valid for any continuous body undergoing struc-
tured deformations in the presence of a system of contact forces, without regard
to the particular material comprising the body. One is then in a position to
provide constitutive relations that relate both the free energy density and the
stresses to the fields G and M whose sum is the macroscopic deformation gra-
dient ∇g. Our discussion of elasticity with disarrangements in Section 2 not
only reviews the derivation [3] of the field equations (49) - (53) but also includes
a brief indication of specific applications to granular materials that arise when
disarrangements as measured by the field M are "purely dissipative", i.e., do
not contribute to the free energy of the body. We also provide for the first time
in Subsection 2.4 a treatment of the accommodation inequality detG ≤ det∇g
as an internal constraint. (Parts of this treatment are based on unpublished
joint research with Luca Deseri during the period 2003-2006.) This internal
constraint in the context of structured deformations is tantamount to the re-
quirement that matter is impenetrable.
The desired broadening of elasticity with disarrangements is carried out in

detail in Section 3. The main results from the theory of second-order structured
deformations [11] are presented in Section 3.1 where the decomposition

∇G = G+M (1)

and the interpretation of each term on the right-hand side is justified in the
case of a general, second-order structured deformation (g,G,G). Identifica-
tion relations for the third-order tensor fields G and M justify our calling G
the deformation without gradient-disarrangements and M the deformation due
to gradient disarrangements. Subsection 3.2 provides a direct connection be-
tween the skew part M̃ of the deformaion due to gradient disarrangements and
the second-order tensor field curlG, already known to be an area density of
defects [1]. That analysis yields an identification relation for curlG in terms
of the gradient-disarrangements associated with approximating injective and
piecewise-smooth deformations.
Subsections 3.3 - 3.9 contain a derivation of the field relations for an elas-

tic body undergoing gradient-disarrangements that parallels the corresponding
derivation in Subsections 2.3 - 2.8. (The material on third-order tensors prereq-
uisite for understanding the derivation is provided in the Appendix.) A central
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new element in the derivation is the assumption that the continuum under con-
sideration is subject to both contact forces and contact moments. The presence
of these two contact interactions in the formula for external power expended
leads not only to the usual second-order tensor of stress but also to a third-
order tensor of hyperstress S that expends power against changes in ∇G. The
material in Subsection 3.3 provides a separate consistency relation for the hy-
perstresses with and without disarrangements, Sd and S\, similar in form to the
one treated in Subsection 2.3 that remains available for the stresses with and
without disarrangements, Sd and S\. The consistency relation for the hyper-
stresses arises by applying the unique, additive and universal decomposition of
continuum fluxes, discussed in Subsection 2.3, to the flux associated with the
hyperstress. Subsection 3.4 contains a treatment of not only the internal con-
straint detG ≤ det∇g but also of the constraint "G is symmetric" in terms of
reactive stresses and hyperstresses that arise in any material undergoing second-
order structured deformations.
The additive decompositions of ∇g, of ∇G, of S, and of S imply an ad-

ditive decomposition of the volume density of internal power into two groups
of terms: one group of four terms accounts exclusively for power expended by
forces proximate to the corresponding submacroscopic geometrical changes, and
the other accounts exclusively for power expended by forces remote from the
corresponding changes. These matters are treated in Subsection 3.6 and mo-
tivate the manner in which the internal dissipation is made explicit using the
refined geometry available in the present theory.
The class of materials that is covered by the present field theory is specified in

Subsection 3.7 by means of the free energy response function (G,M,G,M) 7−→
Ψ(G,M,G,M). The response functions for constitutively determined parts of
S\ and Sd are specified in terms of Ψ in terms of the single response function
for the constitutively determined part of the stress S, itself. As a result, the
consistency relation for stresses is satisfied as an identity and, unlike the case
in Section 2 for elasticity with disarrangements, places no restriction on the
geometrical fields g, G, andG that define a second-order structured deformation.
In contrast, the response functions for the constitutively determined parts of Sd
and S\ are specified individually, again in terms of Ψ, so that the consistency
relation for hyperstresses does restrict the fields g, G, and G. As in Section 2,
the choice of constitutive relations in Subsection 3.7 provides an explicit formula
for the internal dissipation, and the requirement that the dissipation be non-
negative is imposed as a restriction on the structured motions experienced by
the body.
The requirements of frame-indifference are treated in Subsection 3.8. The

field relations (109) - (114) for elasticity with gradient-disarrangements are
recorded and discussed in Subsection 3.9. They amount to 42 scalar equa-
tions and two inequalitites that restrict the unknown fields g, G, G, and and a
reactive hyperstress R\ that together amount to 39 scalar unknowns. Three of
the scalar equations arise from the requirement that the internal dissipation be
frame-indifferent and, therefore, may be satisfied through appropriate choices
of the response function Ψ.
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The final two subsections of Section 3 treat two special cases that provide
connections with strain-gradient theories of elasticity and of plasticity. In Sub-
section 3.10 the geometrical setting is restricted to coherently submacroscopi-
cally affi ne motions, i.e., second-order structured motions in which M = 0 and
in which G = 0. In this setting, there is only one unknown geometrical field,
the macroscopic motion g itself. Its gradient ∇g = G provides the deformation
without disarrangements, while its second gradient ∇2g = ∇G = G+M = M
provides the deformation due to gradient-disarrangements. The geometrical
restriction on M and G are treated as internal constriants, and the field equa-
tions reduce to a pair of partial differential equations (129) for g: the bal-
ance of linear momentum and the consistency relation. The latter amounts
to the assertion that, given the deformation gradient ∇g(X) at a point X of
the body, the second gradient ∇2g(X) must render the free energy stationary
with respect to changes in the deformation due to gradient-disarrangements :
DMΨ(∇g(X), 0, 0,M) |M=∇2g(X)= 0. This stationarity condition results from
the consistency relation and the special geometrical setting of coherent sub-
macroscopically affi ne motions. The setting of coherent, submacroscopically
affi ne motions is appropriate for the description of fine mixtures of phases in
which ∇g(X) provides the average contribution of smooth deformation from the
preferred phases of the body, while ∇2g(X) provides the average contribution
of jumps in gradients across phase boundaries. This instance of elasticity with
gradient-disarrangments is compatible with symmetric Cauchy stress and with
zero internal dissipation.
Subsection 3.11 treats the case of defect-dominant gradient energetics in

which the free energy is assumed to depend upon G, M , and M̃, the skew
part of M. The analysis in Subsection 3.2 shows that this special dependence
on M̃ amounts to a dependence of the energy upon G, M = ∇g − G, and
curlG, the defectiveness density. In order to point out the connection of this
case to theories of strain-gradient plasticity, we use the additive decomposition
∇g = G + M as in [1] to obtain the multiplicative decomposition ∇g = Fe Fp,
with Fe = G and Fp = I + G−1M . In this manner the field relations (109) -
(114) reduce to a system of partial differential equations for the fields g and Fe
in which both Fe and curlFe appear explicitly. The consistency relation reduces
to the partial differential equation DM̃Ψ̃(∇g(X), Fe(X), 0, M̃) |M̃=curlFe(X)= 0
that amounts to a stationarity condition for the free energy with respect to
defectiveness density. This instance of elasticity with gradient-disarrangements
also is compatible with symmetric Cauchy stress, but the internal dissipation
need not be zero, as was the case for the instance of coherent, submacroscopically
affi ne motions that obey (129).

The examples and applications for elasticity with disarrangements briefly
mentioned in Subsection 2.9 can set the stage for future research in the con-
text of elasticity with gradient-disarrangements. In particular, the problems of
determining the portfolio of disarrangement phases and of studying the propa-
gation of moving interfaces described in Subsection 2.9 are meaningful and of
equal interest when gradient-disarrangements play an explicit role. For the case
of coherent, submacroscopically affi ne deformations in Subsection 3.10, it is of
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particluar interest for materials that exhibit fine phase-mixtures to study the
propagation of waves, and, for the defect-dominant gradient energetics outlined
in Subsection 3.11, the study of the evolution of interfaces separating slipped and
unslipped phases of single crystals promises to bring the current development
closer to main-stream treatments in crystal plasticity.

2 Elasticity with disarrangements: a compre-
hensive summary

2.1 First-order structured deformations and the additive
decomposition of ∇g

In this subsection we select crucial elements of the geometry of structured defor-
mations [1], [2] needed to describe elasticity with disarrangements as presented
in [3]. Let A be a suitably regular subset of Euclidean space E and let V denote
the translation space of E . A structured deformation from A is a pair (g,G) of
mappings g : A −→ E and G : A −→ LinV such that g is smooth, injective,
with smooth inverse, G is continuous, and the pair (g,G) of mappings satisfy
the accommodation inequality

0 < c < detG(X) ≤ det∇g(X), (2)

for every X ∈ A. We use the term "disarrangements" to describe non-smooth,
submacroscopic geometrical changes such as microscopic slips and void forma-
tion. The additional field G is then called the deformation without disarrange-
ments, a designation that is justified by means of the following approximation
theorem:

Theorem 1 [1] If (g,G) is a structured deformation from A , then there exists
a sequence n 7−→ fn of injective, piecewise continuously differentiable mappings
on A such that

lim
n→∞

fn = g and lim
n→∞

∇fn = G (3)

with convergence in the sense of L∞(A, E).

Indeed, (3) shows that G as a limit of gradients is not influenced by any
discontinuities associated with the piecewise smooth mappings fn. In a com-
plementary way, the tensor-valued mapping

M = ∇g −G (4)

is called the deformation due to disarrangements, based on the following result:

Theorem 2 [2] If (g,G) is a structured deformation, then for each sequence
n 7−→ fn as in the Approximation Theorem and for each X ∈ A there holds

M(X) = lim
r→0

lim
n→∞

∫
J(fn)∩B(X,r) [fn](Y )⊗ νfn(Y )dAY

|B(X, r)| (5)
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where J(fn) is the jump set of fn, [fn](Y ) is its jump at the point Y , νfn(Y ) is
the normal to J(fn) at Y , B(X, r) is the sphere centered at X of radius r, and
|B(X, r)| is its volume.

In fact, (5) shows that only the non-smooth part of the approximation fn
affects the values of M , thereby justifying application of the attribute "defor-
mation due to disarrangements" to the tensor field M . With these specific
identifications of the fields G and M at hand, we may rewrite (4) as an ad-
ditive decomposition of macroscopic deformation ∇g into a part G without
disarrangements and a part M due to disarrangements:

∇g = G+M . (6)

We emphasize that the additive decomposition (6) is

• purely kinematical, i.e., involves only geometrical notions,

• valid without restriction on the size of deformations

• universal, i.e., involves no restrictions as to the type of material under
consideration.

The only assumption required in order to invoke (6) is that (g,G) be a
structured deformation. It is useful in subsequent considerations to record the
following formula for G that follows from the Approximation Theorem and the
specific type of convergence guaranteed in the formula (3)2 :

G(X) = lim
r→0

lim
n→∞

∫
B(X,r)

∇fn(Y )dVY

|B(X, r)| . (7)

Suppose now that (g,G) is a structured deformation from A and (g′, G′)
is a structured deformation from g(A). We define as in [1] the composition
(g′, G′) � (g,G) to be the structured deformation from A given by

(g′, G′) � (g,G) = (g′ ◦ g, (G′ ◦ g)G) (8)

Here, ◦ denotes the usual composition of mappings. We are justified in calling
this pair a structured deformation from A because the entry g′ ◦ g is smooth
and has a smooth inverse, the entry (G′ ◦ g)G is continuous, and because the
accommodation inequality is satisfied for the pair (g′ ◦ g, (G′ ◦ g)G):

0 < cc′ < det(G′◦g) detG = det((G′◦g)G) ≤ det((∇g′)◦g) det∇g = det(∇(g′◦g)).

The composition � yields the following factorization of an arbitrary struc-
tured deformation from A:

(g,G) = (g,∇g) � (iA,K) (9)

in which iA is the identity mapping, iA(X) = X for all X ∈ A, and

K = (∇g)−1G. (10)
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The "classical" (structured) deformation (g,∇g) on the right-hand side of (9)
introduces no disarrangements, since the gradient of the first entry in the pair
equals the second entry. Because iA is the identity mapping, the structured
deformation (iA,K) has no macroscopic effect on points in A and, hence,
(iA,K) is called a purely submacroscopic deformation from A. We note from
the accommodation inequality (2) for (g,G) that detK ≤ 1, which implies that
the accommodation inequality for (iA,K) is satisfied.

The structured deformation (g,G) from A is said to be invertible if there is
a structured deformation (g′, G′) from g(A) satisfying

(g′, G′) � (g,G) = (iA, I) and (g,G) � (g′, G′) = (iA′ , I). (11)

This definition permits one to show that (g,G) is invertible if and only if detG =
det∇g, so that no volume change occurs due to disarrangements. Equivalently,
(g,G) is invertible if and only if detK = 1. In this case, the inverse structured
deformation (g,G)−1 is given by

(g,G)−1 = (g−1, G−1 ◦ g−1).

In particular, the purely submacroscopic deformation (iA,K) from A is invert-
ible if and only if detK = 1, and we then have

(iA,K)−1 = (iA,K
−1).

2.2 Material bodies and their structured configurations

In the context of classical deformations, there is a widely accepted notion of a
material body as a smooth, differentiable manifold B whose globally defined
charts κ : B −→ E are called configurations of the body. This concept is
tied to classical deformations through the requirement that, whenever κ and
κ′ are configurations of the body, the mapping g = κ′ ◦ κ−1 is required to be
a diffeomorphism of κ(B). It is common to choose a particular configuration
κr in advance and to identify the material points X of the body with their
corresponding positions κr(X) in space. The distinguished configuration κr
is called a (classical) reference configuration for the body, and one frequently
identifies the body, itself, with the range κr(B) ⊂ E . This identification permits
us to identify each configuration κ of the body with the classical deformation
κ ◦ κ−1r from κr(B).

For structured deformations, a corresponding mathematical structure for
a material body based on differential geometry has not yet been provided,
although the article [36] provides hints that may help in that regard. Con-
sequently, we start by choosing a material body B with respect to classical
deformations, as described above, along with a specified classical reference con-
figuration κr. We again identify material points of the body with their positions
in κr(B) ⊂ E and consider as deformations of the body the structured defor-
mations (g,G) from κr(B). In order to provide structured counterparts of the
classical configurations κ for B, we note that each structured deformation (g,G)
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from κr(B) determines for each material point X ∈ κr(B) both the position
g(X) of X as well as the deformation without disarrangements G(X). The
assignment κ(g,G) of pairs (g(X), G(X)) to points X ∈ κr(B) will be called the
structured configuration corresponding to (g,G). In this way, once the classi-
cal reference configuration κr has been assigned, each structured deformation
(g,G) from κr(B) determines a structured configuration κ(g,G) of the body. In
particular, the classical configurations of the body are those of the form κ(g,∇g)
with g a diffeomorphism of κr(B), and the configuration κr is the configuration
determined by the structured deformation (iκr(B), I). It is helpful to refer to
the preassigned classical reference configuration κr as the (preassigned) virgin
configuration, because it is a configuration determined by the classical deforma-
tion (iκr(B), I) and, hence, not only is free of disarrangements but also is free of
any change in position of points.
With these concepts at hand, we may use the factorization (9)

(g,G) = (g,∇g) � (iκr(B),K)

to identify for each structured deformation (g,G) from κr(B) two structured
configurations of the body: the (non-classical) deformed configuration κ(g,G)
of B, and the submacroscopically disarranged configuration κ(iκr(B),K) of B
with, as before, K = (∇g)−1G. The submacroscopically disarranged config-
uration κ(iκr(B),K) is macroscopically indistinguishable from the virgin config-
uration κr = κ(iκr(B),I), because it is obtained from the virgin configuration
through the purely submacroscopic structured deformation (iκr(B),K) and be-
cause iκr(B)(X) = X for all X ∈ κr(B). The deformed configuration κ(g,G)
is obtained from the submacroscopically disarranged configuration κ(iκr(B),K)
through the classical deformation (g,∇g), so that no additional disarrange-
ments are introduced in attaining the deformed configuration from the sub-
macroscopically disarranged configuration. While the deformed configuration
and the submacroscopically disarranged configuration depend upon the given
structured deformation (g,G), the (preassigned) virgin configuration does not.
It is important in these considerations to keep in mind that each material

point X of the body has the same position κr(X) in space in both the vir-
gin configuration and in the disarranged configuration κ(iκr(B),K), despite the
fact that, in general, these two structured configurations are different. We note
also that in previous descriptions [3], [6] - [9] of the configurations available
to bodies undergoing structured deformations, the disarranged configuration
κ(iκr(B),K) was called the (macroscopic) reference configuration, because it cor-
responds to the configuration from which the classical deformation (g,∇g) pro-
cedes. With that usage, the reference configuration would vary as the tensor
K = (∇g)−1G for the structured deformation varies. In the present article, the
term reference configuration refers to the fixed, preassigned classical configura-
tion κr = κ(iκr(B),I); the term virgin configuration also is used here to denote the
preassigned classical configuration κr = κ(iκr(B),I) because the structured defor-
mation (iκr(B), I) introduces no disarrangements. Because we identify material
points of the body with their positions X ∈ κr(B), we call g(X) the location of
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X in the final configuration (g,G) of the body, we call G(X) the deformation
without disarrangements at X, and M(X) = ∇g(X) − G(X) the deformation
due to disarrangements at X.

2.3 The universal decomposition of continuum fluxes

It is standard in continuum mechanics that a spatial continuum flux ws :
g(κr(B))→ V, for example, the traction field or the heat-flux vector field acting
on the deformed configuration g(κr(B)) of a body, induces through a smooth
deformation g the following flux w : κr(B)→ V on the configuration κr(B):

w := det(∇g)(∇g)−1(ws ◦ g). (12)

In the context of structured configurations of the body as described above, the
structured configuration κ(g,G) is obtained from the disarranged configuration
κ(iκr(B),K) by means of the classical deformation (g,∇g), and we therefore may
regard the spatial field ws as acting on the structured configuration κ(g,G) and
the flux w as acting on the disarranged configuration κ(iκr(B),K). In [10] the
fact that the disarranged configuration κ(iκr(B),K) is obtained from the virgin
configuration κ(iκr(B),I) by means of the purely submacroscopic deformation
(iκr(B),K) was used to define the flux w\ : κr(B) → V by means of a formula
analogous to (12):

w\ := (detK)K−1w (13)

as well as to define the flux wd : κr(B)→ V

wd := (detK)w − w\. (14)

Just as we may regard the flux w as acting on the disarranged configuration
κ(iκr(B),K), we may regard through (13) and (14) the fluxes w\ , wd, and
(detK)w as acting on the virgin configuration κ(iκr(B),I). It was demonstrated
in [10] that the resulting formula

(detK)w = w\ + wd (15)

represents a unique, additive and universal decomposition of the flux (detK)w
into the part w\ without disarrangements and the part wd due to disarrange-
ments. The adjective "universal" is used because the fields appearing in (15),
as well as the validity of that relation, itself, depend only upon the given flux w
and the structured deformation (g,G) from κr(B), and not upon the material
comprising the body. The terminology above is justified by the fact established
in [10] and references cited therein, that w\ is not affected by fluxes across sur-
faces on which approximations fn of the purely submacroscopic deformation
(i,K) have jumps, while wd is not affected by fluxes across preassigned surfaces
on which fn does not jump.

It is immediate that the relations (13) and (15) imply the consistency relation

Kw\ = w\ + wd (16)
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that shows that, for a given structured deformation (g,G), the fields w\ and
wd are related in a specific way, independent of the particular material com-
prising the body. The presence of the refined versions w\ and wd of the flux w
permits one to provide sharper versions of constitutive equations. In fact, the
short-range interactions associated with w\ and with wd have different physical
mechanisms and, therefore, in a given material, the dependence of the fields w\
and wd upon the deformation may differ significantly. For example, the mech-
anism for transmitting forces across the interface separating adjacent grains of
a granular body may differ significantly from that for transmitting forces across
a preassigned surface within a single grain. Nevertheless, whatever the mech-
anisms are, the two resulting mechanisms must be consistent with the given
structured deformation in the sense that (16) is satisfied.

2.3.1 Stresses with and without disarrangements

We follow the argument in [3] and suppose now that a system of contact forces
on the body is prescribed that gives rise to a stress field T : g(κr(B))→ LinV,
the Cauchy stress, on the deformed configuration κ(g,G) of the body. For a
fixed vector a ∈ V, we put was := TTa and note that the fields wa, wa\ , w

a
d

associated with was through (12)-(14) must satisfy the consistency relation (16).
Using the arbitrariness of a and the definition

S = det(∇g)(T ◦ g)(∇g)−T

of the Piola-Kirchhoff stress S, the consistency relation becomes

S\K
T = S\ + Sd (17)

or, equivalently,
S\M

T + Sd(∇g)T = 0 (18)

where
S\ := (detK)SK−T and Sd := (detK)S − S\ (19)

are the stresses with and without disarrangements, respectively. These defini-
tions immediately yield the additive decomposition of stress:

(detK)S = S\ + Sd. (20)

When two constitutive assumptions are made, each relating one of the two
stress fields S\ and Sd to the structured deformation (g,G) that the body under-
goes, the consistency relation (18) becomes a tensorial restriction on the fields
g and G that describe the multiscale deformation of the body. (Because the
restrictions imposed by the two constitutive equations and the consistency re-
lation depend upon the material that comprises the body, the restrictions differ
from the material-independent internal constraints discussed in the next sub-
section.) Alternatively, when a single constitutive relation is made that gives
the stress field S in terms of g and G, then the constitutive relations for S\ and
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Sd are determined by g and G through (19) and the constitutive relation for S.
In this case, the consistency relation (18) is satisfied as an identity and places
no additional restriction on g and G. Each of the two alternatives describes
a distinct material, and the former alternative, in which separate constitutive
relations are made for S\ and Sd, takes advantage of the more refined measures
of stress provided by the multiscale geometry of structured deformations. In
this section, that former alternative is used, while in Section 3 dealing with
"gradient-disarrangements" there is an additional continuum flux that appears,
and both alternatives will play a role in the formulation of constitutive equa-
tions.

2.4 det(G+M)− detG ≥ 0 as an internal constraint
The accommodation inequality (2) contains the inequality detG ≤ detF with
F = ∇g the macroscopic deformation gradient; using (6) we may write that
inequality in the form

det(G+M)− detG ≥ 0. (21)

This inequality is part of the definition of a structured deformation and, there-
fore, may be viewed as an internal, kinematical constraint imposed on the dy-
namical processes experienced by every body undergoing structured deforma-
tions, whatever may be the material from which the body is formed.
In the case of classical deformations and internal constraints of the form

f (F ) ≥ 0, with f a smooth function, there is only a single reaction stress Sr that
depends upon F in a manner which is restricted by the following "dissipation
axiom" [38] that we adapt here to the case of unilateral constraints: for each F0
satisfying the constraint f (F0) ≥ 0 and for each smooth curve τ 7−→ F (τ) that
satisfies (i) F (0) = F0 and (ii) f (F (τ)) ≥ 0 for all τ , there holds Sr(F0)·F ′(0) ≥
0. Here, F ′ denotes the derivative of τ 7−→ F (τ). It is straightforward to
show (see [38] and references therein for a proof of (22)1) that this principle
is equivalent to the following condition: for every F0 satisfying the constraint
f (F0) ≥ 0 there exists λr ≥ 0 such that

Sr(F0) = λrDf(F0) and λ
rf (F0) = 0. (22)

Note that if f (F0) = 0, then the inequality λr ≥ 0 is the only restriction placed
on the number λr. The dissipation axiom as employed in [38] contains an
additional term there associated with reactive entropy production that we here
set equal to zero without affecting the conclusions drawn. Moreover, we have
not required that the set of possible reaction stresses at F0 is closed under scalar
multiplication.
In the context of structured deformations the inequality (21) is an internal

constraint of the form f(G,M) ≥ 0, and it is appropriate to introduce reac-
tion stresses R\ and Rd that depend upon G and M according to the following
broadening of the "dissipation axiom": for each (G0,M0) satisfying the con-
straint f(G0,M0) ≥ 0 and for each smooth curve τ 7−→ (G(τ),M(τ)) that
satisfies (i) (G(0),M(0)) = (G0,M0) and (ii) f(G(τ),M(τ)) ≥ 0 for all τ , there
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holds (R\(G0,M0), Rd(G0,M0)) · (G′(0),M ′(0)) ≥ 0. Here, "·” denotes the
inner product on the product space LinV ×LinV. The same argument under-
lying the classical case above yields: the "dissipation axiom" is equivalent to
the condition that, for every (G0,M0) satisfying the constraint f(G0,M0) ≥ 0,
there exists λr ≥ 0 such that

(R\, Rd) | (G0,M0) = λr(DG f,DM f) |(G0,M0)

λrf(G0,M0) = 0. (23)

Again, if f(G0,M0) = 0, then λr ≥ 0 is the only restriction placed on the
number λr.
The additive decomposition of the stress (20) and the formula (23) lead us

to define the reaction stress Sr through the formula

(detK)Sr = R\ +Rd

= λr(DG f(G0,M0) +DM f(G0,M0)). (24)

For the particular internal constraint (21) induced by the accommodation in-
equality, the formula (23)1 for the reaction stresses become

R\(G,M) = λr(F−T −G−T ), Rd(G,M) = λrF−T (25)

λr(det(G+M)− detG) = 0 (26)

with F = G+M , and the reaction stress Sr in (24) becomes

Sr(G,M) = λ̃
r
(2F−T −G−T ). (27)

with λ̃
r

= λr\(detK) ≥ 0. In particular, when the structured deformation is a
classical one, we have M = F −G = 0, K = I, and the formulas above reduce
to

R\(F, 0) = 0, Rd(F, 0) = λrF−T = Sr(F, 0), (28)

so that the reaction stress in the current configuration reduces to a hydrostatic
tension in the case of classical deformations.
It is convenient and customary to call the differences S − Sr, S\ − R\,

and Sd − Rd the constitutively determined part of the corresponding stresses
to emphasize that the specific material that occupies the body will be defined
through functions that provide relations between each field S − Sr, S\ − R\,
and Sd−Rd and the fields G andM that describe the local geometrical changes
occurring in the body. We note that in [3] the accommodation inequality
was not treated as an internal constraint, so that no reaction stresses where
introduced. In the remainder of the present section, one need only set λr = 0
to recover corresponding formulas and relations appearing in [3].

2.5 Power and balance laws

We consider now structured motions of a body, so that at each time t there is
given a structured deformation (g(·, t), G(·, t)) from κr(B). The dependence of
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the two fields g(·, t), G(·, t) upon t is assumed to be smooth. In anticipation of
our treatment of the more complex case of gradient-disarrangements, we here
derive the field relations for the body by requiring that two measures of power
expended agree in all virtual perturbations of a given structured motion. The
external power expended at time t in each part P ⊂κr(B) of the body is defined
to be the number

Pext(P, t, g) :=

∫
∂P

S(X, t)n(X) · ġ(X, t)dAX +

∫
P
btot(X, t) · ġ(X, t)dVX , (29)

where S(·, t) is the stress field at time t and btot(·, t) is the body force field on
κr(B) at time t,

btot(·, t) = br(X, t)− ρr(X)g̈(X, t),

including inertial forces ρrg̈ per unit volume, with ρr the mass density in the
virgin configuration. The vector n(X) is the outward normal to ∂P at the
point X, with superposed dots denoting time derivatives. The internal power
is defined to be

Pint(P, t, g) :=

∫
P
S(X, t) · ∇ġ(X, t)dVX , (30)

and we note that the definitions (30) and (29) require only that classical systems
of contact and body forces be imposed during the structured motion of the body.
Moreover, neither the internal power nor the external power depends upon the
field G of deformation without disarrangements. (For the case of gradient-
disarrangements, both will depend upon the field G.)

Given a structured motion t 7−→ (g(·, t), G(·, t)) of B and a smooth velocity
field v : κr(B)→ V, we define the virtual motion gv of B by

gv(X, t) = g(X, t) + tv(X), (31)

and require that, for the given fields S, br, ρr, g, and G, there holds

Pint(P, t, gv) = Pext(P, t, gv) for all v, t, and P, (32)

We require as well that the internal power be frame-indifferent, i.e.,

Pint(P, t, r ◦1 g) = Pint(P, t, g) (33)

for every rigid motion r:

r(y, t) = Q(t)(y − yo) + w(t).

Here, the composition r ◦1 g denotes the motion defined by:

(r ◦1 g)(X, t) = r (g(X, t), t)

= Q(t)(g(X, t)− yo) + w(t).

Standard arguments show that (32) and (33) imply that the balance of linear
momentum and angular momentum in the local forms

ρrg̈ = divS + br (34)

S(∇g)T = (∇g)ST . (35)
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2.6 The additive decomposition of stress-power

The stress-power S · Ḟ , i.e., the power expended per unit volume in the virgin
configuration by internal forces, plays a key role in formulating the field relations
that govern an elastic body undergoing disarrangements. Here, F = ∇g denotes
the macroscopic deformation gradient. The additive decomposition (6) of F
may be differentiated, and the additive decomposition (20) of stress then yields
the additive decomposition of the stress-power (detK)S · Ḟ :

(detK)S · Ḟ = S\ · Ġ+ Sd · Ṁ + S\ · Ṁ + Sd · Ġ. (36)

The first term on the right-hand side of (36), S\ · Ġ, may be described as a
"pure term" in the sense that both factors S\ and Ġ of the tensor inner product
S\ ·Ġ carry the same attribute "without disarrangements". The applied contact
forces are in proximity to the geometrical changes that enter into the pure term
S\ · Ġ , because both are associated with actions away from disarrangement
sites. The same is the case for the "pure term" Sd · Ṁ , although here the
common attribute for this term is "due to disarrangments", and both factors
are associated with actions at disarrangement sites. The point of view taken here
follows that taken in [3] : the two pure terms comprise the part of the stress-
power that will contribute to the energy stored by the body as it undergoes
structured deformations.
The third and fourth terms on the right-hand side of (36) may be described

as "mixed terms". In each mixed term, the applied contact forces are remotely
located with respect to where the geometrical changes occur, in the sense that
one is associated with disarrangement sites and the other is not. The point of
view taken here again follows that taken in [3] : the two mixed terms comprise
the part of the stress-power that will contribute to the energy dissipated by the
body as it undergoes structured deformations. These considerations on stor-
age and dissipation of energy will be realized concretely through the particular
constitutive assumptions laid down in the next subsection.

2.7 Constitutive assumptions

The local form (34) of the balance of linear momentum amounts to three scalar
equations that restrict the fields g and G that, together, have twelve scalar
components. By laying down separate and independent consitutive equations
for S\ − R\ and Sd − Rd, we can use the consistency relation for stresses (18)
to achieve an additional nine scalar equations that further restrict g and G.
This approach exploits the presence of the refined measures of stress S\ and Sd.
The additive decomposition of stress (20) and the corresponding decomposition
of reaction stress (24)1 then provide together a constitutive equation for the
constitutively determined stress S−Sr, itself. The resulting class of materials
is the one considered in [3] and is reviewed in detail below. We also indicate in
this subsection an alternative approach that makes a constitutive assumption
directly on S − Sr and so defines a different class of elastic materials that will
be relevant in Section 3 in the context of gradient-disarrangements.
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We let ψ denote the Helmholtz free energy density (measured per unit volume
in the virgin configuration), and we identify a particular elastic body undergo-
ing structured motions through the specification of a scalar-valued free energy
response function (G,M) 7−→ Ψ(G,M) that determines the field ψ through the
constitutive relation [3]

ψ(X, t) = Ψ(G(X, t),M(X, t)). (37)

This relation determines the manner in which the Helmholtz free energy varies
during every (isothermal) structured motion t 7−→ (g(·, t), G(·, t)). In addition,
we require that the response function Ψ also determine the fields S\ − R\ and
Sd −Rd through the constitutive relations [3]

S\(X, t))−R\(X, t) = (detK(X, t))DGΨ(G(X, t),M(X, t))

Sd(X, t)−Rd(X, t) = (detK(X, t)))DMΨ(G(X, t),M(X, t)). (38)

Here, DGΨ and DMΨ denote the partial derivatives of Ψ, each of which is
a tensor-valued function of the pair (G,M). The additive decomposition of
stress (20), the corresponding decomposition of reaction stress (24)1, and the
constitutive relations (38) then yield the following constitutive relation for the
stress S − Sr:

S − Sr = DGΨ +DMΨ (39)

where for the sake of brevity we have omitted the arguments involving X and
t. We refer to this formula for S − Sr as the stress relation.

The specific form (38) chosen here is motivated by two considerations: that
choice guarantees that the pure terms S\ ·Ġ+Sd ·Ṁ in the stress power account
for all of the energy stored (see (41) below) and, therefore, that the mixed terms
S\ · Ṁ + Sd · Ġ can contribute only to the power dissipated. That choice also
permits one to interpret S\ − R\ and Sd − Rd as instances of the "driving
forces" corresponding to the kinematical variables G and M , familiar in the
physics literature. The constitutive assumptions (38), the formulas (25), and
M = ∇g−G = F −G when substituted into the consistency relation (18) yield

0 = {DGΨ(G,∇g −G) + λ̃
r
((∇g)−T −G−T )}(∇g −G)T +

+{DMΨ(G,∇g −G) + λ̃
r
(∇g)−T }(∇g)T , (40)

where λ̃
r

= λr/(detK). We conclude that (40) is a tensorial relation that
restricts the structured deformation (g,G) and the non-negative scalar field λ̃

r
.

Alternatively, one could make a constitive assumption directly on the stress
S of the form S − Sr = Ŝ(G,M) and deduce from the definitions of S\ and
Sd the dependence of these refined measures on G and M . This alternative
would describe a different material from the one described in (38) and (37).
Moreover, this alternative would result in the satisfaction of the consistency as
an identity, thus removing nine scalar equations restricting the pair of fields g
and G. An instance of the use of such an alternative appears in our treatment of
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gradient disarrangements in Section 3 where an analogous consistency relation
for hyperstress provides additional equations that restrict the unknown fields.
The constitutive relations (38) and the chain-rule yield the formula

(detK)ψ̇ = (detK)(DGΨ · Ġ+DMΨ · Ṁ)

= S\ · Ġ+ Sd · Ṁ − (R\ · Ġ+Rd · Ṁ). (41)

We note by the "dissipation axiom" and its consequences (25), (26), that R\ ·
Ġ + Rd · Ṁ must be non-negative and, provided that the mapping t 7−→
f(G(X, t),M(X, t)) is piecewise monotone, for a given material point X, the
number R\ · Ġ+Rd · Ṁ can be positive only at isolated times, . Consequently,
except at isolated times, the constitutive assumptions imply that for each ma-
terial point the pure terms S\ · Ġ + Sd · Ṁ in the decomposition (36) of the
stress-power account for the rate of change of free energy, as proposed in Sec-
tion 2.6. Similarly, our constitutive assumptions show that S · Ḟ − ψ̇, the rate
of dissipation of energy per unit volume in the virgin configuration, satisfies the
relation

(detK)(S · Ḟ − ψ̇) = S\ · Ṁ + Sd · Ġ+R\ · Ġ+Rd · Ṁ (42)

which, except at isolated times for a given material point, reduces to the ex-
pression S\ · Ṁ + Sd · Ġ. Consequently, in order that the Second Law of Ther-
modynamics holds in the present, isothermal context, we impose the dissipation
inequality

S\ · Ṁ + Sd · Ġ ≥ 0. (43)

Through the relation (43), we impose the Second Law as a restriction on dy-
namical processes [3]. The constitutive assumptions (38) and the formulas (25),
when substituted into the dissipation inequality (43), yield

0 ≤ {DGΨ(G,M) + λ̃
r
(F−T −G−T )} · Ṁ +

+{DMΨ(G,M) + λ̃
r
F−T } · Ġ. (44)

We require as in [3] that the free-energy response (G,M) 7−→ Ψ(G,M) be
frame indifferent, i.e., for all orthogonal tensors Q and for all tensors G and M
there holds

Ψ(QG,QM) = Ψ(G,M). (45)

Because the rate of dissipation of energy also should be frame-indifferent, we also
impose here the requirement made in [3] that the mixed power S\ ·Ṁ+Sd ·Ġ be
frame-indifferent or equivalently, by (38) and the formulas (25), that the scalar

{DGΨ(G,M) + λ̃
r
(F−T −G−T )} · Ṁ + {DMΨ(G,M) + λ̃

r
F−T } · Ġ (46)

be frame-indifferent. Given (45), frame-indifference of the mixed power is shown
in [3] to be equivalent to the assertion

sk{(DGΨ(G,M) +λ̃
r
(F−T−G−T ))MT+(DMΨ(G,M)+λ̃

r
F−T )GT } = 0 (47)
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where skA := (A−AT )/2 for all tensors A. In that article we showed that (47)
and (45) imply that the Cauchy stress T is symmetric, or, equivalently:

sk{SFT } = 0. (48)

2.8 Field relations for elasticity with disarrangements

Given a free energy response function (G,M) 7−→ Ψ(G,M) that is frame
indifferent in the sense of (45) and (47), along with the constitutive relations
(38), the formulas for the reaction stresses (25) and the inequality (43), we may
record the following field relations for an elastic body undergoing disarrange-
ments (see [3], where only the case λ̃

r
= 0, i.e., where the reaction stresses are

identically zero, was considered).

• balance of linear momentum:

ρr g̈ = div(DGΨ + λ̃
r
(F−T −G−T ) +DMΨ + λ̃

r
F−T ) + ρrbr (49)

with ρr and br the mass density and the body force per unit volume in
the virgin configuration, and with F = ∇g = G+M,

• consistency relation :

(DGΨ + λ̃
r
(F−T −G−T )) MT + (DMΨ + λ̃

r
F−T )FT = 0 (50)

• frame-indifference of the mixed power:

sk{(DGΨ + λ̃
r
(F−T −G−T )) MT + (DMΨ + λ̃

r
F−T )GT } = 0, (51)

• dissipation inequality:

(DGΨ + λ̃
r
(F−T −G−T )) · Ṁ + (DMΨ + λ̃

r
F−T ) · Ġ ≥ 0, (52)

• (weakened) accommodation inequality:

0 < detG ≤ detF. (53)

We call (49) - (53) the field relations for elasticity with disarrangements.
The reaction scalar field λ̃

r
is non-negative, and, for the case λ̃

r
= 0, the article

[3] provides equivalent forms of these field relations with the alternative choice
of variables (F,G) or the choice (F,K) in specifying the free energy response.
The particular choice of variables (F,∆) = (G+M,G−M) is shown [6] in the
case of statics to provide a variational formulation of the field relations (49) -
(53) when λ̃

r
= 0.

The pair of fields g and G and the non-negative single scalar field λ̃
r
amount

to thirteen unknown scalar fields to be determined through the twelve scalar
relations (49) and (50), along with the three scalar relations (51) and the two
inequalities (52), (53).
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Because frame indifference (45) of the response Ψ and frame-indifference of
the mixed power (51) imply the symmetry of the Cauchy stress T , the balance of
angular momentum is satisfied and need not be imposed separately. Moreover,
if Ψ satisfies for all tensors G

DMΨ(G, 0) = 0, (54)

then the field relations for elasticity with disarrangements, when restricted to
classical structured motions (g,∇g), imply that the reactive hydrostatic tension
λ̃
r
I vanishes and that the field relations reduce to those for classical, finite

elasticity [3]. Therefore, elasticity with disarrangements provides a broaden-
ing of finite elasticity that systematically incorporates geometrical changes at
submacroscopic levels.

2.9 Examples and applications

A variety of examples of response functions Ψ and applications of elasticity
with disarrangements (with λ̃

r
= 0) have been studied in recent years [3],[5] -

[9]. Some of these have centered on applications to cohesionless, granular media
through the restriction to "purely dissipative disarrangements": for all tensors
G, M there holds

DMΨ(G,M) = 0. (55)

For such materials, submacroscopic slips and separations do not contribute to
energy stored in the body. When the continuum is viewed as an aggregate of
tiny elastic bodies or grains, G captures through the formula (7) the average
deformation of grains and M caputures through (5) the average separation and
slip among the grains. The restriction (55) then amounts to the assumption
that short-range forces between grains are weak enough to make negligible any
energy stored through relative motions among grains. In this situation, the only
mechanism for storage of energy is through deformation of individual grains as
reflected in the constitutive relation that follows from (55):

ψ(X, t) = Ψ(G(X, t)), (56)

and the field relations (49) - (53) then reduce to

ρr g̈ = div(DΨ(G)) + ρrbr

DΨ(G) (∇g −G)T = 0

DΨ(G) · (∇ġ − Ġ) ≥ 0

0 < detG ≤ det∇g. (57)

The articles [7] - [9] have highlighted the determination of the portfolio of "dis-
arrangement phases", i.e., pairs (∇g,G) satisfying the consistency relation (57)2
and accommodation inequality (57)4 available to an aggregate of elastic bod-
ies described by the field relations (57). They also provide an analysis of the

20



propagation of moving interfaces separating loose and compact phases of gran-
ular media, the appearance of which can reveal information about the frictional
properties of the continuum; they provide in addition connections between elas-
ticity with purely dissipative disarrangements and materials that cannot support
tensile stresses, the so-called "no-tension materials.".

3 Elasticity with gradient-disarrangements

The field theory elasticity with disarrangements described in Section 2 broadens
classical, finite elasticty by taking into account both smooth and non-smooth
geometrical changes at submacroscopic levels. The additive decomposition (6)
of ∇g,

∇g = G+M, (58)

isolates the smooth submacroscopic changes by means of the term G and the
disarrangements through the term M . Moreover, the identification relation
(5) for M shows that the disarrangements that M measures are precisely those
associated with the jumps [fn] in the approximating deformations fn that appear
in (5).
Notably absent in the considerations leading to the field equations (49) -

(53) are any effects of the jumps [∇fn] in gradients of approximating functions
fn. Consequently, elasticity with disarrangements does not explicitly take into
account such "gradient-disarrangements" and, therefore, only partially incorpo-
rates submacroscopic geometrical changes associated with structured deforma-
tions. One physical context in which gradient-disarrangements arise is that of
fine phase mixtures in which ∇fn, itself, jumps across phase boundaries, while
fn does not jump across these boundaries [18]. A second such context is that
of large deformations of metals in which domains form at the microlevel across
whose walls both fn as well as ∇fn can jump [30]. The present section is
devoted to broadening elasticity with disarrangements, itself, so that these con-
texts can be addressed through an analogous field theory. The additional field
introduced in order to broaden elasticity with disarrangements then provides
the field theory with a natural length scale and so fits into the broader category
of strain-gradient theories formulated in order to address size effects observed
in continua.

3.1 Second-order structured deformations and the addi-
tive decompositon of ∇G

A helpful guide toward capturing the effects of gradient-disarrangements is the
definition (4) of M , rewritten by means of the Approximation Theorem in the
form

M = ∇ lim
n→∞

fn − lim
n→∞

∇fn, (59)

that reveals M as a measure of the lack of commutativity of the operations
∇ and limn→∞. Moreover, M is revealed through (5) as a measure of the
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jumps [fn] in the approximating deformations fn, and we may conclude that
∇ limn→∞ fn − limn→∞∇fn is a measure of the jumps in the approximating
deformations fn. This conclusion suggests that the expression∇ limn→∞∇fn−
limn→∞∇2fn may serve as a measure of the jumps [∇fn] in ∇fn, i.e., as a
measure of gradient-disarrangements, and indicates the need to make sense of
the expression limn→∞∇2fn in order to procede further along these lines. We
do so through a notion of second-order structured deformation [11].
We consider a triple (g,G,G) of fields such that, for each time t, the pair

(g(·, t, ), G(·, t)) is a (first-order) structured deformation from κr(B) and G(·, t)
is a continuous, third-order tensor field on κr(B) with the symmetries of a second
gradient, i.e., for every X ∈ κr(B) there holds for all vectors u, v:

(G(X, t)u)v = (G(X, t)v)u. (60)

(See the Appendix for details about third-order tensors.) We require in addi-
tion that g be twice continuously differentiable. For each t we call the triple
(g(·, t, ), G(·, t),G(·, t)) a second-order structured deformation from κr(B).
From the definition above, it is clear that Theorems 1 and 2 for first-order

structured deformations apply to the pair (g,G) within the triple (g,G,G), so
that the significance of the fields G and M = ∇g −G carry over to the present
context. Moreover, Theorems 1 and 2 have counterparts in this second-order
context.

Theorem 3 [11] Approximation Theorem: If at each time t the triple

(g(·, t, ), G(·, t),G(·, t))

is a second-order structured deformation from κr(B), then at every time t there
exists a sequence n 7−→ fn(·, t) of injective, piecewise twice-continuously differ-
entiable mappings on κr(B) such that

lim
n→∞

fn(·.t) = g(·, t), lim
n→∞

∇fn(·.t) = G(·, t) and lim
n→∞

∇2fn(·.t) = G(·, t)
(61)

with convergence in the sense of essentially uniform convergence (L∞).

The second and third relations in (61) justify calling not only G, but also
G, measures of deformations without disarrangements, because neither G nor
G reflects any of the discontinuities associated with the approximating defor-
mations fn. To distinguish the two fields, we call G the deformation without
gradient-disarrangements. The key ingredient that permits the incorporation of
gradient-disarrangements is:

Theorem 4 [11] If (g(·, t), G(·, t),G(·, t)) is a second-order structured de-
formation at each time t, then for each sequence n 7−→ fn(·, t) as in (61) and
for each X ∈ κr(B) there holds

∇G(X, t)−G(X, t) = lim
r→0

lim
n→∞

∫
J(∇fn(·,t))∩B(X,r) [∇fn(·, t)](Y )⊗ ν∇fn(·,t)(Y )dAY

|B(X, r)|
(62)

22



where J(∇fn(·, t)) is the jump set of ∇fn(·, t), [∇fn(·, t)](Y ) is its jump at the
point Y , ν∇fn(·,t)(Y ) is the normal to J(∇fn(·, t)) at Y , B(X, r) is the sphere
centered at X of radius r, and |B(X, r)| is its volume. The tensor product ⊗
in (62) is defined by

(A⊗ u)v = (u · v)A

for all second-order tensors A and vectors u, v. (This definition of ⊗ corrects
an inconsequential misprint in the version [11]).

The formulas (5) for M and (62) for ∇G−G permit us not only to call M
the deformation due to disarrangements but also to call ∇G−G the deformation
due to gradient-disarrangements. We now are in a position to provide an analog
for second-order structured deformations of the additive decomposition (6) for
first-order structured deformations. To this end, for a second-order structured
deformation (g,G,G) we define the gradient-disarrangement tensor

M := ∇G−G, (63)

so that, by (61)2 and (62), the relation

∇G = G+M (64)

becomes an additive decomposition of ∇G into the part G without gradient-
disarrangements and the part M due to gradient-disarrangements.

3.2 A multiscale identification relation for curlG

We consider a second-order structured deformation (g,G,G) from a region A
and follow [1] by letting c be a smooth, closed curve in A. The vector

bc =

∮
c

M(x)dx =

∮
c

(∇g(x)−G(x))dx

= −
∮
c

G(x)dx (65)

is obtained by integrating the disarrangement tensor M along c and so can be
shown to represent the displacement after deformation of the initially coincident
endpoints of c due to disarrangements. As noted in [1], the vector bc is an analog
of the Burgers vector employed in crystalline plasticity to measure effects of
dislocations. Moreover, if S is any smooth surface in A that spans c, then we
have

bc =

∫
S

curlM(x)n(x)dAx = −
∫
S

curlG(x)n(x)dAx (66)

where the second-order tensor field curlG (sometimes called the "row-curl of
G") denotes the curl of the tensor field G:

(curlG)T v = curl(GT v) for all v ∈ V. (67)
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Consequently, bc is a measure of the defectiveness associated with c for the
structured deformation (g,G,G) and is determined directly by curlM or, equiv-
alently, by curlG through (66), and we call curlG the defectiveness density for
(g,G,G). The formula

(curlG)(w × v) = ((∇G)v)w − ((∇G)w)v (68)

valid for all vectors v, w ∈ V, the formula (64), and the symmetry of G (60)
imply that

−(curlM)(w × v) = (curlG)(w × v)

= ((G+M)v)w − (((G+M))w)v

= (Mv)w − (Mw)v. (69)

We conclude that the gradient-disarrangement tensor M determines through
(69) the defectiveness density tensor curlG, and the formula (62) for M then
shows that curlG is determined by the combinations

∆∇fn,v,w(Y ) := (ν∇fn(Y ) · v)[(∇fn)w](Y )− (ν∇fn(Y ) · w)[(∇fn)v](Y ) (70)

of gradient-disarrangements through the formula

( curlG) |X (w × v) = lim
r→0

lim
n→∞

∫
J(∇fn(·,t))∩B(X,r) ∆∇fn,v,w(Y )dAY

|B(X, r)| (71)

valid for all vectors v, w ∈ V. This provides an explicit formula showing the
manner in which submacroscopic gradient-disarrangements [∇fn] determine the
defectiveness density curlG.

3.3 Structured configurations and continuum fluxes, re-
visited

In the context of second-order structured deformations (g,G,G), classical de-
formations retain the defining property of not causing disarrangements of any
kind, i.e., M = 0 and M = 0. Therefore, the equations ∇g − G = M = 0
and ∇G−G = M =0 characterize classical deformations. Thus, a second-order
structured deformation is a classical deformation if and only if it is of the form
(g,∇g,∇2g). The factorization (9) of first-order structured deformations has a
direct counterpart [11] for second-order structured deformations of the form

(g,G,G) = (g,∇g,∇2g) � (iκr(B),K,G0) (72)

with K = (∇g)−1G (as in the first-order case) and with G0 a third-order tensor
field whose specific relation to g, G, and G need not be given here. There-
fore, in the context of second-order structured deformations of a material body
B, the specification at each time t of a second-order structured deformation
(g,G,G) from the virgin configuration κr(B) provides not only the deformed
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configuration κ(g,G,G) but also the submacroscopically disarranged configura-
tion κ(iκr(B),K,G0) that is macroscopically identically to the virgin configuration
κr(B). Just as in the first-order case, the deformed configuration κ(g,G,G0)
is obtained from the submacroscopically disarranged configuration κ(iκr(B),K,G0)
by means of the classical deformation (g,∇g,∇2g) that introduces no additional
disarrangements.
The purely submacroscopic first-order structured deformation (iκr(B),K) ap-

pears in the factorization (72), and this permits us to identify, as in Subsection
2.3 for the first order case, the induced fluxes w, w\, and wd for a given spatial
continuum flux ws on g(κr(B)). Consequently, we may use the definitions and
interpretations established in Subsection 2.3, as well as the consistency relation
(16). Because the transformation properties of surface integrals under smooth
mappings do not depend upon second derivatives of the mappings, no modifi-
cations of these relations are required for the case of second-order structured
deformations.
Let t 7−→ (g(·, t), G(·, t),G(·, t)) be a second-order structured motion of the

body B. We shall introduce subsequently a continuum flux on the deformed
configuration κ(g,G,G) of the form Ss(·, t) : g((κr(B)) , t) → Lin(V, LinV) , i.e.,
a field with values that are third-order tensors. From the definition of the
transpose in the Appendix, we have that STs (·, t) : g((κr(B)) , t)→ Lin(LinV,V)
so that, for each A ∈ LinV, the field

wAs (·, t) := STs (·, t)A

is a vector field on g((κr(B)) , t) to which the analysis of Subsection 2.3 applies.
Consequently, we write (omiting for brevity the dependence on t and using the
notation ◦1 to denote composition in the spatial variable )

wA : = det(∇g)(∇g)−1(wAs ◦1 g)

wA\ : = (detK)K−1wA

wAd : = (detK)wA − wA\ .

We so obtain as in Subsection 2.3 not only the additive decomposition

(detK)wA = wA\ + wAd (73)

but also the consistency relation

KwA\ = wA\ + wAd . (74)

We use the definition of wAs to write

wA = det(∇g)(∇g)−1(STs ◦1 g)A

= {(Ss ◦1 g)(∇g)∗}TA,

with (∇g)∗ := det(∇g)(∇g)−T . Denoting by S := (Ss ◦1 g)(∇g)∗ the flux on
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the submacroscopically disarranged configuration, we have

wA = STA
wA\ = (detK)K−1STA = (SK∗)TA

wAd = ((detK)S− SK∗)TA,

and the consistency relation (74) becomes

K(SK∗)TA = (SK∗)TA+ ((detK)S− SK∗)TA. (75)

Because the consistency relation in the last form (75) holds for every choice of
A in LinV, we obtain the consistency relation for the third-order tensor flux S

S\KT = S\ + Sd (76)

where
S\ := SK∗ and Sd := (detK)S− S\ (77)

are the fluxes of S with and without disarrangements, respectively. Similarly,
the additive decompositon (73) yields the formula

(detK)S = S\ + Sd. (78)

We note that (76), the consistency relation for the third-order tensor flux
S, has the same form as (17), the consistency relation for the Piola-Kirchhoff
stress field S. The definition of K = (∇g)−1G yields the equivalent form of (76)

S\MT + Sd(∇g)T = 0. (79)

Consistency in the form (79) for the third-order tensor field S amounts to twenty-
seven scalar equations, namely the relations

(S\)ijpMkp + (Sd)ijp
∂gk
∂xp

= 0, (80)

while consistency for the second-order tensor field S in the form (18) represents
the nine scalar equations

(S\)ipMjp + (Sd)ip
∂gj
∂xp

= 0. (81)

In both relations, we use the Einstein summation convention, and we may write
Mkp = ∂gk

∂xp
−Gkp.

3.4 The symmetry of G and the inequality det(G +M) −
detG ≥ 0 as internal constraints

Our discussion in Section 2 of the internal constraint det(G+M)−detG ≥ 0 led
us to the conclusion that the corresponding reaction stresses are determined by
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a non-negative scalar field λr that vanishes when det(G+M)− detG > 0 and
that enters into the field relations for elasticity with disarrangements. Here we
reexamine this internal constraint in the context of gradient-disarrangements,
and we study the symmetry condition (60) on G as an additional internal con-
straint. These two constraints restrict the arrays (G,M,G,M) that at the outset
lie in the 9 + 9 + 27 + 27 dimensional space LinV × LinV × Lin2V × Lin2V to
lie in the region

R = {(G,M,G,M) : det(G+M)− detG ≥ 0,

and (Gu)v = (Gv)u for all u, v ∈ V}. (82)

We consider the reaction arrays (R\, Rd,R\, Rd) ∈ LinV×LinV×Lin2V×Lin2V
associated points (G,M,G,M) in R. Adapting the "dissipation axiom" from
Section 2.4 to the present context, we require for each P0 = (G0,M0,G0,M0)
in R that the reaction array (R\, Rd,R\, Rd) |P0 satisfy the condition

(R\, Rd,R\,Rd) |P0 ·(G′(0),M ′(0),G′(0),M′(0)) ≥ 0 (83)

for every smooth curve τ 7−→ (G(τ),M(τ),G(τ),M(τ)) lying in R. Here, the
inner product "·" is taken "entrywise", using the appropriate inner product
for corresponding entries and then summing the four resulting numbers. An
elementary argument shows that the reactions are restricted as follows:

(R\(P0)u)v = −(R\(P0)u)v for all u, v ∈ V , Rd(P0) = 0, (84)

R\(P0) = λr(F−T0 −G−T0 ), Rd(P0) = λrF−T0 (85)

with λr ≥ 0 satisfying λr(det(G0+M0)−detG0) = 0. Thus, the reactive stresses
R\ and Rd satisfy the same conditions (25) and (26) obtained for elasticity
with disarrangements in Section 2.4, while the reactive hyperstress R\ is skew-
symmetric (84) and Rd = 0.
We continue to use (24)1 to define the reactive part Sr of the stress S, and

we define the reactive part Sr of the hyperstress S throught the formula

(detK)Sr = R\ + Rd. (86)

The differences S−Sr, S\−R\, Sd−Rd are called the constitutively determined
parts of S, S\, Sd, respectively, and we continue to call S−Sr, S\−R\, Sd−Rd
the constitutively determined parts of S, S\, Sd, respectively.

3.5 Power and balance laws

For a body undergoing second-order structured motions

(X, t) 7−→ (g(X, t), G(X, t),G(X, t))

from the virgin configuration κr(B), we modify the formulas (29) and (30) for
the external and internal power as follows:

Pext(P, t, g,G) =

∫
∂P

(S(X, t)n(X) · ġ(X, t) + S(X, t)n(X) · Ġ(X, t))dAX

+

∫
P

(btot(X, t) · ġ(X, t) +B(X, t) · Ġ(X, t))dVX (87)
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and

Pint(P, t, g,G) =

∫
P

(S(X, t) · ∇ġ(X, t) + S(X, t) · ∇Ġ(X, t)dVX . (88)

Here, the third-order tensor field S has the dimensions of force per unit length
or, equivalently, moment per unit area. Its action Sn on the unit normal vector
field n for the boundary ∂P of P represents the area density of short-range
interactions that do work against Ġ. The second-order tensor field B has the
dimensions of force per unit area or, equivalently, moment per unit volume and
represents the volume density of long-range interactions that do work against Ġ.
The presence of the non-classical interactions S and B in these definitions have
led others (see, e.g., [35]) in analogous situations to apply the term "generalized
continuum" in order to distinguish the present setting from the one described
in Subsection 2.5.
Given a second-order structured motion t 7−→ (g(·, t), G(·, t),G(·, t)) of B, a

smooth velocity field v : κr(B) → V, and a tensor field V : κr(B) → LinV we
define the virtual motion gv of B by

gv(X, t) = g(X, t) + tv(X), (89)

and the virtual deformation field GV

GV (X, t) = G(X, t) + tV (X) (90)

and require that, for the given fields S, br, S, B, ρr, g, and G, there holds

Pint(P, t, gv, GV ) = Pext(P, t, gv, GV ) for all v, V, t, and P. (91)

We require as well that the internal power be frame-indifferent, i.e.,

Pint(P, t, rQ ◦1 g,QG) = Pint(P, t, g,G) (92)

for every rigid motion r:

rQ(y, t) = Q(t)(y − yo) + w(t), (93)

where the tensor field QG in (92) is defined by the relation (QG)(X, t) :=
Q(t)G(X, t).
The requirement (91) and the arbitrariness of v and V imply via a standard

argument the balance laws

divS + br = ρr g̈ and div S+B = 0, (94)

and the frame-indifference of the internal power is equivalent to the symmetry
of the second-order tensor S�∇G+S(∇g)T :

(S�∇G + S(∇g)T )T = S�∇G + S(∇g)T (95)

Here, the second-order tensor S�∇G is the "contracted composition" defined
in (143). A more detailed discussion of frame-indifference will be given following
our discussion of constitutive relations.
The component form of (94)2 is

∂Sijk
∂xk

+Bij = 0, while the component form

of (95) is Sipq ∂Gjp∂xq
+ Sip

∂gj
∂xp

= Sjpq ∂Gip∂xq
+ Sjp

∂gi
∂xp
. (In both relations, we have

used the Einstein summation convention.)
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3.6 Additive decomposition of the stress-power

The stress-power in the present setting, S · ∇ġ + S · ∇Ġ, or, more precisely,
the internal power expended per unit volume is given by the integrand in the
defining relation (88). We procede in a manner analogous to the discussion in
Subsection 2.6 by exploiting the additive decompositions (6), (20), (64), (78) of
∇g, ∇G, (detK)S and (detK)S obtained in Sections 2 and 3 in order to obtain
the following additive decomposition of the density (detK)(S · ∇ġ + S · ∇Ġ) of
internal power:

(detK)(S · ∇ġ + S · ∇Ġ) = S\ · Ġ+ Sd · Ṁ + S\·G· + Sd ·M· +
S\ · Ṁ + Sd · Ġ+ S\·M· + Sd ·G·. (96)

The first four terms on the right-hand side are "pure" in the sense that each
term has two factors having the same attribute: both factors are "without dis-
arrangements" or both factors are "due to disarrangements." By contrast, the
fifth through eighth terms are "mixed" in that in each term the two factors
have different attributes and so represent the case where contact forces or con-
tact moments are remotely located relative to where geometrical changes occur.
This refined representation of the internal power density permits us in the next
section to identify through consititutive relations which terms in the additive
decomposition (96) will contribute to the internal dissipation and which to the
storage of energy.

3.7 Constitutive relations

The generalized balance laws (94) amount to 3 + 9 scalar relations restricting
the fields g, G, and G as well as the skew-symmetric reaction stresses R\ that
together have 3 + 9 + 18 + 9 scalar components. (The symmetry of G re-
duces the number of independent components from 27 to 18.) There are in the
present context two consistency relations that can be used to cover the deficit
of twenty-seven scalar equations: the consistency relation for S\ and Sd (18)
that amounts to nine scalar equations and the consistency relation for S\ and
Sd (79) that amounts to twenty-seven scalar relations. In this subsection, we
make constitutive assumptions directly on the stress S−Sr, on S\−R\ and on
Sd−Rd. The constitutive assumption on S−Sr then determines through (19)
the constitutive relations on S\ − R\ and on Sd − Rd in such a way that the
consistency relation (18) is satisfied identically, while the constitutive relations
on S\ − R\ and on Sd − Rd through the consistency relation (79) provide 27
scalar restrictions on g, G, and G.
By analogy with the case of elasticity with disarrangements, we assume

that ψ, the free energy per unit volume in the virgin configuration κr(B), is
determined by the fields g, G, and G in the specific form:

ψ(X, t) = Ψ(G(X, t),M(X, t),G(X, t),M(X, t)) (97)

where M = ∇g − G and M = ∇G − G are the disarrangement tensor and
the gradient-disarrangement tensor, respectively. Without making independent
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constitutive assumptions on S\ and on Sd, we preserve the stress relation (39)
from elasticity with disarrangements by assuming directly

S − Sr = DGΨ +DMΨ, (98)

and we use the definitions (19) to obtain the relations

S\ = (detK)(DGΨ+DMΨ+Sr)K−T , Sd = (detK)(DGΨ+DMΨ+Sr)(I−K−T ).
(99)

These formulas and (24)1 permit us to identify the reactive part R\ of S\ and
the reactive part Rd of Sd by selecting the terms that are not consititutively
determined, so that

R\ = (detK)SrK−T = (R\ +Rd)K
−T

Rd = (detK)Sr(I −K−T ) = (R\ +Rd)(I −K−T ).

Each of these relations is equivalent to the relation

R\K
T = R\ +Rd (100)

which amounts to the assertion that the reaction stresses obey the consistency
relation (18), with S\ and Sd replaced by R\ and Rd, respectively. By means
of the formulas (85) for R\ and Rd, the relation (100) becomes

λr{(G−TFT )−1 +G−TFT − 3I} = 0,

and arguments given in [3] imply that λr = 0. Thus, the consititutive assump-
tion (98) and the definition (24)1 of Sr imply that the reaction stresses associ-
ated with the constraint det (G+M)−detG ≥ 0 all vanish: R\ = Rd = Sr = 0.
Moreover, (99) with Sr = 0 yields the constitutive relations for S\ and Sd :

S\ = detK(DGΨ +DMΨ)K−T

Sd = detK(DGΨ +DMΨ)(I −K−T ), (101)

and the arguments that led to (100) together with (101) tell us that S\ and
Sd satisfy the consistency relation (17). In other words, the relation (98) and
the definition (24)1 of Sr imply that the consistency relation (17) is satisfied in
every structured motion and, hence, places no restrictions on the fields g , G,
and G.
By analogy with the constitutive assumptions (38) in Section 2, we assume

S\ − R\ = (detK)DGΨ and Sd − Rd = (detK)DMΨ, (102)

where R\ and Rd satisfy (84). In the constitutive relations (98), (99), and (102)
the functions on the left-hand sides as well as K are evaluated at pairs (X, t)
while those on the remaining functions on the right-hand sides are evaluated at
the arrays

(G(X, t),M(X, t),G(X, t),M(X, t)).
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As noted above the induced consitutive relations (99) on S\ and Sd imply
that the consistency relation S\KT = S\+Sd is satisfied identically, i.e., places
no restrictions on the fields G, M , G, and M. In contrast, the directly imposed
constitutive relations (102) on S\ and Sd together with the higher-order con-
sistency relation (79) do restrict G, M , G, and M. Moreover, they imply by
means of (78) and (84) the following formula for S analogous to (98):

S = DGΨ +DMΨ + R̃\, (103)

with R̃\ = R/(detK) an arbitrary skew third-order tensor. Our constitutive
assumptions also permit us to write the internal power density S · ∇ġ+ S · ∇Ġ
in a form analogous to (96)

S · ∇ġ + S · ∇Ġ = (DGΨ +DMΨ) · (Ġ+ Ṁ) +

(DGΨ +DMΨ + R̃\) · (G· +M·)
= ψ̇ +DGΨ · Ṁ +DMΨ · Ġ+

DGΨ ·M· +DMΨ ·G· + R̃\ ·M· (104)

that identifies the mixed power

πmix := DGΨ · Ṁ +DMΨ · Ġ+DGΨ ·M· +DMΨ ·G· + R̃\ ·M· (105)

as the (volume density of) internal dissipation S · ∇ġ + S · ∇Ġ − ψ̇ during a
second-order structured motion. In order that the evolution of the body satisfy
the Second Law during isothermal processes, we impose as a restriction on
processes the inequality

πmix = DGΨ · Ṁ +DMΨ · Ġ+DGΨ ·M· +DMΨ ·G· + R̃\ ·M· ≥ 0 (106)

Because the reaction hyperstress is skew, the reaction term R̃\ · M· in (105)
and (106) depends only upon the skew part of the third-order tensor M. The
discussion in Section 3.2 shows that the skew part of M and the defectiveness
density curlG are equivalent as kinematical fields, and we conclude that for the
materials described here the rate of change of defectiveness density enters in the
last term in the dissipation inequality . The constitutive assumptions (97), (98),
(102), and (106) specify an elastic body undergoing gradient-disarrangements.

3.8 Frame-indifference

Constitutive equations are required to be independent of observer, i.e., frame-
indifferent. Therefore, we need to record how the variables that enter into
the constitutive relations introduced above transform under superposed rigid
motions (93). The approximation theorem implies the following transformation
rules for G, M , G, M :

g → rQ ◦ g =⇒ G→ QG,M → QM,G→ QG,M→ QM,
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and the physical and geometrical properties of free energy, stress, and hyper-
stress imply the transformation rules:

g → rQ ◦ g =⇒ ψ → ψ, S → QS,S→ QS.

Frame-indifference of the constitutive relation (97) for ψ implies by means of a
standard argument the transformation rules for the partial derivatives of ψ: g →
rQ ◦g =⇒ DAΨ→ QDAΨ where A stands for G, M , G, and M. Consequently,
the reaction stresses and hyperstresses transform in the same manner as the
stress and hyperstress, themselves. These transformation properties then tell
us that the constitutive relations (98) and (102) are frame-indifferent, because
both sides of the equality symbol have the same transformation properties.
It remains to require that the dissipation inequality (106) be frame-indifferent.

This requirement implies that the mixed power πmix on the left-hand side of
(106) is invariant under superposed rigid motions. With the above transforma-
tion properties at hand, this amounts to the assertion

QDGΨ ·(QM)·+QDMΨ ·(QG)·+QDGΨ ·(QM)·+QDMΨ ·(QG)·+QR̃\ ·(QM)
·

= DGΨ · Ṁ +DMΨ · Ġ+DGΨ ·M· +DMΨ ·G· + R̃\ ·M·, (107)

which is easily shown to be equivalent to the condition that the second-order
tensor DGΨMT +DMΨGT +DGΨ�M+DMΨ�G+ R̃\�M be symmetric, i.e.,

sk{DGΨMT +DMΨGT +DGΨ�M+DMΨ�G+ R̃\ �M} = 0. (108)

It is worth noting that the frame-indifference of the free energy response and
the frame-indifference of the mixed power (108) imply the symmetry condition
(95) which, in turn, is equivalent to the frame-indifference of the internal power.
The verification of this assertion follows a similar argument to the one provided
in [3] showing that the frame indifference of the free energy response and of the
mixed power imply the symmetry of the Cauchy stress tensor.

3.9 Field relations for elasticity with gradient-disarrangements

We now are in a position to assemble the field relations derived above for an elas-
tic body undergoing gradient-disarrangements through second-order structured
motions t 7−→ (g(·, t), G(·, t),G(·, t)), with detG ≤ det(G+M) and the symme-
try of G treated as internal constraints. The preassigned free energy response
function (G,M,G,M) 7−→ Ψ(G,M,G,M) in (97) provides the constitutive input
that complements the balance laws, consistency relations, dissipation inequality,
and conditions of frame-indifference already discussed in detail. In recording the
field relations below, we recall the additive decompositions (6), ∇g = G + M ,
and (64), ∇G = G + M, that relate the second-order tensor fields G and M
to the macroscopic deformation gradient ∇g and the third-order tensor fields G
and M to the gradient of deformation without disarrangements ∇G.
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• balance laws:
ρr g̈ = div(DGΨ +DMΨ) + ρrbr (109)

with ρr and br the mass density and body force per unit volume in the
virgin configuration, and

div(DGΨ +DMΨ + R̃\) +B = 0 (110)

with B the body moments per unit volume in the virgin configuration,

• consistency relation:

(DGΨ + R̃\) MT +DMΨ (∇g)T = 0 (111)

• frame-indifference of the mixed power:

sk{DGΨMT +DMG
T +DGΨ � M+DMΨ�G+ R̃\ �M} = 0, (112)

• dissipation inequality:

DGΨ · Ṁ +DM · Ġ+DGΨ ·M· +DMΨ ·G· + R̃\ ·M· ≥ 0, (113)

• (weakened) accommodation inequality:

0 < detG ≤ det∇g. (114)

In (112) and (113), the stresses S\ and Sd are given in terms of Ψ through
the formulas (101). In all of the field relations listed above, the partial deriv-
atives of the free energy response function Ψ are to be evaluated at the arrays
of fields (G,M,G,M) = (G,∇g−G,G,∇G−G). The equations (109), (110),
(111), and (112) are then partial-differential equations for the macroscopic de-
formation g, the deformation without disarrangements G, and the deformation
without gradient-disarrangements G. We call (109) - (114) the field relations
for elasticity with gradient-disarrangements. The relations (109) - (114) amount
to 3 + 9 + 27 + 3 scalar equations and two inequalities restricting the fields g, G,
G, R̃\ that amount to 3 + 9 + 18 + 9 scalar unknowns. (G represents 18 rather
than 27 scalar unknowns due to the symmetry required in (60); R̃\ represents
9 rather than 27 scalar unknows due to the skew-symmetry required in (84)1.)
The stress relation (98) (with Sr = 0) and the analogous higher-order relation
(103) relate the area densities of contact forces Sn and contact moments Sn
to the second-order structured motion t 7−→ (g(·, t), G(·, t),G(·, t)). As dis-
cussed earlier in Subsection 3.2, the skew part of the third order tensor field
M = ∇G−G, or, equivalently, the second-order tensor field curlG, provides the
density of defects arising in the motion.
We close this subsection with the observation that, even in the presence of

the internal constraints detG ≤ det∇g and the symmetry condition on G, the
frame-indifference of the free energy response and the frame-indifference of the
mixed power (112) continue to imply the symmetry condition (95) which, in
turn, is equivalent to the frame-indifference of the internal power.
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3.10 Coherent, submacroscopically affi ne motions and strain-
gradient elasticity

The case G = 0 and M = 0 is of particular interest for applications of elas-
ticity with gradient-disarrangements. The relation G = 0 and (61)3 tell us
that the second gradients ∇2fn of approximating deformations fn vanish in
the limit, so that the piecewise smooth approximations fn become more nearly
piecewise affi ne as n tends to infinity. Accordingly, we use the term "submacro-
scopically affi ne" to describe a second-order structured deformation of the form
(g(·, t), G(·, t), 0). The additional restrictionM = 0 and (5) show that, on aver-
age, the jumps [fn] in approximating deformations converge to zero as n tends
to ∞, and we use the term "coherent" to describe this aspect of the present
case. We may think of the submacroscopic geometrical changes associated with
a coherent, submacroscopically affi ne deformation as causing the body to be
comprised of tiny domains, each approximately affi nely deformed, with jumps
in only the deformation gradient and with those jumps occuring across domain
walls. The case of fine mixtures of phases [16] - [19] mentioned in the introduc-
tion fits well into this geometrical setting.
In this context the decomposition (64) takes the simpler form

∇2g = ∇G = M, (115)

so that ∇2g captures at the macrolevel the disarrangements associated with
[∇fn]. These considerations show that, for a given coherent, submacroscop-
ically affi ne structured deformation (g(·, t),∇g(·, t), 0), the fields G = ∇g and
∇G = ∇2g provide specific and complementary geometrical information: ∇g
reflects through (7) the average smooth submacroscopic deformation of the
domains, and ∇2g reflects through (62) the jumps in displacement gradient
across the domain walls. In this manner, the case G = 0 and M = 0 pro-
vides a precisely defined but restricted geometrical setting for elasticity with
gradient-disarrangements. We note that a classical deformation (g,∇g,∇2g) is
submacroscopically affi ne if and only if g is itself an affi ne deformation.
Because G = 0 and M = 0 are kinematical constraints that imply sat-

isfaction of the kinematical constraints detG ≤ det∇g (with equality) and
(Gu)v = (Gv)u for all u, v ∈ V , we may incorporate all four constraints into
the present theory by introducing mechanical reactions R\, Rd, R\, Rd , corre-
sponding to the two constraints G = 0 and toM = 0, that are not constitutively
determined and that satisfy an obvious analogue of the "dissipation axiom". It
is then clear that the second-order tensor of reactive stresses Rd and the third-
order tensor of reactive hyperstresses R\ are arbitrary, while R\ and Rd vanish.
The stress relations (99) and (102) then become:

S\ = (detK)(DGΨ +DMΨ)K−T , (116)

Sd = (detK)((DGΨ +DMΨ)(I −K−T ) +Rd (117)

S\ = (detK)(DGΨ + R̃\), Sd = (detK)DMΨ, (118)
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and the relations (98) and (103) now read

S = DGΨ +DMΨ + R̃d, S = DGΨ +DMΨ + R̃\. (119)

with R̃d = Rd /(detK) and R̃\ = R \ /(detK). Together with (119)1 the
relations (19) among the stresses S, S\, and Sd tell us that R̃dK−T = 0 and
R̃d(I −K−T ) = R̃d , so that the reaction stress R̃d is zero in (119)1. In (119)2
R̃\ is an arbitrary third-order tensor, and all of the partial derivatives of Ψ are
evaluated at the array (∇g, 0, 0,∇2g).

The field relations (109) - (113) are now replaced by

• balance equations

ρr g̈ = div(DGΨ +DMΨ) + ρrbr (120)

div(DGΨ + R̃\) +B = 0 (121)

• consistency relation
DMΨ = 0 (122)

• frame-indifference

sk{DMΨ(∇g)T + (DGΨ + R̃\)�∇2g} = 0 (123)

• dissipation inequality

DMΨ · ∇ġ + (DGΨ + R̃\) · ∇2ġ ≥ 0. (124)

In these relations the partial derivatives of Ψ continue to be evaluated at the
array (∇g, 0, 0,∇2g). The field relations amount to 3 + 9 + 27 + 3 scalar
equations and one inequality that, together, restrict the unknown fields g and
R̃\ that amount to 3 + 27 unknown scalar fields.
If we assume further that the body moment field B vanishes, then we can

choose the arbitrary reaction stress field R̃\ so that DGΨ + R̃\ = 0. Conse-
quently, the hyperstress balance (121) is satisfied, and the field relations reduce
to

ρr g̈ = div(DGΨ +DMΨ) + ρrbr (125)

DMΨ = 0 (126)

sk{DMΨ(∇g)T } = 0 (127)

DMΨ · ∇ġ ≥ 0 (128)

In these relations, DG, DM , DM denote, respectively, differentiation with re-
spect to the first, second, and fourth variables of the free energy response func-
tion (G,M,G,M) 7−→ Ψ(G,M,G,M). The derivative DGΨ no longer appears
because we have chosen R̃\ so that S\ = DGΨ + R̃\ = 0. The consistency
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relation (126) amounts to the condition that, for a given macroscopic deforma-
tion gradient field ∇g, the gradient-disarrangement density field ∇2g renders
the free energy stationary at each point of the body. The resulting stress field
(DGΨ+DMΨ)(∇g, 0, 0,∇2g) then satisfies balance of linear momentum accord-
ing to the first relation.
A further simplification arises when the free energy response satisfies

DMΨ(G, 0, 0,M) = 0 for all G and M,

in which case the frame-indifference condition (127) is satisfied and the dis-
sipation inequality (128) is satisfied with equality. The field equations (125)
and (126) comprise the following system of partial differential equations for the
macroscopic deformation field g{

ρrg̈ = divDGΨ(∇g, 0, 0,∇2g) + ρrbr
DMΨ(∇g, 0, 0,∇2g) = 0.

(129)

Here, as above, DG and DM denote differentiation with respect to the first and
fourth entries in the list of variables (G,M,G,M) upon which Ψ depends. We
observe that, in the presence of the internal constraints M = 0 and G = 0, the
frame-indifference of the free energy response and the frame-indifference of the
mixed power (127) continue to imply the symmetry condition (95) that, because
S = 0, reduces in this case to the statement that the Cauchy stress is symmetric.
We suppose now that at submacroscopic levels the material response favors

particular values of ∇fn that correspond to phases of the body and also favors
jumps between the favored values of ∇fn. For coherent submacroscopically
affi ne deformations, ∇g reflects through (7) the average smooth submacroscopic
deformation, and ∇2g reflects through (62) averages of the jumps in deforma-
tion gradient ∇fn. The response (∇g,∇2g) 7−→ Ψ(∇g, 0, 0,∇2g) then can be
assigned in such a way that these preferences are captured in the field equa-
tions (129). In this manner, these field equations are expected to describe
fine mixtures of coherent phases and to supply through the presence of ∇2g a
length scale not available in models that do not capture the effects of gradient-
disarrangements.
The relation (129)1 is a field equation central to theories of "strain-gradient

elasticity" used to describe a variety of phenomena associated with microstruc-
tural changes in elastic bodies and with localization of macroscopic deformation.
The reader is referred to [25],[31] - [34] for a variety of ways of broadening elas-
ticity by the inclusion of higher-order gradients of deformation. The article [25]
provides such a broadening in which, like the present approach, the Cauchy
stress continues to be symmetric.
Relation (129)2 in the context of strain-gradient elasticity is new and can

place a strong restriction on the structured motions (g,∇g, 0) available to the
body. For example, if

Ψ(G, 0, 0,M) = Ψ1(G) + Ψ2(M) for all G and M
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and if
DΨ2(M) = 0 if and only if M = 0,

then the consistency relation (129)2 amounts to the requirement ∇2g = ∇G −
G = M = 0. This leads one to seek solutions g of (129)1 that are piecewise
affi ne, a setting already studied in the context of phase mixtures [37] through a
theory of piecewise rigid body mechanics.

3.11 Defect-dominant gradient energetics and strain-gradient
plasticity

We consider now an alternative specialization of the full field relations for elas-
ticity with gradient-disarrangements (109) - (114) in which the only contribution
of ∇G to the stored energy is through the defectiveness density curlG. By the
relations (69) and ∇G = G +M, it is equivalent to consider in place of curlG
the skew, third-order tensor field M̃ defined from the gradient-disarrangements
field M by

(u, v) 7−→ M̃(u, v) := (Mu)v − (Mv)u (130)

and to assume that the free energy response is of the form:

Ψ(G,M,G,M) = Ψ̃(G,M, M̃). (131)

This relation and (69) make explicit the assumption that ∇G contributes to the
stored energy only through the defectiveness density. We use the term defect-
dominant gradient energetics to describe the particular specialization embodied
in (131).
We note that (131) yields the simplifications

DGΨ=0, DMΨ(G,M,G,M) = DM̃Ψ̃(G,M, M̃)

and implies in the case B = 0 and with the choice R̃\ = −DM̃Ψ̃ the following
simpler version of the field relations (109) - (114):

ρr g̈ = div(DGΨ̃ +DM Ψ̃) + ρrbr (132)

DM̃Ψ̃(G,∇g −G, M̃) = 0 (133)

sk{DGΨ̃ (∇g −G)T +DM Ψ̃GT } = 0 (134)

DGΨ̃ · (∇ġ − Ġ) +DM Ψ̃ · Ġ ≥ 0 (135)

0 < detG ≤ det∇g. (136)

In deriving these relations we have used the symmetry of G and the skew-
symmetry of M̃ and of DM̃Ψ̃ . Moreover, the stresses S\ and Sd are given in
terms of Ψ̃ through the formulas (101) with Ψ replaced by Ψ̃, and the hyper-
stresses all vanish: S = S\ = Sd = 0. The field relations consist of 3 + 9 + 3
equations and two inequalities that restrict the unknown fields g and G that
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amount to 3 + 9 scalar unknowns. As remarked above, the field M̃ is deter-
mined by curlG that is determined, in turn, by the field G, so that the presence
of M̃ in the field equations does not increase the number of unknowns beyond
the fields g and G. Moreover, the field relations above imply that the Cauchy
stress is symmetric.
The field relations (132) - (136) can be restated in notation more familiar

in theories of strain-gradient plasticity. Following [1] we note that the additive
decomposition∇g = G+M implies the multiplicative decomposition∇g = FeFp
in which Fe = G and Fp = I + G−1M . Therefore, we have curlG = curlFe,
and our analysis in Section 3.2 shows that the 9 independent components of M̃
determine the 9 components of curlFe. In this manner, we can recast (132)
- (136) entirely in terms of the two fields g and Fe. Moreover, as is the case
in theories of plasticity, we may assume that detFp = 1 or, equivalently, that
detFe = det∇g, i.e., that the accommodation inequality (136) is satisfied with
equality. This assumption places the kinematical setting of the theory within
the class of invertible structured deformations [1]. That setting was used in [39]
to derive standard representations of the field ḞpF−1p in terms of fundamental
metrics of multiple slip in single crystals. As noted in [39], such representations
are assumed at the outset in standard treatments of multiple slip in single
crystals. We note in closing that the consistency relation (133) now reads

DcurlF eΨ̃(F e,∇g − F e, curlF e) = 0 (137)

and amounts to the assertion that, given ∇g and F e at each (X, t), the de-
fectiveness density curlF e at each (X, t) renders stationary the free energy at
(X, t).

4 Appendix on third-order tensors

We let V denote the three-dimensional translation space of physical space and
LinV the space of linear mappings A from V into itself. V is an inner-product
space, as is LinV, and we use without danger of confusion the symbol · to denote
both inner products. The two inner products are related by

A ·B =

3∑
i=1

Aei ·Bei = tr(ATB) (138)

for every A, B ∈ LinV and for every orthnormal basis e1,e2,e3 of V. Here, AT
is the unique element C of LinV that satisfies

Av · w = v · Cw for all v, w ∈ V,

i.e., AT is defined unambiguosly by the relation

Av · w = v ·ATw for all v, w ∈ V. (139)
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It is natural in the present context to view second-order tensors as elements
A of LinV and to view third-order tensors as elements Λ of Lin(V, LinV), i.e.,
as linear mappings on V whose values are in LinV, so that Λv ∈ LinV for every
v ∈ V. For each third-order tensor Λ, we may define, along the lines of (139),
the transpose ΛT to be the unique element Ω ∈ Lin(LinV,V) that satisfies

Λv ·A = v · ΩA for every v ∈ V and A ∈ LinV,

so that ΛT is defined unambiguosly by the relation

Λv ·A = v · ΛTA for every v ∈ V and A ∈ LinV. (140)

It follows for every Λ,Ξ ∈ Lin(LinV,V) that ΛTΞ ∈ LinV is a second-order
tensor, and we define

Λ · Ξ = tr(ΛTΞ). (141)

It is straightforward to show that this formula defines an inner product on the
vector space Lin(V, LinV) of third-order tensors .
For each second-order tensor A and third-order tensor Λ, the symbol AΛ ∈

Lin(V, LinV) denotes the composition of the linear mappings A and Λ, i.e.,

(AΛ)v = A(Λv) for all v ∈ V. (142)

so that the composition of a second-order and a third-order tensor is a third-
order tensor. With this in mind, we define for each pair of third-order tensors
Λ,Ξ ∈ Lin(V, LinV) the second-order tensor Λ � Ξ ∈ LinV to be the unique
B ∈ LinV satisfying

(AΞ) · Λ = A ·B for every A ∈ LinV,

so that
(AΞ) · Λ = A · (Λ� Ξ) for every A ∈ LinV. (143)

The component forms (with respect to an orthonormal basis e1, e2, e3) of
quantities identified above are:

Aij := ei ·Aej (144)

Λijk := ei · ((Λek)ej) (145)

ΛTijk := Λjki (146)

Λ · Ξ =

3∑
i,j,k=1

ΛijkΞijk (147)

(Λ� Ξ)ij =

3∑
k,l=1

ΛiklΞjkl. (148)
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