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Abstract

Regularity results for equilibrium configurations of variational problems involving both bulk and sur-
face energies are established. The bulk energy densities are uniformly strictly quasiconvex functions
with quadratic growth, but are otherwise not subjected to any further structure conditions. For a min-
imal configuration (u, E), partial Holder continuity of the gradient of the deformation w is proved,
and partial regularity of the boundary of the minimal set E' is obtained.

AMS Classifications. 49N15, 49N60, 49N99.
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1 Introduction and statements

In this paper we study a large class of multidimensional vectorial variational problems involving both
bulk and surface energies, relevant to a plethora of problems issuing from material science and imaging
science. The regularity of solutions to these problems is a rather subtle issue even in the scalar setting. In
[4, 24] the authors established existence and regularity of minimal configurations of the model problem

/aE(m)|vu\2dx+P(E,Q) (1.1)
Q

with u = 0 on 9Q and o (2) := axe + bxo\g for a > b positive constants, where {2 C R" is an open,
bounded domain, £ C €2, and P(FE, Q) stands for the perimeter of the set E in §2. In [25] the authors
treated more general bulk interfacial energies of the form

I(u, B) = /Q (F (2,1, V) + x, G, u, Va) de + P(E, Q).

subject to the constraints
u=® on 0N and |E|=d,

requiring that " and G satisfy restrictive structure assumptions and are convex and with quadratic growth
with respect to the gradient variable. Recently in [8] we still dealt with constrained convex scalar prob-
lems, without requiring any additional structure assumption on the bulk energies, and considering a
general p-growth condition with respect to the gradient.



This work is a natural extension of the above mentioned papers to the vectorial setting under the
assumption of quasiconvexity on the bulk energies. To be precise, we consider an energy of the type

I(v, A) == /Q (F(Dv) + v,G(Dv)) dz + P(A,Q), (1.2)

where A C (1 is a set of finite perimeter, u € I/Vli)f(Q, R™), x4 is the characteristic function of the set
A and P(A, ) denotes the perimeter of A in Q. We assume that , G: RVX" — R are C? integrands
satisfying, for p > 1 and for positive constants ¢1, £o, L1, Lo > 0 and u > 0, the following growth and
uniformly strict p-quasiconvexity hypotheses,

0< F(E) < L + €)%, (F1y
| Fle+Doydn> [ (PO + Dol + o)) da, (F2),
Q Q
and
0<G(€) < La(u® + €)%, (G1),
[ Gte+Deydn= [ (610 +LlDpl? + Do) S da (G2),
Q Q

for every £ € RV*" and p € C}(Q; RY).
We will say that a pair (u, F) is a local minimizer of Z in €2, if for every open set U € € and every pair
(v, A) where A is a set of finite perimeter with AAE € U and v — u € VVO1 P(U;RN), we have

/U (F(Vu) + x,G(Vu)) dz + P(E,U) < /U (F(Vo) + v, G(V0)) do + P(A, U).

Existence and regularity of local minimizers of integral functionals of the type

/Q F(z, Du),

with uniformly strict p-quasiconvex integrand F' and smooth dependence on the x variable, have been
widely investigated ( we refer to [1, 2, 9, 10, 11, 18, 26] and for an exhaustive treatment to [17, 20]).
However, as far as we know, neither the existence nor the regularity of the local minimizers for function-
als involving both bulk and surface energies of the form (1.2), are available in literature. Our results here
are a first step to fill this gap.

We first establish the existence of minimizers of Z.

Theorem 1.1. Let p > 1 and assume that (F1),, (F2),, (G1), and (G2), hold. Then, for v €

Wﬁ)’f(Q; RN) and a set of finite perimeter in Q, A C ), and for every sequence (vy, Ay,) such that
7p

vi, weakly converges to v in VVliC (RN and Xa, Strongly converges o x , in Ll (), we have

Z(v, A) < liminf Z(vg, Ag).

k——+o0

In particular, T admits minimal configurations (u, xg) € WoF (6 RY) x BViee (€2 [0, 1]).

loc



Next we establish a partial regularity result for minimal configurations of the functional Z(v, A).
Here we focus on the case of quadratic growth (i.e. p = 2). The case of general p-growth, which will be
treated in a forthcoming paper. We note that when p = 2, (F1),, (F2)p, (G1)p and (G2), reduce to

0< F(€) < Li(p® + 1€, (F1)
| P+ Deyin= [ (F©)+01D4F) do. (F2)
and
0 < G(E) < Lo(u? + ¢, (G1)
| cte+Deyin= [ (Ge)+ alDe?) do. (G2)

Theorem 1.2. Assume that (F1)-(F2) and (G1)-(G2) hold, and let (u, E) be a local minimizer of . Then
there exist an exponent 3 € (0,1) and an open set Qy C  with full measure such that u € CHP(Qy).
Also, " ENQqisa Cl’%-hypersurface in Qo, and H*((OFE \ 0*E) N Q) = 0 forall s >n — 8.
If, in addition,
Ly
0+ 4

<1 (H)
then there exists an open set Q1 C Q with full measure such that u € C1*(Qy) for every a € (0, 3).

As it is usual in the vectorial setting, the proof is based on a comparison argument with solutions
of a suitable linearized system, aiming at establishing decay estimates of some excess functions. The
essential tool here is the use of suitable hybrid” excess functions U, (z,, p) and U, (g, p) (see (5.1)
and (5.50) respectively) that describe the oscillations of the gradient of the minimal deformation » and
of the perimeter of the minimal set F in a ball. The decay estimates are achieved by considering points
in 2 at which the excess is small, and using a blow-up argument reducing the problem to the study
of convergence of the minimal configurations (uy, Ep,) of a suitable rescaled functionals in the unit
ball. This argument is hinged on two Caccioppoli type inequalities for minimizers of suitable perturbed
rescaled functionals. Due to the particular form of our functional, these Caccioppoli type inequalities
(see (5.18) and (5.60)) also involve quantities depending on the perimeter of the rescaled minimal set
E,. In order to ensure that these terms vanish in the passage to the limit, we need to establish suitable a
priori estimates for the perimeter of E},.

Remark 1.1. Theorems 1.1 and 1.2 apply, in particular, to energies of the form
(0B = [ (e Fi(Du)+ (1= ) Fa(Du) da + P(E,9),
Q

obtained from T by setting F' := Fy and G := Fy — Fb, with Fy and I\ — F» strict 2-quasiconvex
functions, and

Fi(€) > Fy(§) forall £ € RN,

Note that such assumptions are the natural extension to the vectorial setting of the model case (1.1)
treated in [4, 24], recalling that there a > b.



We end the Introduction by refering to [6] where regularity for vector-valued free interface variational
problems is treated within the context of k-th order homogeneous partial differential operators A (for a
detailed study of A-quasiconvexification see [15]), and o |Vu|? in (1.1) becomes G (z)Au - u, with
OF ‘= O1XE + 02XQ\E> 01 and o2 being two positive symmetric tensord not necessarily well-ordered.

Themorem 1.5 in [6] provides C'"/2 regularity for some 7 € [0, 1] while in Theorem 1.2 we achieve
oL1/2.

2 Notations and Preliminary Results

We denote by c a generic constant that may vary form expression to expression in the same formula
and between formulas. Relevant dependencies on parameters and special constants will be suitably
emphasized using parentheses or subscripts. The norms we use on R™, RV and RV*" are the standard
Euclidean norms, denoted by | - |. In particular, for matrices &, n € RYV*™ we write (£, 7) := trace(¢7n)
for the usual inner product of £ and 7, and || := (£, & >% for the corresponding Euclidean norm. When
a € RN and b € R™ we write a @ b € RY*™ for the tensor product defined as the matrix that has
the element a,bs in its r-th row and s-th column. Observe that (a ® b)x = (b - x)a for z € R", and
|a ©b| = [a][b].
Let B, (z0) be the ball centered at 2y with radius 7, and set

(W)zo,r = 7[ u(x) dx.
By (o)

We omit the dependence on the center when it is clear from the context.
When F': RVX" 5 R is sufficiently differentiable, we write

d d?

DeF(©)lnl = | _ F(&+tn) and  DeF(E)n ] := 55| _ F(E+1tn)

for £, € RVX", Hereby, F'(£) is interpreted both as an N x n matrix and as the corresponding linear
form on RV*", though |F’(¢)| will always denote the Euclidean norm of the matrix F’(¢). The second
derivative, F”(£), is a real bilinear form on RV *",

It is well-known that for quasiconvex C' integrands, the assumptions (F1) and (G1) yield the upper
bounds

IDeF(E)| < erLi(u? + |€2)7  and  |DeG(E)] < caLo(® + [€]%)2 @.1)

forall £ € RNV*" with ¢; and ¢y constants (see [26] or Lemma 5.2 in [20] ). Further, if F and G are C?2,
then (F2) and (G2) imply the following strong Legendre-Hadamard conditions

D*F(Q)AiXjptatip > csA?[ul?, D2G(Q)NiXjpatts > cal A |ul?

for all Q € RV*", X\ € R™, u € RY, where c3 = c3(f1) and ¢4 = c4(f2) are positive constants ( see
Proposition 5.2 in [20]).
We will need the following regularity result (see [20, 17])

Proposition 2.1. Let v € W12(Q; RY) be such that
/Q QY3 DaviDgpjdz =0

4



for every ¢ € C®(S;RY), where Qf}ﬁ are real valued numbers such that ]Qgﬁ\ < L and the strong
Legendre—Hadamard condition

Qupridjtats = NP |uf?

is satisfied for all \ € R", i € RY, for some £, L > 0. Then v € C*, and for any ball Br(zo) C ) the
following estimate holds

7[ |Dv — (Dv),, r|*de < cR27[ |Dv — (D) y.r|? dz,
B g (z0) 2 Br(zo)

where ¢ = c¢(n, N, (, L) .

The next iteration lemma has important applications in the regularity theory (for the proof we refer to
[20], pp. 191-192).

Lemma 2.1. Let 0 < p < Randlet ®: [p, R] — R be a bounded nonnegative function. Assume that for

all p < s <t < Rwe have
B

where 9 € (0,1), o, A, B > 0 are constants. Then there exists a constant ¢ = c(¥, «) such that

Given a Borel set F in R”, P(E, ) denotes the perimeter of E in €2, defined as

B(s) < OD(t) + A+

P(E,Q) :=sup {/ divedr : ¢ € CH(LRY), |¢| < 1} .
E
It is known that, if F is a set of finite perimeter, then
P(E,Q) = H" 1 (0"E),

where

O*'E = {x eN: limsupw > 0}

—1
p—0t p"

is the reduced boundary of E (for more details we refer to [5]). Given a set E2 C ) of finite perimeter
in Q, for every ball B,.(z) € 2 we measure how far E is from being an area minimizer in the ball by
setting

W(B, B,(z)) := P(E, B,(x)) — inf {P(A, B.(z)) : AAE € B,(x), xa € BV(R™)} .

The following regularity result, due to Tamanini (see [28]), asserts that if the excess ¢(E, B, (z)) decays
fast enough when » — 0, then F has essentially the same regularity properties of an area minimizing set.

Theorem 2.1. Let Q) be an open subset of R™ and let E be a set of finite perimeter satisfying, for some
€ (0,1),
( ( )) e 1420

for every x € Q and every r € (0,1¢), with ¢ = c(x ) ro = ro(x) local positive constants. Then O*E is
a CY7-hypersurface in Q and H* ((OE \ 9*E) N Q)) = 0 forall s > n — 8.

(91



In order to perform the blow up procedure, it will be convenient to introduce suitable translations of
the integrands I and G. To be precise, given a C! function f : RV*" 5 R, @ € RV*" and \ > 0, set

faal® = Q20 = 1Q) = D@ 02

Lemma 2.2. Let f be a C*(RN*") function such that

FEI<ClE? and  |Def(6)] < Ol
and let fg \(§) be the function defined in (2.2). Then

[for©l < cé*  and  |Defon()| < clé (2.3)

for all ¢ € RNX™ and for some positive constant depending on |Q)|.

The proof can be found in [1], Lemma II.3, pag. 264.

3 Lower Semicontinuity

This section is devoted to the proof of Theorem 1.1. We recall that a weakly convergent sequence can be
truncated in order essentially to obtain an equi-integrable sequence still weakly converging to the same
limit. This result is the decomposition lemma proved by Fonseca, Miiller and Pedregal (see Lemma 2.3
in [16], see also [1], [12],[22]) .

Lemma 3.1. Let (v;,) € WP(Q;RYN) be weakly converging to u. Then, there exists a subsequence
(vk,) and a sequence (u;) C W (Q; RN such that

(i) L"({v, # u;}) = o(1) and uj — u weakly in WHP(Q; RY);

(ii) (| Du;|P) is equi-integrable.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Fix v € VVll’p (RY), A C Q a set of finite perimeter in  and consider

oc
(vx) weakly converging to v € VVlif(Q, RY), and (x 4, ) strongly converging in Ll () to x,, with
liminfy_, o Z(vg, Ag) < 4+00. Without loss of generality ( and up to the extraction of a subsequence not
relabeled), assume that the limits below exist,

lim F(Duvy) dzx, lim X, G(Dvg)dr and lim P(Ag, ().
Ak k—o0

k—oo Jo k—oo Jo

In view of the lower semicontinuity property of the perimeter, and by the quasiconvexity and growth
assumption on F' (see (F1),, (F2)p), forall ' € Q

P(A, Q) <liminf P(Ag, Q') < lim P(Ag, Q) 3.1
k—+o0 k—+o0
and
/ F(Dv)dx <liminf | F(Dvg)dx < lim [ F(Duvy)dx. (3.2)
/ k—oco  Joy k—oco Jo



Moreover, up to the extraction of a further sequence (not relabeled), there exists (uz) € W5H(Q;RY)
such that (i)-(ii) in Lemma 3.1 hold. Hence

lim [ x, G(Dvg)dz > lim sup/ Xa, G(Duy) dz
Q {uk:vk}ﬁQ’

k—o0 k— o0

> limsup//XAkG(Duk)da: - limsup/{ e Xa, G(Duy) dz
UL FVk

k—o00 k—o00

> ]imsup/ XAkG(Duk) dx — Lo limsup/ (1 + |Duk|2)% dx
! {unFvp 0

k—o0 k—o0

:limsup/ XAkG(Duk)dx, (3.3)

k—o00

where we used (G1),, in the second inequality, and the equi-integrability of (|Duy|P) and condition (i)
in Lemma 3.1 to obtain the last equality. Now,

lim sup/XAkG(Duk) dx > lim sup/XAG(Duk) dr —limsup [ |x, —X,|G(Dug)dz, (3.4

k—o0 4 k—o0 / k—oco JQ

with

/ X4, = XalG(Duy) dz < Lz/ (1 + |Dug|)? dz — 0 as k — oo,
& {‘XAk—XA|Zl}ﬂQ'

since by Chebyshev’s inequality

‘{|XA,€_XA‘Z].}OQ/‘S/Q"XAIC_XA|—>03SIC—>OO.

By the quasiconvexity and growth properties of G we have

lim sup/ X 4G (Duy) dx = limsup G(Duyg) dx > / G(Du) dzx, (3.5)
k—oc0 / k—oo JO/NA QNA
and the conclusion now follows from (3.1)—(3.5), and by letting ' 7 €. ]

4 A higher integrability result

This section is devoted to the proof of a higher integrability result for the gradient of the function u of
the minimal configuration (u, E).

Theorem 4.1. Assume that (F1)-(F2) and (G1)-(G2) hold, and let (u, E) be a local minimizer of Z. Then
there exists § = 6(n, N, {1, s, L1, L) > 0 such that for every ball Bo,(xy) € € it holds

1
1+6
][ | Du|?(1+0) e <C |Du|? dz + Cp?
By (z0) Bay(x0)

where C' = C(n, N, 1,03, Ly, L) > 0.



Proof. Consider 0 < r < s <t < 2r and letn € C5°(B) be a cut-off function between B, and By, i.e.,
0<n<1l,p=1linBsand|Vyl <~

Set
V1= n(u — (u)zg2r) Yo := (1 —n)(u — (w)zg2r)-
By the uniformly strict quasiconvexity of F'in (F2), we have
0 / | Dapry () |* da < / F(Dvy)dx = / F(Du — D) dz. (4.1)
By By By

We write

/ F(Du— Dig)dzr < F(Du)dx+ | F(Du— Dig)dx — / F(Du) dx
By

t Bt Bt

1
F(Du) dz — / / DE(Du — §Dtps) Dips df da
0

IN

1
F(Du) + x,G(D u)}d:c— / /0 DF(Du — 0 D) Dips df dz

7
[F (Du— D) + x,G(Du — le)} dz

IN

~ / / DF(Du — D) Diby d6 da. 4.2)
0

where we used the fact that G(£) > 0 and the minimality of (u, E') with respect to (u — 1, E'). Inserting
estimate (4.2) in (4.1), and using the upper bound on DF in (2.1), we obtain

el/ |Dul?dz = el/ |D¢1|2dx§/ F(D¢2)dx+/ X G (Dy2) dz
s s Bz By

1
te / (42 + |Dul® + |Dis|?)} | Dips| da
Bt\BS

IN

c/ | Dy |2 dy—l—c/ |Du|? dz + cu®| By
B\ Bs Bi\Bs

c/ |Dul? dz + c/
Bt\Bs Bt\B

where we used assumptions (F1) and (G1), Young’s inequality and the definition of /5. Adding
cf B, | Du|? dx to both sides of the previous estimate we get

(u — (U)xo,%’) ?
t—s

IN

dz + cii?| By,

_ 2
(El—l—c)/ |Dufdz < c/ | Du? dac—l—c/ %dm—kcuﬂ&ﬂ
By By BB, (t—5)
2 o Ju— (W)
< | Dyl dx—l—c/ R [ A %
B Ba, (t—s)
and by the iteration Lemma 2.1 with ®(2) := [ |Du|? dx for z € [r,2r], 0 := e A= g, u? and
B = [ |u— (W) 2r|* dz, we deduce that
2 2 U — Ugy 2
7[ |Du|* dx < a][ p+ dx.
Br B2’V‘ r

8



The Sobolev-Poincaré inequality ( [20], p.102) implies that

n+2

7[ ]Du|2dx§c<7[ ]Du|n%b2 dw) ' + cp?,
Br BQT

with the constant ¢ depending only on n and not on r, and the conclusion follows by virtue of Giaquinta-
Modica Theorem ([20], p. 203). ]

S The Decay Estimates

Consider the excess function defined as
Utaor)i= . Du(e) = (D) d,
By (zo)
for B,.(xo) C 2, and let the “hybrid” excess be given by

Us(zg,r) ::7[ |Du(z) — (D) gy | d + —— tT (5.1
By (z0) r

Proposition 5.1. Let (u, E) be a local minimizer of T under the assumptions (F1), (F2), (GI),

(G2) and (H). For every M > 0 and every 0 < 7 < % there exist eg = eo(T,M) and c, =

co(M, 01, Ly, 0o, Ly, n, N) such that whenever B, (xg) € ) verifies
|(Dw)gor| < M and Ui(xg,7) < €0,

then
Ui(xo, 1) < o T Us(0, 7). (5.2)

Proof. In order to prove (5.2), we argue by contradiction. Let M > 0 and 7 € (0, 1/4) be such that for
every h € N, C > 0, there exists a ball B,, (z},) € € such that

[(Dw)zy, | < M, Ui(xp,mh) — 0 (5.3)

ThyTh

and
U*(l’h, TTh) > C*TU*($}L, Th)‘ (54

The constant C, will be determined later. Remark that we can confine ourselves to the case in which
E N By, (z1,) # 0, since the case in which B, (x},) C Q \ E is easier because then U = U,.

Step 1. Blow-up.

Set /\i = Us(h,7h), Ap = (Du)gy vy an = (U)g, r,» and define

u(rp +rpy) — ap — TR ARy
ARTh

vn(y) = (5.5)

for y € By := B;(0). One can easily check that (Dvy)o,1 = 0 and (vp)o1 = 0.



Set

E — E —
Epi=—"h  pr=""Thap
Th Th
Note that
P(E, B(xp,r
Ui(zh,mh) = ][ |Du(zp + 1Y) — Al dy + ( n(,lh n) + 7
By Th
= 7[ |AwDup|? dy + P(Ep, By) + 7. (5.6)
By
By the definition of A\j, and by (5.6), it follows that
P(E,, B
rh—0,  P(BpB)—0, <1, ][ |Duy|? <1, % <1. (5.7
A B1(0) Ah

Therefore, by (5.3) and (5.7), there exist a subsequence of {vp} (not relabeled), A € RN*™ and v €
Wh2(By; RY), such that

v, — v weakly in WY2(B;RY), v, — v strongly in L?(By; RY),
A, — A, Ay Dvj, — 0 in L*(By) and pointwise a.e., (5.8)

where we used the fact that (v;,)o,1 = 0. Moreover, by (5.7) and (5.3), we also deduce that

(P(EnB))™

e P(Ey, By)
. . n—1 4. 9
lim Y = lim (P(Eh, Bl)) i sup =154 = 0. (5.9)
Therefore, by the relative isoperimetric inequality in a ball (see [5]),
Ef| |B\ E P(Ep, By))-t
limmin { g',%ﬂ < clim P Er: 21)) = 0. (5.10)
h s Ay s
We expand F' and G around Ay, as follows:
 F(AR+ &) — F(An) — DeF(Ap)Ané
Fh (5) T )\2 )
h
G(An + &) — G(Ap) — DeG(Ap)A
Gh(e) = (Ap + Aié) (/\Qh) ¢G(An) h§7 5.11)
h
and we consider the corresponding rescaled functionals
In(w) := / o (Fh(Dw)dy + Xpy Gh(Dw)> dy + P(Ey, By) . (5.12)
Bi(0
We claim that vy, satisfies the minimality inequality
1
Tufon) < Talon +9) + 3 [, DGl D) dy, (513
1

10



for ¢ € VVO1 2(By). Indeed, using the change of variable 2 = x, + 4y, the minimality of (u, E) with
respect to (u + ¢, E), for p € W&’Q(B(a:h, 1)), setting ¥ (y) = @@ntray) yields

Th

[ (PO + ., o (Den(a)
< [ (FuDon) + Do) + x; Gr(Don(w) + Do) ) dy
B

1
W / X g: DeG(Ap) Dy (y) dy (5.14)
h JB; h

and (5.13) follows by the definition of Zj, in (5.12).
Next we claim that

/B <Fh(Dvh(y)) + Gh(DUh(y))> dy

< [ (FuDu@ + Do) + Gu(Don(w) + Dulw))) dy
B
Lo

2 / (1 + [ A + A Doy ) dy, (5.15)
h J (B1\Ep)Nsuppy

+

for all ¢» € W,?(By). In fact, the minimality of (u, E) with respect to (u + ¢, E) for ¢ €
VVol’2 (B(xp, 1)), implies that

/ (F + G)(Du) dz = / [F(Du) n XEG(DU)] d + / G(Du)dx
B(zp,rn) B(zp,rh) B(zp,rn)\E
< / F(Du+ Dy) + xgG(Du + Dgo)] dz + / G(Du)dx
B(zn,rn) B(zp,rn)\E

= / (F+G)(Du+Dg0)da:+/
B(:rhzTh)

[G(Du) — G(Du + D) |dx
B(mh)rh)\E

< / (F + G)(Du+ Dy)dz + / G(Du)dx, (5.16)
B(zn,rn) (B(zh,rn)\E)Nsuppyp

where we used that last integral vanishes outside the support of ¢ and that G(£) > 0. Using the change
of variable x = x5, + r,y in (5.16), we get

| F+&)Dun+mudy < [ [+ G)Dutan -+ rwy) + Dol + )
B1 Bl
+ /( JV— [G(DU(fvh +7rhy))|dy

where, we recall, 1 (y) := W

, or, equivalently, using the definitions of vy,
| FronsnDudy < [ [(F+6)A+ 2D, + Dv)
Bl Bl

+/ G(Ap + M\ Duy) | dy
(B1\En)Nsuppy

11



forall ¢ € VVO1 2(B)). Therefore, setting
Hy = Fp, + Gy,

by the definition of F}, and G}, in (5.11) and using the assumption (G1), we have that

1
Hh(Dvh)dy < Hh(D’Uh + Dw)dy + ) G(Ah + )\hDvh) dy
B B A J(B1\Bj)nsuppy:
L
< [ [t + Do)y (1 + |4+ MDon ) dy (517
B h /(B1\Ep)Nsuppy

i.e. (5.15).
Step 2. A Caccioppoli type inequality.

We claim that there exists a constant ¢ = ¢(M, p, 41, 02, L1, Lo, n, N) such that for every 0 < p < 1
there exists hg € N such that for all h > hg we have

J

We divide the proof into two substeps.

Substep 2.a The case min{|E}|,|B1 \ Ey|} = |E}|.

2 n
vp — (vn)p — (Dvp) ey P(E,,. By)n-1
P A (Ep, B1)

(5.18)
p A

Doy, — (Dop)e P dy < ¢ /
2 B,

P
2

Consider 0 < g <s<t<p<landletn e C;(B;) be a cut off function between B and By, i.e.,
0<n<1n=1lonBsand|Vn| < %. Setby, := (vi)B, » Br := (Dvy) B, , and set
2

wp(y) := vn(y) — by — Bry.

Define
Fu(e) = F(Ap + MBp + Mn&) — F(Ap + MyBp) — DeF(Ap + A\ Bi) Ané
= "2 ,
Gu(e) = G(Ap + MBr + Aé) — G(Ay, ;/\hBh) — DeG(Ap + /\hBh))\hf‘ (5.19)
h

It is easy to check that Lemma 2.2 applies to each ﬁh, éh, for some constants that could depend on M
(see (5.3) ) and also on p through |\, By|. However, given p we may choose h large enough to have
|[AnBp| < % < 1. In fact, by (5.7) we have

P

NI

[u—y

IN
E\s‘ o

: (5.20)

‘Bh|: ][ Dup| < / ’D”Uh’2 .
B Bp |B

[N
=

and so the constant in (2.3) can be taken independently of p.
Set

1 p(y) == nwy, and Yo n(y) == (1 — n)wp.

12



By the uniformly strict quasiconvexity of ﬁh we have
b [ 1Dva@Piy< [ FuDudy= [ FuDun - Disdy. 521
B: B: B:

Using the change of variable © = x, + ry, the fact that G(£) > 0 and the minimality of (u, E') with
respect to (u + ¢, E) for ¢ € W01’2(B(xh, 1)), we have

F(Du(xp + rpy))dy < /

[ [F(Du(an + ) + x,., G(Dulen + )| dy

B1

< [ [F(DuCon +ruy) + Deplan + rua)) + sy G(Dulan + ruy) + Dilan + ) s
By
i.e., by the definitions of v and wy,
/ F(An + MBh + M Duwy)dy
By

< / [F(Ah + ABp + Ap(Dwy, + D)) + XE;G(A;L + AnBp + Ap(Dwy, + D)) | d
B1

for ¢ := %Zhy) € ng’2(Bl). Therefore, recalling the definitions of F}, and G}, in (5.19), we have
that

Fa(Dun)dy < [ [Fu(Duwn + Db) + xy; G D + D) dy

B1 B

1
+)\*% /B XE;; |:G(Ah + AnBp) + DgG(Ah + A Br)An(Dwp, + D¢)>] dy. (5.22)
1
Choosing —11 () as test function in (5.22), we get
/ Fu(Dwp)dy < / [ﬁh (Dwp, — Dip1 ) dy + Xp: Gh (Dwy, — D¢1,h)] dy
Bt Bt

1
+)\7 / XEZ [G(Ah + AnBp) + DgG(Ah + A\ Br)An(Dwy, — qul,h)} d
h 7/ B1

= / ﬁh(D’po’h) dy + / XE* Gh (Dd]Q h)
Bt\Bs Bt\
1

_'_7
A7
/ Fo(Diban) dy + / X G (Dt ) dy
B\ Bs h

B:\Bs

X [G(Ah + A Bn) + DeG(Ap + )\hBh)AhDT/Q,h)} dy
1

IN

Ml o /|Dw2h|dy

h

/ h(D¢2,h)dy+/ X - Gi (D2 ) dy
B¢\Bs B/\Bs "

Ej| ¢ .
+C’A§“ T (/E |D¢z,h|2dy> | ERl2, (5.23)
h h

13
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for a constant ¢ = ¢(M, u, Lo), and where we used the second estimate in (2.1), Holder’s inequality, and
the fact that |Ay, + A\, Br| < M + 1 (see (5.20)). We write

/Bt F(Dwy, — Dipy 1) dy =/

Fu(Duwp) dy + /
By

ﬁh(th — Do) dy — / ﬁh(th) dy
By

By

~ 1 ~
—/ Fh(th) dy — / / DFh(D’wh — HDl/Jz’h)Dl/Jz’h d9 dy. (5.24)
Bt Bt 0
Inserting estimate (5.23) in (5.24), and using the upper bound on Dﬁh in Lemma 2.2, we obtain

/Bt Fy(Dwy, — Dipoy,)dy < /

Bt\Bs

+C/ (|Dwp| + | Do p]) | Dipa | dy
Bt\Bs

Fu (Db 1) dy +/

By

Xg: G, (D) dy

1
E* e 2 i
+C’)\g‘ 1 (/ |D¢2,h(y)|2dy> |EL2. (5.25)
h h E;;

Hence, combining (5.21) with (5.25), using the properties of 1 and Lemma 2.2, we obtain

Qdy

2 / Dy dy = 6, / D2 dy < £ / Dibr
s Bs By

< / B (Do p) dy + / Yo G (Dia) dy
Bi\Bs B\Bs, "
be [ (1wl + Db Dzl dy
Bt\Bs
1
E; C 2 w1
+C|)\§L| - (/ ‘D¢2,h(y)2dy> B2
h h E;
< 2

c/ \Dwzyh\Q dy+c/ XE*\Dwg,h\zdy—i-c/ ]th\2 dy + ¢
B:\Bs Bi\Bs " Bi\Bs

c/ |th|2dy—|—c/
B:\Bs B\Bs |t

where we used Young’s inequality. Adding to both sides of previous estimate ¢ |’ B, | Dwp,|? dy we get

2
)\h
2

E*
dy—l—c’ h|

9
)\h

Wh,
—S

IA

E*
(El—i-c)/ |Dwp|?dy < c/ \thde—i—CQ/ \thQdy—i—c‘ g'
B. B (t —s)* JB,\B. Ah
< c/ \th|2dy+62/ \wh|2dy+c’E§| (5.26)
By (t—s)* /g, Ah

and by the iteration Lemma 2.1, we deduce that

/ | Dwy,|* dy < c/
B,% B,

14
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Therefore, by the definition of wy,, we conclude that

2
vy — (vp)p, — (Dup) ey

/ \Dvh—(Dvh)p2dygc/ () ~ (Don)g

Bg 2 B,

p

dy+c

| B3|

(5.27)

which, by the relative isoperimetric inequality and using the hypothesis of this substep that

min{|E}|,|B1 \ Ey|} = |E}|, yields the estimate (5.18).
Substep 2.b The case min{|E;|,|B1 \ Ep|} = |B1 \ E|.

As in the previous substep, we fix 0 < § < s <t < p < landletn € C5°(B;) be a cut off function
between B and By, ie., 0 < < 1,7 = 1 on By and |V < ;5. Also, we set by, := (vp)B, »

¢
By, := (Dwvp) g, and define
2

wn(y) = vn(y) — bn — Bry
and B _ _
Hy, := Fp(&) + Gr(§).
Remark that Lemma 2.2 applies to H r, and so
[H(€)] < e(M)[EP,

and by the uniformly strict quasiconvexity conditions (F2) and (G2)

¢+ Do) ds = [ () + DU da.
B1 Bl
forall ¢ € W01’2(Bl), where / is such that
0>t + 0.

Set
Yip(y) =nwp,  and  Yop(y) = (1 = n)wp.
By (5.28) and since Hj,(0) = 0, we have

z/B | D1 p(y)|* dy < /B Hyp (D1 p)dy = | Hy(Dwy, — Do) dy.

By
By virtue of the minimality inequality in (5.17) and since Dvy, = Dwy, + Bp,, we get
Hyp(Dwyp, + Bp)dy < Hyp(Dwy, + By, + D)
Bl Bl
Loy

=
)‘%L (B1\Ex)Nsuppy

or, equivalently, by the definition of H s

Hy,(Dwp)dy < Hy(Dwy, + DY)
Bl Bl

15

(5.28)

(5.29)

(1% + | Ap + M\ Bp, + \Dwy|?) dy,



Lo

: / (1% + |Ap + A Br + M Dwy[*) dy. (5.30)
A J(B1\Br)nsuppes

—+

Choosing —11 () as test function in (5.30) and using the fact that H,(0) = 0, we get

H(Duwn)dy < / Hy(Dwn(y) — Dibny) dy

Bt Bt
L
+22/ (/L2 + ‘Ah + A\ By, + /\thh|2 dy)
Ah J(BAER)
= / Hy (Do) dy
Bt\Bs
Ly 2 2
+17 (u” + |Ap + A B + ApDwp|?) dy. (5.31)
)‘h Bi\E},
Now we have that
Hy(Dwy, — Do) dy
By
= ﬁh(th) dy + ﬁh(th — Dl/)gﬁ) dy — fNIh(th) dy
Bt Bt Bt
~ 1 ~
= Hh(th) dy — / / DHh(DU)h — GDT/JQJL)Dl/JgJL db dy. (5.32)
Bt Bt 0

Hence, inserting the estimate (5.31) in (5.32), by the upper bound on DH n, given by Lemma 2.2 , we
obtain

Hy(Dwp — Dibap)dy < / (Do) dy
By

/ (12 + |Ap 4+ A\ By + M, Dwy |?) dy
Bt\Eh

+C/ . (|Dwp| + [ Do p|) | Do | dy. (5.33)
B,\B,

Combining (5.29) with (5.33) and using again Lemma 2.2 and (5.20), we have

27/ D al2dy < Z/ Dby a2 dy
By By

IN

- L
[ EDunnydy+ 33 [ 1A+ By D dy)
Bt\Bs h Bt Eh

ve [ (Dunl+[Dvaal)| Dzl dy
Bt\Bs

1 C(M,LQ)
- | ———=|B1\ F
D) s m

IN

c/ | Do 1| dy + <1+
Bt\Bs

+(1+5)L2/ \th’2d9+0/ |Dwy,|* dy,
Bi\Ep, B¢\ Bs

16



for every € > 0, and thus

( |th|2dy < 7 ’Dth’Qdy
B By

IN

c/ \thIQdy+(1+€)L2/ | Dwp|? dy
Bt\BS Bt

C(M, LQ)
—l—c/B 5

A
Using the hole filling technique as in (5.26) , we obtain

Wh

dy + |B1 \ Ep|.

(c+z)/ |Dwp|?dy < <c+(1+5)L2)/ | Dwy, | dy
B, B

t
—i—c/
B,
1+8)L2

The assumption (H) implies that there exists € > 0 such that “5—%== < 1. Therefore we have

c(M, L)
A

Wp,

dy + |B1 \ Eh|.

c+(1+¢)ls < c+(1+¢)ls

= <1
c+ /0 T e+ lh+ 0

So, by virtue of the iteration Lemma 2.1, from the previous estimate we deduce that

/ | Duwp|* dy < C/
Bg B

where ¢ = ¢(M, p, 41, L1, 02, Lo, n, N). Therefore, by the definition of wy,, we conclude that

/ |Dvp, — (Dup)e|* dy < c/
By ? B

which, by the relative isoperimetric inequality and since we have | By \ Ej,| = min{|E}|, |B1 \ E4l},
gives the estimate (5.18).

2
B\ E
C| 1\ h|

Wh,
— 1 d
Y + )\% )

P

2
vn = (vn)p = (Dvn) sy
p

|B1 \ Ep|
672 y
Ah

dy +

P

Step 3. We prove that

7[ |Dv — (Dv)z|* < CTQJ[ |Dv — (Dv),|? dz, (5.34)
B

T -
for B, = B;(0) with 7 < 1. As before, we will divide the proof in two substeps. Let A and v be as
introduced in (5.8).

Substep 3.a The case min{|E}|, | By \ Ex|} = |EJ|.

We claim that v solves the linear system

D¢ F(A)DvDy dy = 0,
By

17



for all ¢ € C}(By). Since vy, satisfies (5.13), we have that
1
0< Zy(on+56) ~ Tulwn) + 5 [, DeG(ANSDUy) dy, (5.35)
By
for every 1 € C}(B1(0)) and s € (0, 1). By the definition of Z;, we get

1
0 < Tuon+s0) = Tulon) + 5 [ X DGUARSDU() dy
hJB

1

= Alh / [DsF(Ah + A (Do, + tsD¢))] sDdt — DeF(Ap)sDy | dy
B 0

"

1
1
+ /XE}* [DgG(Ah + /\h(D'Uh + tSDi/}))]SDib dt — XE;; DgG(Ah)SDi/J dy
B 0

1
o [ ey DG sDOLy) dy
h B h

M

1
_ 1 / [Dgp(Ah + An (Do, + tszw))]szw dt — DgF(Ah)sDw) dy
B 0

1
1
W / / X DeG(An + An(Duy, + tsD))|sDyp dt dy
h
By 0

Dividing by s and taking the limit as s — 0, we deduce that

1
0 < " (DeF(Ap + ADuy) — DeF(Ay)) Dipdy
hBl
1
AW / Xy DeG(Ap + A Do) Dy dy. (5.36)
h
By

We partition the unit ball as
By = BZ UB}: = {y € B: )\h\Dvh\ > 1} @] {y € B : )\h|Dvh| < 1}.

By (5.7), we get

Bl < [ Mupay <t [

. |Dup|? dy < A} (5.37)
h Bh

By virtue of the first estimate in (2.1) and Holder’s inequality, we get

1
A

C
<7B + Z)
_)\h’ h‘ C/Jr’ Uh’dy

h

[ D+ 3Dun) — DeF (4D dy

18



<+ </ . |Dvh|2dy> B/ |2 < cAn, (5.38)
B

h

for a constant ¢ = ¢(L1, M), thanks to (5.4) (to bound |A;,| < M ), (5.7) and (5.37), and therefore

lim — / [DgF(Ah + ApDup,) — DgF(Ah)]sz dy| = 0. (5.39)
h—o0 h BZ
On B, we have
1
o Ju [DeF(Ap + ApDvp) — DeF(Ap)] Dy dy
h

1
:/ / De¢e F(Ap + tA,Duy) dt Dup D dy
B, /0
1
= / / [D&F(Ah + t)\hDUh) - D&f(A)] dtD'UhD’l/J dy
B, /0
1
—|—/ / D&:f(A) dtDUhD¢ dy. (540)
B,/0

By (5.3) and the definition of B, we have that |Ap, + A\pDup| < M 41 on B, . Hence the uniform
continuity of D¢¢ I on bounded sets implies

lim
h

1
/ / [Dec F(Ap + tAnDun) — Dee f(A)] dtDopDib dy
B; Jo
< lim/
h B;
< lim </
h B~

h

< clim (/
h B-

h

1
/0 [D&F(Ah + t)\hD’Uh) — Dgéf(A)] dt

| Don||Dy| dy

1
/0 [D&F(Ah + t)\hDUh) — Dggf(A)] dt

2\ 3
dy) [[Dop | 22(B)| 1DVl Lo (1)

1
/O [D&:F(Ah + t)\hDvh) — Dggf(A)] dt

2\ 2
dy) =0, (5.41)
where we used (5.7) and the fact that by (5.8)
ApDvp, — 0 a.e. in Bj.
Note that (5.37) yields that Xy 7 Xa, in L" for every r < oo. Therefore by (5.7)
h

lim
h

1 1
/B /0 Dee f(A) dtDvp, Dy dy — /B1 /0 Dee f(A) dtDvp, D dy

h

1
| peerta dt\wvhuwwy

<l -
< lim B |XB; X31|

< cli’{anXB; = Xg, 22| |DVnl|L2(B,) = 0. (5.42)

19



Hence using (5.41) and (5.42) in (5.40), we have that

. 1/
lim —
h An JB

By the second estimate in (2.1), we deduce that

By

h

1

A

IN

h

1 1
= / Xy (u2 + Ay + AhDvh\Q) *|Dy| dy
h JB;y h

/ X g [DeG(Ap, + Ay Dup) Dy dy‘
B

IN

il +c [ |Duldy
Ah E;

1
2
< igilve( [ 10wk ) g1}
h By

< SB[+ d|E})3,
An

for a constant ¢ = ¢(Lg, M), thanks to (5.3) and (5.7). Since min{|E}|,|B1 \ Ep|} = |E}]|, by (5.10)
we have B
lim % =0
W
and so
h—o00 )\h B h

By (5.39), (5.43) and (5.44), passing to the limit as A — oo in (5.36) yields

0< D&F(A)Dszﬂ dy,
B

and with —1) in place of 1) we get

D¢ F(A)DvDy dy = 0,
B1

i.e., v solves a linear system with constant coefficients. By Proposition 2.1 we deduce that v € C*°, and
forevery 0 < 7 < 1, we have

Dv — (Dv)z|? < er? Dv — DUT2d$SCT2,
Br 2 B

since
[1Dvl[2(p,) < lithSUP||DUhHL2(Bl) <1

Substep 3.b The case min{|E}|,|B1 \ Ex|} = |B1 \ E4l.

We claim that v solves the linear system

De¢e(F + G)(A)DvDy dy = 0,
By

20



for all 9 € C}(By). Arguing as (5.16) and rescaling, we have that

1
HuDu)dy < [ HuDu D) e [ sipulay
B By An JBi\B,

1
+c/ / | Dvy, + tsDv||sDv| dt dy,
Bi\E}, J0

for every 1 € C}(B1(0)) and for every s € (0,1), and so

0 < Hyp(Dvp + sD) — [ Hp(Dup)dy
Bl Bl
1 1
+c— S\D¢|dy+c/ / | Dvyp, + tsD||sDv| dt dy.
A JB\E), Bi\Ey, Jo

Therefore

1
0 < / /Dth(Dvh—l—sQDw)dGsDwdy
B Jo

1 1
+c/ 5|D¢|dy+/ / | Dvp, + tsDvp||sDp| dt dy.
Ah JB\E), Bi\E, Jo

Dividing the previous inequality by s and taking the limit as s — 0, we obtain that

1
0 < [ Dett(Du)Dvdytes [ Duldy
By Ah B1\Ey

T / |Duyl | DY dy.
Bl\Eh

By the definition of H},, we conclude that

1
0 < [Dg(F + G)(An + M\ Dvp)Dyp — De(F + G)(Ah)Dw] dy
h JB;
1
bor DYdy + ¢ / |Don| DY dy.
h JB\E}, B1\E},

Just as before, we partition B; as
Bl(O) = B;L— UBE = {y € B1 : /\h\Dvh\ > 1} @] {y S Bl : )\h|Dvh| < 1},

and arguing as in (5.39) , we obtain that

[ IDE(F + G)(As -+ MDun) = De(F + G) (A Dwrdy| =0,
and as in (5.43),

Jim / [De(F + G)(An + MDuy) — De(F + G)(Ay)| Db dy
h An JBj

21
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= Dee (F + G)(A)DvDv dy. (5.46)
By

Moreover, we have that

1
1 c 1 ?
v [ pvlays [ pulpldy < BB+ aB B ([ Dol
Ah JBi\Ey, Bi\Ej, An Bi\E},
c 1
< )\7h|Bl\Eh|+C’B1\Eh|27
where we used (5.7). Since min{|E}|, |B1 \ Ex|} = |B1 \ E4|, by (5.10), we have
B\ E
tim BV _
h )\h
and we obtain
1
lim / ]Dw]dy—i—/ | Duy||Dy| dy| = 0. (5.47)
he | An BB, Bi\Ej,

By (5.45), (5.46) and (5.47), passing to the limit as h — oo in (5.45) we conclude that
0< / De¢e(F + G)(A)DvDy dy
B1
and with —1 in place of ¢ we finally get

Dgg(F + G)(A)DUD’QZJ dy =0,
By

asserting the claim. By Proposition 2.1, we deduce also in this case that v € C*° and forevery 0 < 7 < 1
satisfies estimate (5.34).

Step 4. An estimate for the perimeters.

By the minimality of (u, E) with respect to (u, E), where E is a set of finite perimeter such that EAE €
By, (z1,), where By, (xp) are the balls of the contradiction argument, we get

/ xEG(Du) + P(E, By, (1)) < / G (Du) + P(E, By, (x1)).
By, (zn) By, (1)

Using the change of variable x = x;, + r,y we have

TZ/ x5, G(Du(zp+rpy))dy+ry~ P(Ep, By) < r}}/ XEhG(Du(mh—i-rhy))dy—i—rﬁ‘lP(Eh, By),
Bl Bl

and so

[ X8, G+ M Do)y + PBLB) < i [ g, G+ N Du)dy + P(By B). (549
1 1
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Assume first that min{|B; \ Ey|,|E}|} = [B1 \ Ex|. Then by the relative isoperimetric inequality, we
have

n

‘Bl \ Eh| < c(n)P(Eh, Bl)"—l .

By Fubini’s Theorem and choosing as a representative of E}, the set of points of density one, we get

20
|B1\ Ep| > ; H" 108, \ Ey)dp,

for every 6 € (0,1/4), therefore we may choose p € (6, 260) such that

H"H(0B, \ Ey) < gP(Eh, By)iT.

Set Eh := K}, U B, and observe that
P(Ep, B1) < P(Ep, B1\ B,) + H"" (0B, \ Ey).

With such a choice of Ej, (5.48) yields

P(Eh, Bl) S T‘h/ XBPG(Ah + )\hDvh)dy + P(Eh, Bl \ Bp) + H"’l(aBp \ Eh)
By

and so by (5.3) and (5.8)

P(Eh, Bg) < gP(Eh, Bl)% + C(LQ)Th/ (/L2 + |Ah + )\hDUh|2) dx
Bag

< gP(Eh, B)7T + ¢(La, pt, M)raf™ + c(La, i, M)rp)2. (5.49)

We arrive at the same conclusion (5.49) if min{|B \ E4|, |E}|} = |E}|, choosing as a competiting set
By = Ey\ B,.

Step 5. Conclusion.
Using the change of variable x = x5 + rpy and the Caccioppoli inequality in (5.18), for every
0<t< % we have

U 1
limsupM < limsup 27[ |Du(z) — (D) gy, 7ry |* doe
h—oco A% h—oo  ApJ By, (zh)
P(E.,B
+ lim sup (2’ (mh;:j;h))—i-limsupl}
h—00 )\thflrh h—oco A},
P(E,,B
< climsupj[ ]Dvh—(Dvh)T‘Zdy—i—limSup%{)
h—00 - h—00 >‘th7
- T D T 2
< climsup7[ lun, — (vn)2 : (Dvp) -yl dy
h—o00 Bar T

c . P(Ep, By)1 c . "
+—-limsup 5 + —— limsup ( 5+ ) +7,
T h—oo )\h T h—00 >\h

23



where we used (5.7) and estimate (5.49). By virtue of the strong convergence of v, — v in L? (B1),
since (Dvp,); — (Dv), in R™, by (5.8), (5.9), (5.10) and by the Poincaré—Wirtinger inequality, we get

* - - D 2
limsupm < F7[ v — (v)2r . (Dv),y| dy + cr
h—s00 AL Bar T

< ¢ lim |Dv — (Dv),|*dy + cr

h—o00 Bor

< er?4er< Cr,

where we used the estimate (5.34), and where C' = C(M, u, ¢y, L1, 2, La,n, N). The contradiction
follows, by choosing C, such that C, > C, since by (5.4)

U, (llha T?”h)

> C,T.
i

lim inf
O

Next, we obtain a suitable decay estimate that allow us to prove Theorem 1.2 without the assumption
(H). To this aim, we introduce a new "hybrid” excess as

P(E, By(x0))

45
- ) + 1P, (5.50)

T-TL

Ui (z0,7) :—][ |Du(z) — (D) 4y | da + <
By (20)

where § has been determined in Theorem 4.1 and 0 < 8 < 1%5.
In the proof of Proposition 5.2 we will only elaborate on the steps that substantially differ from the
corresponding ones in the proof of Proposition 5.1.

Proposition 5.2. Let (u, E) be a local minimizer of Z under the assumptions (F1), (F2), (G1) and (G2).
Forevery M > Q0 and every ) < 7 < i there exist ey = eo(7, M) and cys = Cox(M, €1, L1, 02, Lo, n, N)
for which whenever B, (zg) € Q verifies

‘(Du)xOJ" S M and U**(xo,r) S €0,
then

Usi (@0, 77) < Con 70 U (0, 7). (5.51)

Proof. In order to prove (5.51), we argue by contradiction. Let M > 0 and 7 € (0,1/4) be such that
that for every h € N, C,, > 0, there exists a ball B,, (x},) € 2 such that

(Du)gy vy | <M, Usa(zp,rp) — 0 (5.52)

but
Usi (@, 770) > Coa T Uy (i, 71). (5.53)

The constant C,, will be determined later. Remark that we can confine ourselves to the case in which
EN B,, (x3) # 0, since the case in which B, (x3) C Q\ E is easier because U = U, — r° where, we
recall ,

U(xog,T) ::7{8 - |Du(z) — (Du)xO,TIQd:J:
r(Z0o
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for B, (xg) C 2.

Step 1. Blow-up.

Set A2 := Usi(2n, 7h)s Ap = (Du)s, rp» ah = (), r,» and define as before

ulmy +rRy) — ap — TR ARy

for y € B1(0). One can easily check that (Dvy,)o1 = 0 and (vp,)o1 = 0.

Again, as before, we set
EF—x E —xp
E), = h E; .=
Th Th

N Bj.

Note that

_6
P(E, B(xp, e
Uss(2p,rn) = ][ |Du(zy, + ry) — Ap|? dy + ( (@, 7n)) +7
B1(0)
= ][ I\ Doy dy + (P(Ep, By)) T +rb. (5.54)
B1(0)
By the definition of )\, it follows that
5
(P(Ep, B1))10 _
A2 -
h
(5.55)

Therefore, by virtue of (5.52), (5.54) and (5.55), there exist a subsequence {v;} (not relabeled), A €
RV*" and v € WH2(B;(0); RY), such that

Th 2
T’h—>0, P(Eh,Bl) —>0, 2+ <1 7[ \Dvh| < 1,
B1(0)

vy, — v weakly in WH2(B1(0);RY), v, — v strongly in L?(B;(0); RY),

A — A, A Dvp, — 0 in LQ(Bl(O)) and pointwise a.e. , (5.56)

where we used the fact that (v;,)0 1 = 0. We also note that

5

1+o s B8

" P
=r, — =0, (5.57)

A, N,

since ) < 8 < %5. Moreover, by (5.55) and (5.52), we deduce that

AT T s
lim <P(Eh’i%)> = lim (P(Eh,Bl)>("1)6<H6) lim sup (P (Eh;?))”‘s —0. (5.8
Therefore, by the relative isoperimetric inequality in a ball (see [5]),
]E*\ﬁ ’Bl\Eh|$ (P(Eh,Bl)ﬁ)ﬁ
li}l;n min { ’;i , 2 } < cli}lgn ¥ =0. (5.59)
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Step 2. A Caccioppoli type inequality.

We claim that there exists a constant ¢ = ¢(M, p, £1, 2, L1, Lo) such that, for every 0 < p < 1, there
exists hg € N such that for all ~ > hy we have

/ |Dvy, — (Dvp) e |* dy < c/
Bp ? B

We divide the proof into two substeps.

vn = (vn), — (Dop) gy |’

c P(Eh, Bl) (”_S(gl""s)
p n

. (5.60
= N o

dy +

p

P

Substep 2.a The case min{|E}|, | By \ Ex|} = |EJ|.

The proof of this substep goes exactly as that of Substep 2.a of Proposition 5.1 up to estimate (5.27).
Next we observe that

2
Vp — (Uh) — (Dvh)gy *
/ | Doy, — (Do) e|?dy < C/ : : dy+0‘ g|
By 2 B, P Ah
? 2 5
v — (vn)p — (Dvn) ey Er|TH
§ C/ P 2 dy_i_C‘Em%H‘ h’2
B, P >‘h
2 )
vp — (vn)p — (D) ey X T45
S C/ P 2 dy‘i’C‘ h|2 ,
B, P )‘h

and this, by the relative isoperimetric inequality and using the hypothesis of this substep that
min{|E}|,|B1 \ Ey|} = |E}| , yields the estimate (5.60).

Substep 2.b The case min{|E}|,|B1 \ Ex|} = |B1 \ E4l.

Fix0 < § <s<t<p<landletn € C5°(B;) be a cut off function between B, and By, i.e.,

0<n<1,n=1onDBsand|Vn| < ;5. Also, we set by, := (vp)B, , By, := (Dvy)B, and define
2
wp(y) == vp(y) —bn — Bry,  Y1a(y) :==nwp  and o p(y) == (1 —n)ws.
We recall that

ﬁh(th) dy < /B PNIh (th(y) — DzﬁLh) dy

Lo
A,

~ L
= / H,, (D’(?bzh) dy + )?2 / (,u2 + |Ap + )\hDvh‘Q) dy. (5.61)
B\ Bs h J B{\E}

By

+ / (1 + | A + A\nDup|?) dy
(Bt\Eh)

We remark that the higher integrability result of Theorem 4.1, through the change of variable x =
xp, + rhY, translates into the following

1

1+s
(f 10utan+ a2 )™ < ef - 1Dutan+ Py +
B Bt
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or, equivalently,

1
1+6
(7{9 |Ap, + )\hDvh|2(1+6) dy> < a]i |Ap, + M\ Doy |2 dy + ci®. (5.62)
t 2t

Using Holder’s inequality and inequality (5.62) in the estimate (5.61), we get

Hp(Dwp)dy < / ffh(D%,h)dy
Bt Bt\Bs

L i
—|—c(,u) 2 (/ <1 + ’Ah + )\hD’Uh‘Q(l""‘S)) dy) ‘Bt \ Eh| T+
Bi\E}

Y
< / (D) dy
Bi\Bs
1
L n 1+6
+C(M)/\*22tm <][ (1 + |Ap + /\hDvh!2(1+6)> dy) | B1 \Eh’ﬁ
h By
< / Hy, (Dtpop) dy
Bi\Bs
Lo n_ 0
+C(M)/\722t +6 [ 1 +][B |Ap, + )\hDvh|2 dy) ‘Bl \ Ep|T+3
h 2t
<

- Lo n _ o
/ (Do) dy + (s, M) 247557 By \ By |75,
Bi\Bs s

Therefore we have

)
~ ~ c |By\ Ep|T+s
/ Hy (D) dy < / (Do) dy + — DA (5.63)
By Bi\Bs pi+e h
where we used the fact that ¢ > g. Now we observe that
Hy(Dwy, — Do) dy = | Hy(Dwy) dy
Bt Bt
+ | Hp(Dwy, — Dipop)dy — | Hu(Dwy)dy
Bt Bt
~ 1 ~
= Hp(Dwp,) dy — / / DHy(Dwy, — 0Dy 1) Dipa p, d6 dy. (5.64)
Bt Bt 0

Hence, inserting the estimate (5.63) in (5.64), by the upper bound on DH, n, given by Lemma 2.2 , we
obtain

§
~ ~ c |By\ Ep|™s
Hp(Dwp, — Dpa ) dy < / Hy, (Do) dy + — |51 \)\2h|

Bi\Bs pI+s h

By

+C/ (|Dwp| + | Do p|)| Dipa i | dy. (5.65)
Bt\Bs
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Combining (5.29) with (5.65), using Lemma 2.2 and Young’s inequality, we have

5
~ c |By\ Ep|™s
| Dy |? dy S/ Hyp (Do) dy + —5 By \)\2 |
B¢\Bs pI+s h

£[ ipuaPay < 7
s Bt

te [ (Dunl+ Dz Dbsl dy
Bt\Bs

5
c |By\ E|1+s
< of |DumaPdy+ 1B\ B
Bt\BS

; +c/ | Dwy, |2 dy. (5.66)
pis A B/\B.

By the properties of 7, we obtain by (5.66)

27/ \th]2dy§2/ |Dipy 2 dy < c/ \th|2dy+c/
s B Bi\Bs B¢\ Bs

5
c |By\ Ep|™3
ot A

Wh

2
d
t—s Y

Using the hole filling technique as in (5.26) , we get
)
¢ |Bi\ Byl
¢ B\ BT

Wh

A

40 [ Dwfdy < ¢ [ DwPdygre|
B, By B\B, [t — 8

c/ \th|2dy+c/
By B

By virtue of the iteration Lemma 2.1, from previous estimate we deduce that

/ | Dwy,|* dy < C/
B% B

where ¢ = ¢(M, p, 41, L1, 02, Lo, n, N). Therefore, by the definition of wy,, we conclude that

J

which, by the relative isoperimetric inequality and since we have |B; \ Ej,| = min{|E}|, |B1 \ E4l},
gives the estimate (5.60).

Wh

2
—1 d
t—s v+

IN

P

)
C ‘Bl \E‘h|17+‘s
pirs N

p

2
vn = (vn)p = (Dvn) gy
p

Doy, — (Duy)o|? dy < c/
2 B,

dy +

P
2

The proofs of the Step 3 and 4 of Proposition 5.1 hold true also in this case.
Step 5. Conclusion.

Using the change of variable x = x5, 4+ rpy and the Caccioppoli inequality in (5.60), for every
0<r< % we have

U** ) . 1
lim sup (w)\];w < limsup 2][ |Du(z) — (D) gy, o, |* do
h—00 h h—oo  ApJ By, (zh)
6
1 [ P(E.B +s BB
+ lim sup — (E, (x:_,z'rh) + lim sup T 2h
h—oo AR T”_lrh h—o0 )‘h
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5

1 (P(Ep, B;)\+?
< climsupj[ ]Dvh—(Dvh)T\Qdy—i—limsupQ((hilT)> + 7P
h—00 - h—oo A T
_ —(D 2
< climsupj[ [V (Uh)27-2( On)ry| dy
h—oo JBo, T

nd
P(E.. By) -1+
+c(7,6) lim sup (En, B1)

0
n N +erpT o + 77,
— 00 h

where we used (5.55) and estimate (5.49). By virtue of the the strong convergence of v, — v in L? (B1),
since (Dvp,); — (Dv), in R™V, by (5.55), (5.56), (5.57) (5.58), (5.59) and by the use of Poincaré -
Wirtinger inequality, we get

U. - — (D 2
lim sup 7*(3%2’7”1) < a][ [v = ()7 5 (Dv)ry] dy + 77
h—oo Az Bor T
< ¢ lim |Dv — (Do), > dy + 7°
h—o0 By,

< er? + 78 §C’7‘5,

where we used the estimate (5.34) and where C' = C(M, u, ¢y, L1, ¢, Lo, n, N). The contradiction
follows by choosing C\. such that C., > C, since by (5.4)

U*(l"h, T?“h)
A

limhinf > O, 7.

6 Proof of the Main Theorem

Here we give the proof of Theorem 1.2 through a suitable iteration procedure.

6.1 An Iteration Lemma

In the next Lemma the constant c, is that introduced in (5.2).

Lemma 6.1. Let (u, E') be a minimizer of the functional Z. For every M > 0, for every o € (0, 1) and
1

for every ¥ € (0,%), with ¥y := min {c*la, 111}’ there exist €1 > 0 and R > 0 such that, if r < R

and xg € §Q satisfy
B, (z0) € Q, |Dugyr < M and Ui(xo,7) < €1,
then
(Dg) U.(xo, 19]“7“) < ﬁkaU*(:cojr)
forall k € N.
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Proof. Fix M > 0and ¢ € (0,7). Let

€1 := min {50, (1— g%)ZﬁnH}

where ¢ is determined in Proposition 5.1 corresponding to M + 1 and to ¢J. We will argue by induction.
First note that (D7) holds true by virtue of Proposition 5.1 and since €1 < g and ¢, < 9%. Assume

that (Dy,) hold true for k£ < h and we prove that (Dj, 1) is satisfied. Observe that

h
|Du‘x0,19hr < ‘Du|x077“ + Z HDu’xo,ﬁjr - |Du‘x0,ﬁj—1r‘

J=1

h
< ‘Du|$0,7” + Z ‘(Du)zo,ﬂjr - (Du)zo,ﬂj*1r|

j=1
h
< Dl + 3 DU~ (D i
j=1"Buyir
h 3
< [Duluor+ Y <][ |Du — (Du)xo,ﬁj1r2>
j=1 \’Byir
h 1 3
|Byi-1,]') ?
< Dulayr + 3 (10 1D (D) 51,
j=1 oI Byi-1,
_n b i1 N L
< | Dulagr +972 Y Ulxo, 9 'r)2
j=1
h 1
< M+97 2 Udwg, ¥ 1r)2
j=1
1 1 h —1
< M+ (c)20 2 Us(zo,r)2 Y 02
j=1
1,1
< Moo ()
1-—12
n+1 1 ].
< M4+9Y 2 ef——r7
1-—192
< M+1,
because, by our choice of €1, we have
n 1]
9T g2 - <1
1-—192

Moreover, since (Dp,) holds true, we have that

U, (xo,9"r) < 9"U, (x0,7) < €1,

[

(6.1)

(6.2)

by our choice of ¥ and €1, and so by (6.1) we can apply Proposition 5.1 with 9"+ in place of r to deduce

U, (z0, 9"T17) < 92U, (w0, 9"r) < 9PHDOU, (20, 7),
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by (6.2). Therefore (D) holds true for every k € N. O

Arguing exactly in the same way and by using Proposition 5.2 instead of Proposition 5.1, we have
the following

Lemma 6.2. Let (u, E) be a minimizer of the functional T and let 3 be the exponent of Lemma 5.2. For
every M > 0 and for every ¥ € (0,7), with 9y < min {c**, %}, there exist €1 > 0 and R > 0 such
that, if r < R and xq € € satisfy

B, (x0) € Q, | D] g < M and Us(x0,7) < €1,
then
(D} Usr (o, 9F7) < 00U, (20, 1)
forall k € N.

6.2 Proof of Theorem 1.2
Proof. Assume first that (F1), (F2),(G1), (G2) and (H) hold, consider the set

Qo :={z € Q: limsup|(Du)g,p| < +oo and limsup U, (z, p) = 0},
p—0 p—0

and let o € €. For every M > 0 and for €1 determined in Lemma 6.1 there exists a radius R/, such
that

| Dy r < M and Uis(z0,7) < €1,
forevery 0 < r < Rye,. If 0 < p < %7‘ < R, let h € N be such that 9"*t1r < p < ¥"r, and let
9= 192—0 where ¥ is as in Lemma 6.1. By Lemma 6.1, we obtain

P(E,B,(z
Ui(x,p) = ﬁ’DU_(DU)wova"i_(pn—pl(O))—i_
P

P(EvB (I'O))
= £ 1Du= Du)+ (D, = (D + S22 1

P

P(E.B
< 2][ |Du—(Du)ﬂhr|2+27[ ’(DU)ﬂhT_(DU)IO’pQ_‘_w%‘p
B, 5, .
P(E,B
= C][ Du— (Duyg, 2 + TELolo)) |
B, ’
a P(E, By(20))
< () £, 1pum e PETD
19h+17‘> ][ P(E. B,(x0))
— Du — (Du)gh, +++p
< 5o ) T, 1047 D0
3 .+, P(E,Byfw)
= 90 Du — (Du) L(E, Bp(zo))
~ (ﬁp fﬂh ‘ u ( u 19hr| (,(9h+17,)n_1 + P
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C 2 1 P(Ev Bﬂhr(xO)) h
< o g |Du — (Du)gn, | + g1 ()= + 9
Shop
C on—1 P(E, B,lgh (xo)) h
= — |Du — (Du) hr|2 + — - + 9
190 7[Bﬁhr 9 190 1 (ﬁh’l")n 1
< CU*(‘TOa 29hr) < C*ﬁhaU*(mOa T) < Ci <$) U*(-TOa T)a (6.3)

1
where we used the fact that ¢y := min {c* e }1} 9 = 192—0 and 9" Tlr < p < ¥"r . The previous
estimate implies that
_ 2 A%
U(zo,p) = |Du — (Du),|“dx < Cy (=) Us(xo,7).
B, r

Since U, (y,r) is continuous in y, we have that U, (y,r) < e for all y in a suitable neighborhood I of
xo. For every y € I we then have that

Uy.p) < C. (2) Ualy.r).

The last inequality implies, by the Campanato characterization of Holder continuous functions ([20,
Theorem 2.9]), that u is C* in I for every 0 < o < %, and we conclude that the function « has Holder
continuous derivatives in an open set () that contains all points y such that

lim sup U (y,r) = 0.

r—0

Next we prove a suitable decay estimate for the perimeter of the minimal set. For every 0 < p < %r,
let h € N be such that 9" 17 < p < 9", where ¥ = ’9—20 as before. We observe that

hp\™ M+1 M
(Du),| < |Dul, < 2" ][ Dl < LMD e, 6.4)
p ) o U

9hr

where we used (6.1). Consider A any set of finite perimeter such that FAA CC B,(zg). From the
minimality of (u, E') we have that

/Q (F(Du) + XEG(Du)) dz + P(B,Q)

< /Q (F(Du) + XAG(Du)> dz + P(A, Q).

Using the fact that EAA CC B,(x), we deduce that

P Byfeo) ~ PUA Byao) < [ (@) xelo) (D)

IN

L / (42 + | Dul?) do
By (zo)

IN

¢ | DU~ (Du, o+ el M )"
Bp(xo)
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= Can(an P) + C(N7 M? C*)pn
< C"ﬁU(:c )+ c(p, M, ) p”
> P o 05 My VL, Cx ) P

S C(H) M7 c*7r)pn7

where we invoked the assumption (G2) and we used estimates (6.4) and (6.3) . At this point the result
follows from Theorem 2.1.

When the assumption (H) is not enforced, the proof goes exactly in the same way provided we use
Lemma 6.2 in place of Lemma 6.1, with

Q= {z € Q: limsup|(Du)z,,,| < +00 and limsup U, (zg, p) = 0}.

p—0 p—0
O
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