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Abstract. In this paper we collect some new observations about periodic
critical points and local minimizers of a nonlocal isoperimetric problem, arising

in the modeling of diblock copolymers. In the main result, by means of a

purely variational procedure, we show that it is possible to construct (locally
minimizing) periodic critical points whose shape resemble that of any given

strictly stable constant mean curvature (periodic) hypersurface. Along the

way, we establish several auxiliary results of independent interest.

1. Introduction

In this paper we study some properties of critical points of the functional

Fγ(E) := PTN (E) + γ

∫
TN

∫
TN

GTN (x, y)uE(x)uE(y) dx dy , (1.1)

where γ ≥ 0, E is a subset of the N -dimensional flat torus TN , PTN (E) denotes
the perimeter of E in TN , uE(x) := χE(x) − χTN\E(x), and, for every x ∈ TN ,
GTN (x, ·) is the unique solution of

−4yGTN (x, ·) = δx(·)− 1 in TN ,
∫
TN

GTN (x, y) dy = 0 .

We will refer to the first term of (1.1) as the local term, while to the second one as
the nonlocal term. The latter will be denoted with γNL(E). We notice that the
local term favours the formation of large regions of pure phase, while the nonlocal
one prefers to break each phase into several connected components that tries to
separate from each other as much as possible. Indeed it is well known that the area
functional is minimized by the ball, while the behavior of the nonlocal term can be
better understood by writing it as in Remark 2.19.

The functional (1.1) arises as the variational limit (in the sense of Γ-convergence)
of the ε -diffuse Ohta-Kawasaki energy

OKε(u) := ε

∫
Ω

|∇u|2dx+
1

ε

∫
Ω

(u2 − 1)2dx

+ γ

∫
Ω

∫
Ω

G(x, y)
(
u(x)−m

)(
u(y)−m

)
dxdy , (1.2)

where Ω ⊂ RN is an open set, G is the Green’s function for −4 , u ∈ H1(Ω),
and m :=

∫
Ω
u . The functional OKε has been introduced by Ohta and Kawasaki

in [19] to model microphase separation of a class of two-phase materials called
diblock copolymers (see [5] for a rigorous derivation of the Ohta-Kawasaki energy
from first principles, and [17] for a physical background on long-range interaction
energies). These materials are linear-chain macromolecules, each consisting of two
thermodynamically incompatible subchains joined covalently, that correspond to
the regions where u ≈ −1 and u ≈ +1 respectively. Due to this imcompatibility,
the two phases try to separate as much as possible; on the other hand, because
of the chemical bonds, only partial separation can occor at a suitable mesoscale.
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2 R. CRISTOFERI

Such a partial segregation of these chains produces very complex patterns, that are
experimentally observed to be (quasi) periodic at an intrinsic scale. The structure
of these patterns depends strongly on the volume fraction of a phase with respect
to the other, but they are seen to be very closed to periodic surfaces with constant
mean curvature (see Figure 1).

Figure 1. The typical patterns that are observed according to an
increasing value of the volume fraction.

According to the theory proposed by Ohta and Kawasaki in [19], we expect
observable configurations to be global (or local) minimizers of the energy (1.2).
Since the parameter ε is usually small, from the mathematical point of view it is
more convenient to consider the variational limit of the energy OKε that, in the
periodic setting, turns out to be the sharp interface energy (1.1).

Proving analitically that global minimizers of (1.1) or (1.2) are (quasi) periodic is
a formidable task. Indeed, so far, the best result in this direction is the work [2] by
Alberti, Choksi and Otto, where it is proved that global minimizers of (1.1) in the
whole RN under a volume constraint, i.e., for a fixed m , present an uniform energy
distribution of each component of the energy, on suitable big cubes. This result
has been extended to the case of the functional (1.2) by Spadaro in [25]. Moreover,
the structure of global minimizers has been investigated by many authors (see, for
example, [3, 4, 9, 12, 13, 18, 26, 27, 16]), but only in some asymptotic regimes, i.e.,
when the parameter γ is small or m ≈ ±1.

A more reasonable, but still highly nontrivial, pourpose is to exhibit a class of
local minimizers of the energies (1.1) and (1.2) that look like the observed config-
urations. Among the results in this direction we would like to recall the works by
Ren and Wei ([24, 21, 20, 22, 23]), where they construct explicit critical configura-
tions of the sharp interface energy, with lamellar, cylindrical and spherical patterns.
They also provide a regime of the parameters that ensures the (linear) stability of
such configurations. The natural notion of stability for (1.1) has been introduced
by Choksi and Strernberg in [7], and it has been subsequently proved by Acerbi,
Fusco and Morini in [1], that critical and strictly stable (namely with strictly pos-
itive second variation) configurations are local minimizers in the L1 topology.

The aim of our work is to collect some new observations on critical points of the
sharp interface energy (1.1).
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We start by showing, in Proposition 4.1, that critical points are always local
minimizers with respect to perturbations with sufficiently small support. This
minimality-in-small-domains property of critical points is shared by many func-
tionals of the Calculus of Variations, but to the best of our knowledge it has been
never been observed before for the Ohta-Kawasaki energy.

The second result (see Proposition 4.3) shows that the property of being crit-
ical and stable is preserved under small perturbations of the parameter γ . More
precisely, we show that, given γ̄ ≥ 0 and a strictly stable critical point E of the
functional F γ̄ , we can find a (unique) family (Eγ)γ of smoothly varying uniform
local minimizers of Fγ for γ ranging in a small neighborhood of γ̄ . The proce-
dure to construct such a family is purely variational and based on showing that
the local minimality criterion provided in [1] can be made uniform with respect
to the parameter γ and with respect to critical sets ranging in a sufficiently small
C1 -neighborhood of a given strictly stable set E . Such an observation, which has
an independent interest, is proven in Proposition 4.3.

The above stability property is used to establish the main result of this paper
(see Theorem 4.18): given γ̄ > 0 and ε > 0 and a subset E of the torus TN such
that ∂E is a strictly stable constant mean curvature hypersurface, we show that it
is possible to find an integer k = k(γ̄, ε) and a 1/k -periodic critical point of F γ̄TN ,

whose shape is ε -close (in a C1 -sense) to the 1/k -rescaled version of E and whose
mean curvature is almost constant. Moreover, such a critical point is an isolated
local minimizer with respect to (1/k)-periodic perturbations. In words, the above
result says that it is possible to construct local minimizing periodic critical points
of the energy (1.2), whit a shape closely resembling that of any given stictly stable
periodic constant mean curvature surface.

This result is close in spirit to the aforementioned results by Ren and Wei. There
are however some important differences. First of all, they work in the Neumann
setting, while we are in the periodic one. Moreover, while their constructions are
based on the Liapunov-Schmidt reduction method and require rather involved and
(ad hoc for each specific example) spectral computations, we use a purely variational
approach that works for all possible strictly stable patterns. However, the price to
pay for such a generality is a less precise description of the parameter ranges for
which the existence of the desired critical points can be established.

Another important consequence of our variational procedure is that it allows to
show (see Proposition 4.19) that all the constructed critical points can be approx-
imated by critical points of the ε -diffuse energy (1.2). This is done by usign a
Γ-convergence argument in the spirit of the Kohn and Sternberg theory, see [15].

We conclude by remarking that numerical and experimental evidences suggest
the following general structure for global minimizers: the nonlocal term determines
an intrinsic scale of periodicity (the larger is γ the smaller is the periodicity scale),
while the shape of the global minimizer inside the periodicity cell is dictated by the
perimeter term. Although we are very far from an analytical validation of such a
picture, our result allows to construct a class of (locally minimizing) critical point
that display the above structure.

2. Preliminaries

In this section we introduce the objects and we fix the notation we will need
in the following. Given k ∈ N \ {0} , we will denote by TNk the N -dimensional
flat torus rescaled by a factor 1/k , i.e., the quotient of RN under the equivalence
relation

x̂ ∼k ŷ ⇔ k(x̂− ŷ) ∈ ZN .
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Hereafter we will denote TN1 by TN . Points in TNk will be denoted by x , y . A
set F ⊂ TNk can be naturally identified with the 1/k -periodic set of RN (or of
TN ) that equals (a translate of) F in each 1/k -periodicity cell (see Figure 2 on
the right). When we speak about the regularity of a set F ⊂ TNk , we will always
refer to the regularity of the 1/k -periodic set F ⊂ RN . Finally, for β ∈ (0, 1)
and r ∈ N , we define the functional space Cr,β(TNk ) as the space of 1/k -periodic
functions in Cr,β(RN ).

Definition 2.1. Given a set E ⊂ TN and k ∈ N \ {0} , we define the set Ek ⊂ TNk
as follows:

Ek := {x ∈ TNk : kx ∈ E} .

Figure 2. A set E ⊂ TN on the left, and the set Ek , with k = 3,
seen as a subset of TN , on the right.

Remark 2.2. Notice that
∫
TN u

E dx =
∫
TNk

uEkk dx , where uFk := χF − χTNk \F .

We now introduce the notion of perimeter in TNk .

Definition 2.3. Let E ⊂ TNk . We say that E is a set of finite perimeter in TNk if

sup
{∫

E

div ξ dx : ξ ∈ C1(TNk ;RN ) , |ξ| ≤ 1
}
<∞ .

In this case we denote by Pk(E) the above quantity.

We now introduce two ways for measuring the closendess of sets in TN .

Definition 2.4. We define a distance between sets E,F ⊂ TNk as follows:

α(E,F ) := min
x∈TNk

|E4(x+ F )| .

Moreover, given E ⊂ TNk and β ∈ (0, 1), for sets F ⊂ TNk such that

∂F = {x+ ψ(x)νE(x) : x ∈ E} ,
for some function ψ ∈ Cr,β(∂E), we define

dCr,β (E,F ) := ‖ψ‖Cr,β .
Finally, to write the formulas for the first and the second variation of our func-

tional Fγ (see Theorem 3.2), we need to reacall the following geometric definitions:
given a set E ⊂ TN of class C2 , we will denote by Dτ the tangential gradient
operator, by divτ the tangential divergence, by νE the normal vector field on ∂E ,
by B∂E its second fundamental form, and by |B∂E |2 its Euclidean norm, that
coincides with the sum of the squares of the principal curvatures of ∂E . Finally,
H∂E will denotes the mean curvature of ∂E .
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2.1. The area functional. We recall some results about the area functional.

Definition 2.5. We say that a set E ⊂ TNk is a local minimizer of the area
functional if there exists δ > 0 such that

Pk(E) ≤ Pk(F ) ,

for all F ⊂ TNk with |E| = |F | , such that α(E,F ) ≤ δ .

Definition 2.6. A set E ⊂ TNk is said to be an (ω, r0)-minimizer for the area
functional, with ω > 0 and r0 > 0, if for every ball Br(x) with r ≤ r0 we have

Pk(E) ≤ Pk(F ) + ω|E4F |,

whenever F ⊂ TNk is a set of finite perimeter such that E4F ⊂⊂ Br(x).

We recall an improved convergence theorem for (ω, r0)-minimizers of the area
functional. This result is well-known to the experts (see, for istance, [28]). One can
find a complete proof of it in [8].

Theorem 2.7. Let (En)n be a sequence of (ω, r0)-minimizers of the area functional
such that

sup
n
Pk(En) < +∞ and α(En, E)→ 0 as n→∞ ,

for some bounded set E of class C2 . Then, for n large enough, En is of class
C1,β for all β ∈ (0, 1) , and

∂En = {x+ ψn(x)νE(x) : x ∈ ∂E},

with ψn → 0 in C1,β(∂E) for all β ∈ (0, 1) .

2.2. The functional Fγk . We first define the functionals we are interested in.

Definition 2.8. Given γ ≥ 0 and k ∈ N , we define, for sets E ⊂ TNk , the
functional

Fγk (E) := Pk(E) + γNLk(E)

:= Pk(E) + γ

∫
TNk

∫
TNk

Gk(x, y)uEk (x)uEk (y) dx dy , (2.1)

where uEk (x) := χE(x)− χTNk \E(x) and Gk is the unique solution of

−4yGk(x, ·) = δx(·)− 1

|TNk |
in TNk ,

∫
TNk

Gk(x, y) dy = 0 .

For simplicity, we will denote by Fγ and uE the functional Fγ1 and the function
uE1 respectively.

Remark 2.9. Notice that the area functional corresponds to the choice of γ = 0.

We now introduce the main objects under investigation in this paper: critical
points and local minimizers.

Definition 2.10. A set E ⊂ TN of class C2 will be called critical for the functional
Fγ if on ∂E it holds

H∂E + 4γvE = λ ,

for some constant λ ∈ R .

Remark 2.11. The above definition is motivated by the fact that (as one expects)
the first variation of the functional F vanishes on critical sets (see Theorem 3.2).
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Definition 2.12. We say that a set E ⊂ TNk is a local minimizer of the the
functional Fγk , if there exists δ > 0 such that

Fγk (E) ≤ Fγk (F ) ,

for all F ⊂ TNk with |E| = |F | , such that α(E,F ) ≤ δ . Moreover, we say that E is
an isolated local minimizer if the above inequality is strict whenever α(E,F ) > 0.

We now want to derive some regularity properties of local minimizers of Fγk . In
order to do this, we observe that local minimizers of Fγk are in fact (ω, r)-minimizer,
and then we will rely on the well-known regularity theory for (ω, r)-minimizers.

First of all one can see that the nonlocal term turns out to be Lipschitz (see [1,
Lemma 2.6] for a proof).

Proposition 2.13 (Lipschitzianity of the nonlocal term). There exists a constant
c0 , depending only on N , such that if E,F ⊂ TNk are measurable sets, then

|NLk(E)−NLk(F )| ≤ c0α(E,F ) .

The following lemma is a refinement of a result already present in [1] and [11].

Lemma 2.14. Fix constants γ̄ > 0 , δ0 > 0 , m0 ∈ (0, |TNk |) and M > 0 . Take a
set E ⊂ TNk , with Pk(E) ≤M , solution of

min
{
Pk(F ) + γNLk(F ) :

∫
k

uFk = m, α(E,F ) ≤ δ
}
, (2.2)

where γ ≤ γ̄ , δ ∈ [δ0,+∞] and m ∈ [−m0, |TNk |−m0] . Then we can find a constant
Λ0 = Λ0(c0,m0, γ̄, δ0,M) > 0 (where c0 is the constant given by Proposition 2.13)
such that E is a solution of the unconstrained minimum problem

min
{
Pk(F ) + γNLk(F ) + Λ

∣∣∣ ∫
k

uFk −m
∣∣∣ : α(E,F ) ≤ δ/2

}
,

for all Λ ≥ Λ0 .

Proof. The idea is to prove that we can find a constant Λ0 as in the statement of

the lemma, such that if F̃ solves

min
{
Pk(F ) + γNLk(F ) + Λ

∣∣∣ ∫
k

uFk −m
∣∣∣ : α(E,F ) ≤ δ/2

}
,

where γ ≤ γ̄ and Λ ≥ Λ0 , then α(F̃ , E) = 0, where E is a solution of (2.2). To
prove it, suppose for the sake of contradiction that there exist sequences γn ≤ γ ,
Λn →∞ , sets En solutions of

min
{
Pk(F ) + γnNLk(F ) :

∫
k

uFk = mn , α(E,F ) ≤ δ
}
,

where δ ≥ δ0 , mn :=
∫
k
uEnk ∈ [−m0, |TNk | − m0] , Pk(En) ≤ M , and sets Fn

solutions of

min
{
Pk(F ) + γnNLk(F ) + Λn

∣∣∣ ∫
k

uFk −mn

∣∣∣ : α(En, F ) ≤ δ/2
}
,

but with mn 6=
∫
TNk

uFnk (suppose
∫
TNk

uFnk < mn ). From now on we will suppose

|Fn4En| = α(En, Fn). The idea is to modify the sets Fn ’s in such a way that∫
TNk

uFnk = mn (notice that, since we are not working in the entire RN but in TN ,

we need to modify the Fn ’s in a more careful way than just rescaling them!). This
idea has been developed in [11]. Set

F̃n(F ) := Fγnk (F ) + Λn

∣∣∣ ∫
k

uFk −m
∣∣∣ .
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First of all we notice that supn Pk(Fn) <∞ . Indeed

Pk(Fn) + Λn

∣∣∣ ∫
k

uFnk −mn

∣∣∣ ≤ F̃n(En)− γnNLk(Fn)

= Pk(En) + γn
(
NLk(En)−NLk(Fn)

)
≤M + γ̄c0 .

Thus, up to a not relabelled subsequence, it is possible to find a set F0 ⊂ TNk with∫
k
vF0

k ∈ [−m0, |TNk | −m0] , such that Fn → F0 in L1 . Moreover α(En, Fn)→ 0.
We now sketch the argument presented in [11]. Given ε > 0, it is possible to find
a radius r > 0 such that (up to translations)

|Fn ∩Br/2| ≤ εrN , |Fn ∩Br| ≥
ωNr

N

2N+2
,

for n sufficiently large. Let σn ∈ (0, 1/2N ), that will be choosen later, and define

Φn(x) :=


(1− σn(2N − 1))x if |x| ≤ r

2 ,

x+ σn
(
1− rN

|x|N
)
x if r

2 ≤ |x| < r ,

x if |x| ≥ r .

Let F̃n := Φn(Fn). It is possible to prove that

Pk(Fn ∩Br)− Pk(F̃n ∩Br) ≥ −2NNσnPk(Fn ∩Br) ,
and that, for ε > 0 sufficienlty small,∫

TNk
uF̃nk −

∫
TNk

uFnk ≥ σnr
N
[
c
ωN

2N+2
−ε
(
c+(2N−1)N

)]
≥ cσnrN

ωN
2N+3

=: C1σnr
N ,

where c and C1 are constants depending only on the dimension N . Then it is
possible to choose the σn ’s in such a way that |Fn| = |En| for all n . In particular
we obtain, from the above inequality, that σn → 0. Finally, it is also possible to
prove that

α(F̃n, Fn) ≤ C2σnPk(Fn ∩Br) .
Combining all these estimates we have that

F̃n(F̃n) ≤ F̃n(Fn)+σn
[
(2NN+C2c0γ̄)Pk(Fn∩Br)−ΛnC1r

N
]
< F̃n(Fn) ≤ F̃n(En) .

Since σn → 0, we have that, for n large enough, α(F̃n, En) ≤ δn . Thus the above
inequality is in contradiction with the local minimality property of En . �

Corollary 2.15. Let E ⊂ TNk be a local minimizer of Fγk . Then it holds that E
is an (ω, r)-minimizer of the area functional. Moreover the parameter ω depends
on the constants c0,m0, γ̄, δ0 and M of the previous lemma.

Proof. From the above result, it follows that local minimizers of Fγk are in fact
(ω, r)-minimizer, providing we take ω := c0 + Λ and we choose r > 0 such that
ωNr

N ≤ δ/2. �

The regularity theory for (ω, r)-minimizers allows us to say something about the
regularity of local minimizers of Fγk .

Proposition 2.16. Let E ⊂ TNk be a local minimizer of Fγk . Then we can write
∂E = ∂∗E∪Σ , where the reduced boundary ∂∗E is of class C3,α for all α ∈ (0, 1) ,
and the Hausdorff dimension of Σ is less than or equal to N − 8 .

Remark 2.17. Using the equation satisfied by a critical set E , it is also possible
to prove (see [14]) the C∞ regularity of ∂∗E , in every dimension N . In particular,
in dimension N ≤ 7, we obtain the C∞ -regularity for the entire boundary ∂E .

In the remaining part of this section we would like to investigate some properties
of the nonlocal term, as well as the relation between the functionals F and Fk .
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Definition 2.18. For a set E ⊂ TNk , we define the function

vEk (x) :=

∫
TNk

Gk(x, y)uEk (y) dy .

For simplicity, we wil denote the function vE1 by vE .

Remark 2.19. We first want to investigate some properties of the nonlocal term.
Notice that vEk is the unique solution to

−4vEk = uEk −mE in TNk ,
∫
TNk

uEk dx = 0 , (2.3)

where we recall that mE :=
∫
TN u

E
TN dx =

∫
k
uE

k

k dx . Moreover, one can see that

vEk is 1/k -periodic. Thus, it is possible to rewrite the nonlocal in the following
way:

NLk(E) =

∫
TNk

uEk v
E
k dx = −

∫
TNk

vEk 4vEk dx =

∫
TNk
|∇vEk |2 dx .

In particular, from the above writing, we see that the nonlocal term prefers highly
oscillating functions uEk , as has been pointed out in the introduction.

By standard elliptic regularity we know that vEk ∈W 2,p(TNk ) for all p ∈ [1,+∞).
In particular it holds that

‖vEk ‖W 2,p(TNk ) ≤ C ,

where p > 1 and C is a constant depending only on TNk .

Finally, we investigate the relation between the functionals Fγ and Fγk .

Lemma 2.20. Let E ⊂ TN . Then it holds

Fγk (Ek) = k1−N
[
PTN (E) + γk−3NLTN (E)

]
. (2.4)

Proof. We claim that, for a set E ⊂ TN , we have

vE
k

k (x) = k−2vE(kx) .

Indeed, noticing that
∫
TNk

uEkk =
∫
TN u

E , it holds

−4
(
k−2vE(kx)

)
= −4vE(kx) = uE(kx)−m = uE

k

k (x)−m,

and ∫
TNk

k−2vE(kx) dx = k−N−2

∫
TN

vE(y)dy = 0 .

By uniqueness of the solution of problem (2.3), we obtain our claim. Finally, we
can conclude by noticing that∫

TNk
|∇vE

k

k (x)|2 dx = k−2−N
∫
TN
|∇vE(x)|2 dx .

�

Remark 2.21. It is also easy to see that the function vE
k

is 1/k -periodic (where
here we see Ek as a subset of TN , i.e., as k copies of the 1/k -rescalded of E ).
Thus

Fγ(Ek) = kNFγk (Ek) . (2.5)

This means that the energy of Ek in TN is just the sum of the energies of each of
its pieces in each TNk .
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2.3. Results about Γ-convergence. In this section we would like to recall an
approximation theorem for isolated local minimizers of the area functional. For, we
need to write the functional FγTN in the language of Γ-convergence.

Definition 2.22. Let (X,d) be a metric space, and let F, Fn : X → R ∪ {+∞} .
We say that the sequence Fn Γ(d)-converges to the functional F if the following
two conditions are satisfied

• for every xn
d→ x , F (x) ≤ lim infn Fn(xn),

• for every x̄ ∈ X there exists xn
d→ x̄ such that F (x) ≥ lim supn Fn(xn).

In this case we will write Fn
Γ(d)→ F .

Definition 2.23. Consider the quotient space space X := L1(TN )/ ∼ , where the
equivalence relation ∼ is defined as follows: f1 ∼ f2 if and only if there exists
v ∈ TN such that f1(x+ v) = f2(x), for each x ∈ TN . Endow this space with the
distance

α(u, v) := min
x∈TN

‖u− v(· − x)‖L1(TN ) .

Fix γ ∈ [0,+∞) and m ∈ (−1, 1) and define the functional F̃γ : X → R ∪ {+∞}
as

F̃γ(u) :=

{
Fγ(E) if u = uE , for some set E with

∫
TN u

E dx = m,
+∞ otherwise .

Remark 2.24. Notice that the functionals F̃γ turn out to be equi-coercive and

lower semicontinuous. Morever F̃γ Γ(α)−→ F̃0 as γ → 0+ .

Although the Γ-convergence has been designed for the convergence of global
mininimizers, one can say also something about convergence of local minimizers.
The following result is a particular application of [15].

Theorem 2.25. Let E ⊂ TN be a smooth isolated local minimizer of the area
functional. Then there exists a sequence (Eγ)γ>0 , with |Eγ | = |E| , such that Eγ
is a local minimizer of Fγ in TN and α(Eγ , E)→ 0 as γ → 0+ .

3. Variations and local minimality

In the following we will use a local minimality criterion provided in [1], that we
recall here for reader’s convenience. This criterion is based on the positivity of the
second variation. Thus, we need to introduce what do we mean by variation.

Definition 3.1. Let E ⊂ TN be a set of class C2 . Take a smooth vector field
X ∈ C∞(TN ;RN ) and consider the associated flow Φ : TN × (−1, 1) → TN given
by

∂Φ

∂t
= X(Φ) ,

such that Φ(x, 0) = x for all x ∈ TN . Let Et := Φ(E, t) and suppose |Et| = |E|
for each time t . We define the first and the second variation of Fγ at a set E with
respect to the flow Φ, respectively as

d

dt
Fγ(Et)

|t=0

,
d2

dt2
Fγ(Et)

|t=0

.

We recall here the result present in [1, Theorem 3.1] for the computation of the
first and the second variation.
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Theorem 3.2. Let E , X and Φ as above. Then the first variation of Fγ computed
at E with respect to the flow Φ is given by

d

dt
Fγ(Et)

|t=0

=

∫
∂E

(H∂E + 4γvE)(X · νE) dHN−1 , (3.1)

while the second variation of Fγ at E with respect to the flow Φ reads as

d2

dt2
Fγ(Et)

|t=0

=

∫
∂E

(
|Dτ (X · νE)|2 − |B∂E |2(X · νE)2

)
dHN−1

+ 8γ

∫
∂E

∫
∂E

GTN (x, y)(X(x) · νE(x))(X(y) · νE(y)) dHN−1(x) dHN−1(y)

+ 4γ

∫
∂E

∂νEv
E (X · νE)2 dHN−1 −

∫
∂E

(4γvE +H∂E) divτ
(
Xτ (X · νE)

)
dHN−1 .

Remark 3.3. Notice that the last term of the second variation vanishes whenever
E is a critical set.

We now follow the ideas contatined in [1]. We introduce the space

H̃1(∂E) :=

{
ϕ ∈ H1(∂E) :

∫
∂E

ϕ dHN−1 = 0

}
,

endowed with the norm ‖ϕ‖H̃1(∂E) := ‖∇ϕ‖L2(∂E) . On such a space we define the

following quadratic form associated with the second variation.

Definition 3.4. Let E ⊂ TN be a regular critical set. We define the quadratic

form ∂2Fγ(E) : H̃1(∂E)→ R by

∂2Fγ(E)[ϕ] :=

∫
∂E

(
|Dτϕ|2 − |B∂E |2ϕ2

)
dHN−1 + 4γ

∫
∂E

(∂νEv
E)ϕ2 dHN−1

+ 8γ

∫
∂E

∫
∂E

GTN (x, y)ϕ(x)ϕ(y) dHN−1(x) dHN−1(y)

=: ∂2PTN (E)[ϕ] + γ∂2NLTN (E)[ϕ] ,

(3.2)

where ∂2PTN (E) denotes the first integral, while γ∂2NLTN (E) the other two.

Since our functional is translation invariant, if we compute the second variation
of Fγ at a regular set E with respect to a flow of the form Φ(x, t) := x+tηei , where
η ∈ R and ei is an element of the canonical basis of RN , setting νi := 〈νE , ei〉 we
obtain that

∂2Fγ(E)[ηνi] =
d2

dt2
Fγ(Et)

|t=0

= 0 .

Hence we need to avoid degenerate directions. Write

H̃1(∂E) = T⊥(∂E)⊕ T (∂E) ,

where T⊥(∂E) is the orthogonal complement to T (∂E) in the L2 -sense, i.e.,

T⊥(∂E) :=

{
ϕ ∈ H̃1(∂E) :

∫
∂E

ϕνi dHN−1 = 0 for each i = 1, . . . , N

}
.

It can be shown (see [1, Equation (3.7)]) that there exists an orthonormal frame
(ε1, . . . , εN ) such that∫

∂E

(ν · εi)(ν · εj) dHN−1 = 0 for all i 6= j . (3.3)
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Definition 3.5. We say that Fγ has strictly positive second variation at the regular
critical set E if

∂2Fγ(E)[ϕ] > 0 for all ϕ ∈ T⊥(∂E) \ {0}.

We are now in position to recall the local minimality result of Acerbi, Fusco and
Morini (see [1, Theorem 1.1]).

Theorem 3.6. Let E ⊂ TN be a regular critical set such that Fγ has strictly
positive second variation at E . Then there exist constants C, δ > 0 , such that

Fγ(F ) ≥ Fγ(E) + C
(
α(E,F )

)2
,

whenever F ⊂ TN with |F | = |E| is such that α(E,F ) ≤ δ .

4. The results

4.1. Minimality in small domains. The first result we would like to prove is a
local minimality property of critical points with respect to sufficiently small per-
turbations.

Proposition 4.1. Let E ⊂ TN be a critical point for the functional Fγ . Then
there exists ε > 0 such that

Fγ(E) ≤ Fγ(F ) ,

for any set F ⊂ TN having E4F b Bε(x) , for some x ∈ Ē .

Sketch of the proof. First part. We first want to prove that we can find ε̃ > 0 such
that

Fγ(E) ≤ Fγ(F ) ,

whenever F is a subset of TN having E4F b Bε̃(x), for some x ∈ ∂E .
Fix x̄ ∈ ∂E . The idea is to adapt to our case the proofs of the various steps

leading to [1, Theorem 1.1].
Step 1. For any ε > 0 sufficiently small, the following Poincaré inequality holds:∫

∂E∩Bε(x̄)

|Dτϕ|2 dHN−1 ≥ Cε
∫
∂E∩Bε(x̄)

ϕ2 dHN−1 ,

whenever ϕ ∈ H1(∂E) has support contained in Bε(x). We know that Cε → +∞
as ε→ 0. Let M > 0 such that

|B∂E | < M , |∂νvE | < M ,

and take ε > 0 such that C2ε > M(1 + 4γ). Notice that it is possible to write∫
∂E

∫
∂E

GTN (x, y)ϕ(x)ϕ(y) dHN−1(x) dHN−1(y) =

∫
TN
|∇z|2 dx , (4.1)

where −4z = ϕHN−1 ¬
∂E . Thus, we have that

∂2Fγ(E)[ϕ] > 0 , (4.2)

for any ϕ ∈ H1(∂E)\{0} with support contained in B2ε(x̄).

Step 2. We claim that it is possible to find constants δ > 0 and C0 > 0 such
that

Fγ(E) + C0

(
α(E,F )

)2 ≤ Fγ(F ) ,

whenever F ⊂ TN , with |F | = |E| , is such that ∂F = {x+ψ(x)νE(x) : x ∈ ∂E} ,
for some ‖ψ‖W 2,p(∂E) ≤ δ with support contained in B2ε(x̄), for p > max{2, N−1} .



12 R. CRISTOFERI

We use the two step technique of [1, Theorem 3.9]. We first prove that we can find
constants δ > 0 and D > 0 such that

inf
{
∂2Fγ(F )[ϕ] : ϕ ∈ H̃1(∂F ) , ‖ϕ‖H1(∂F ) = 1 ,

supp(ϕ) ⊂ B2ε(x) ,
∣∣∣∫
∂F

ϕνF dHN−1
∣∣∣ ≤ δ } ≥ D ,

whenever F ⊂ TN , with |F | = |E| , is such that

∂F = {x+ ψ(x)νE(x) : x ∈ ∂E} ,

for some ψ ∈W 2,p(∂E) with ‖ψ‖W 2,p(∂E) ≤ δ . To prove it, we reason by the sake
of contradiction as in the first step of the proof of [1, Theorem 3.9].

Consider the flow Φ, given by Lemma 4.5, connecting the sets E and F , and
let Et := Φt(E). Then it is possible to write

Fγ(F )−Fγ(E) =

∫ 1

0

(1−t)
(
∂2F(Et)[X·νEt ]−

∫
∂Et

(4γvEt+Ht)divτt(Xτt(X·νEt))
)

dt ,

where divτt is the tangential divergence on ∂Et and Xτt := (X · τEt)τEt . It is
possible to estimate from below of the integral, as it is done in the second step of
the proof of [1, Theorem 3.9]. Namely, it is possible to find δ > 0 such that∣∣∣∫

∂Et

(4γvEt +Ht)divτt(Xτt(X · νEt))dt
∣∣∣ ≤ D

2
‖X · νEt‖2H(∂Et)

,

for all t ∈ [0, 1]. Thus, with the above uniform coercivity property of ∂2F(Et) in
force, we conclude.

Step 3. For any ε > 0, let Iε ⊂ B2ε(x̄) be a smooth open set with the following
properties: the curvature of Iε ’s are uniformly bounded with respect to ε , the sets
E ∪ Iε and E\Iε are smooth and Bε(x̄) ⊂ Iε (see Figure 3). We claim that it is
possible to find ε > 0 such that

Fγ(E) ≤ Fγ(F ) ,

for every set F ⊂ TN with |F | = |E| , such that E4F b Iε . The proof of
such a result is similar to those of [1, Theorem 4.3], where we reason by the sake of
contradiction as follows: suppose there exist a sequence εn → 0 and a corresponding
sequence of sets (Fn)n with |Fn| = |E| and E\Iεn ⊂ Fn ⊂ E ∪ Iεn , such that

Fγ(Fn) < Fγ(E) .

Using the uniform bound on the curvatures of the Iεn ’s, it is possible to prove,
as in the first step of the proof of [1, Theorem 4.3], that we can find a sequence
of uniform (ω, r)-minimizers of the area functional (En)n with |En| = |E| having
En4E b Iεn and such that Fγ(En) < Fγ(E). Thus, the improved convergence
result stated in Theorem 2.7 allows us to say that the En ’s converge to E in the
C1,β -topology. Finally, using the Euler-Lagrange equation satisfied by the En ’s, it
is also possible to prove that the En ’s actually converge to E in the W 2,p -topology.
This is in contradiction with the result of the previous step.

Step 4. We now have to prove that the above constants can be made uniform
with respect to x ∈ ∂E . Let us reason as follows: for any point x ∈ ∂E , consider
the ball Bε(x)(x), where ε(x) > 0 is the radius found in Step 3 above. Then it is

possible to cover ∂E with a finite family of such balls, let us say
(
Bε(xi)(xi)

)L
i=1

.
Now, by using a simple geometrical argument, it is possible to find a constant ε̃ > 0
with the following property: for any point x ∈ ∂E , there exists i ∈ {1, . . . , L} such
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Figure 3. An example of the set Iδ .

that Bε̃(x) ⊂ Bε(xi)(xi). We can also suppose ε̃ < ε(xi) for each i = 1, . . . , L .

Second part. We now want to prove that we can find ε ∈ (0, ε̃/2) such that

Fγ(E) ≤ Fγ(F ) , (4.3)

whenever F ⊂ TN is such that E4F b Bε(x), for some x ∈ E\(∂E)ε̃/2 .
The key point is to observe that

|NL(F )−NL(E)| ≤ c0|E4F | ≤ CP(E4F )
N
N−1 = C

(
P(F )− P(E)

) N
N−1 , (4.4)

where we have used the Lipschitzianity of the nonlocal term (Proposition 2.13), the
isoperimetric inequality, and the fact that E4F b Bε(x), with x in the interior of
E , respectively. Notice that (4.3) can be written as

P(F )− P(E) ≥ γ
(
NL(E)−NL(F )

)
.

Using (4.4) and the fact that t
N
N−1 < Ct for t small, we know that the above

inequality is satisfied if P(F ) − P(E) < δ , for some δ > 0. If instead it holds
P(F )− P(E) ≥ δ , we obtain the validity of (4.3) by noticing that

|NL(F )−NL(E)| ≤ c0|E4F | ≤ CεN ,
and by taking ε sufficiently small. This concludes the proof. �

4.2. Uniform local minimizers. We start by proving a lemma that will be used
several times. The proof can be found in [1] (Step 4 of the proof of Theorem 3.4),
but we prefer to report it here for reader’s convenience.

Lemma 4.2. Let E ⊂ TN be a critical set for F γ̄ , with γ̄ ≥ 0 . Then for any ε > 0
it is possible to find ε̃ > 0 with the following property: if Eγ is a critical point of
Fγ , with γ ∈ (γ̄ − ε, γ̄ + ε) such that dC1(E,Eγ) < ε , then dC3,β (E,Eγ) < ε̃ , for
all β ∈ (0, 1) .

Proof. Suppose for the sake of contradiction that there exists a sequence γn → γ̄
and a sequence (En)n of critical points Fγn with dC1(E,Eγ) → 0 such that
dC3,β (E,Eγ) ≥ C > 0. We recall that on ∂E

H∂E = λ− 4γ̄vE , (4.5)

for some constant λ , while on ∂Eγn

H∂Eγn
= λγn − 4γnv

Eγn . (4.6)
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Thanks to the C1 -convergence of Eγn to E and by standard elliptic estimates, it
is easy to see that

vEγn → vE in C1,β(TN ) , (4.7)

for all β ∈ (0, 1). Now we would like to prove that λγn → λ , thus obtaining the
desired contradiction. We work locally, by considering a cylinder C = B′×(−L,L),
where B′ ⊂ RN−1 is a ball centered at the origin, such that in a suitable coordinate
system we have

Eγn ∩ C = {(x′, xN ) ∈ C : x′ ∈ B′, xN < gγn(x′)},
E ∩ C = {(x′, xN ) ∈ C : x′ ∈ B′, xN < g(x′)}

for some functions gγn → g in C1,β(B′). By integrating (4.6) on B′ we obtain

λγnHN−1(B′)− 4γn

∫
B′
vEγn (x′, gγn(x′)) dHN−1(x′)

= −
∫
B′

div

(
∇gγn√

1 + |∇gγn |2

)
dHN−1(x′) = −

∫
∂B′

∇gγn√
1 + |∇gγn |2

· x
′

|x′|
dHN−2 ,

and the last integral in the previous expression converges, as n→∞ , to

−
∫
∂B′

∇g√
1 + |∇g|2

· x
′

|x′|
dHN−2 = −

∫
B′

div

(
∇g√

1 + |∇g|2

)
dHN−1(x′)

= λHN−1(B′)− 4γ̄n

∫
B′
vEγ̄n (x′, gγn(x′)) dHN−1(x′) ,

where the last equality follows by (4.5). This shows, recalling (4.7), that

λγn → λ ,

for n → ∞ . Thus, by standard elliptic estimates, we get that Eγn → E in
C3,β . �

We now state the main result of this section, namely a uniform local minimality
result for strictly stable critical points of Fγ .

Proposition 4.3. Let E ⊂ TN be a strictly stable critical point for F γ̄ , γ̄ ≥ 0 .
Then there exist constants δ > 0 , ε > 0 , γ̃ > 0 and C > 0 with the following
property: take γ ∈ (γ̄ − γ̃, γ̄ + γ̃) and let Eγ be a critical point for Fγ with
dC1(E,Eγ) < ε ; then

Fγ(Eγ) + C
(
α(Eγ , F )

)2 ≤ Fγ(F ) ,

for every set F ⊂ TN , with |F | = |Eγ | , such that α(Eγ , F ) ≤ δ .

The proof of Proposition 4.3 will follow the same strategy performed in [1]. The
difficulty here is to check that all the estimates provided there can be made uniform
with respect to the C1 closeness of Eγ to E . Checking this, we in fact simplify
the general argument, by replacing [1, Lemma 3.8] with a penalization argument,
that was inspired to us by [10].

Definition 4.4. Let F ⊂ TN be a set of class C∞ . We will denote by Nµ(F ),
with µ > 0, a tubular neighborhood of F where the signed distance dF from F
and the projection πF on ∂F are smooth in Nµ(F ).

Lemma 4.5. Let E ⊂ TN be a strictly stable critical point for F γ̄ , γ̄ ≥ 0 , and let
p > max{2, N − 1} . Then there exist constants µ > 0 , γ̃ > 0 , ε > 0 and C > 0
with the following property:
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for any critical point Eγ of Fγ , with γ ∈ (γ̄ − γ̃, γ̄ + γ̃) and dC1(E,Eγ) < ε ,
and any ψ ∈ C∞(Eγ) with ‖ψ‖W 2,p(∂Eγ) ≤ ε , there exists a vector field X ∈ C∞
with divX = 0 in Nµ(F ) such that, if we consider its flow, i.e., the solution of

∂Φ

∂t
= X(Φ) , Φ(0, x) = x , (4.8)

we have Φ(1, x) = x + ψ(x)νEγ (x) , for any x ∈ ∂Eγ . Moreover, the following
estimate holds true

‖Φ(t, ·)− Id‖W 2,p(∂Eγ) ≤ C‖ψ‖W 2,p(∂Eγ) .

Finally, set Etγ := Φ(t, Eγ) , and suppose |E1
γ | = |Eγ | . Then |Etγ | = |Eγ | for all

t ∈ [0, 1] , and ∫
∂Etγ

X · νEtγ dHN−1 = 0 .

Proof. Take 0 < ε < ε0 , where ε0 > 0 is the constant given by Lemma 4.2. Then,
possibly reducing ε , we can find µ > 0 and γ̃ ∈ (0, ε) such that Nµ(Eγ) is a
tubular neighborhood of Eγ (see Definition 4.4) for every Eγ critical point of Fγ ,
with γ ∈ (γ̄ − γ̃, γ̄ + γ̃) and dC1(E,Eγ) < ε .

Let Eγ as above. For every x ∈ ∂Eγ consider the function fx : (−µ, µ) → R
solution of {

(fx)′(t) + fx(t)4dEγ (x+ tνEγ (x)) = 0 ,
fx(0) = 1 .

Set

ξ(x+ tνEγ (x)) := fx(t) = exp
(
−
∫ t

0

4dEγ (x+ sνEγ (x))ds
)
.

Using again the C3,β -closeness of Eγ to E , it is possible to find a constant C > 0
such that ‖ψ‖L∞(∂Eγ) ≤ C‖ψ‖W 2,p(∂Eγ) < Cε for any set Eγ as above. Take
0 < ε < µ/C and let X be a smooth vector field such that

X(z) :=
(∫ ψ(πEγ (z))

0

ds

ξ
(
πEγ (z) + sνEγ (πEγ (z))

))ξ(z)∇dEγ (z) for z ∈ Nµ(Eγ) .

Notice that the above integral represents the time we need to go from x ∈ ∂Eγ
to the point x+ Ψ(x)νEγ (x) by traveling along the trajectories of the vector field
ξ∇dEγ . Thus, if we move along the trajectories of the vector field X , the time
needed to go from a point x ∈ ∂Eγ to the point x + Ψ(x)νEγ (x) is always one.
Moreover that integral does not change for points z ∈ Nµ(Eγ) in the trajectory of
the vector field ξ∇dEγ . This ensure that divX = 0 in Nµ(Eγ).

We now prove some estimates on Φ. First of all notice that we can find a
constant C > 0 such that, for every set Eγ as above, it holds

‖X‖W 2,p(Nµ(Eγ)) ≤ C‖ψ‖W 2,p(∂Eγ) .

Thus, by the definition of the flow Φ, we have that

‖Φ− Id‖C0(Nµ(Eγ)) ≤ C‖ψ‖W 2,p(∂Eγ) .

To estimate the other norms, we just differentiate in (4.8) to obtain

‖∇xΦ(t, ·)− Id‖C0(Nµ(Eγ)) ≤ Cµ‖∇X‖C0(Nµ(Eγ)) ≤ Cµ‖ψ‖W 2,p(∂Eγ) .

Since this shows that the (N − 1)-dimensional Jacobian of Φ(t, ·) is uniformly
closed to 1 on ∂Eγ , deriving again in (4.8), we obtain also the following estimate:

‖∇2
xΦ(t, ·)‖Lp(∂Eγ) ≤ Cµ‖∇2X‖Lp(Nµ(Eγ)) .
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Finally, if |E1
γ | = |Eγ | , then

d2

dt2
|Et| =

∫
Etγ

(divX)(X · νEγ ) dHN−1 = 0 for all t ∈ [0, 1] .

This follows from [7, Equation (2.30)]. Thus, the function t 7→ |Etγ | is affine in

[0, 1], and since |Eγ | = |Etγ | , we have that it is constant. So

0 =
d

dt
|Et| =

∫
Etγ

divX dHN−1 =

∫
∂Etγ

X · νEtγ dHN−1 .

This concludes the proof of the lemma. �

We introduce the penalization we will use in the following.

Definition 4.6. Fix a set E ⊂ TN and a smooth function f : TN → RN such
that f = νE on ∂E . Then, for sets F ⊂ TN , define

PenE(F ) :=
∣∣∣∫
F

f(x) dx−
∫
E

f(x) dx
∣∣∣2 .

In the following lemma we calculate the first and the second variation of the
penalization PenE .

Lemma 4.7. Let E,F ⊂ TN , and (Φt)t be an admissible family of diffeomor-
phisms. Then we have

d

ds
PenE(Fs)

|s=t
= 2
(∫

Ft

f dx−
∫
E

f dx
)
·
∫
∂Ft

f(X · νFt) dHN−1 ,

and

d2

dt2
PenE(Ft)

|t=0
= 2

∣∣∣∫
∂F

f(X · νF ) dHN−1
∣∣∣2

+ 2
(∫

F

f dx−
∫
E

fdx
)
·
∫
∂F

f [(X · νF )divX − divτ (Xτ (X · νF ))] dHN−1 .

Proof. Fix i = 1, . . . , N and consider the scalar function g : (−1, 1)→ R given by

g(t) :=

∫
Ft

fi(x) dx .

Then

g′(t) =

∫
Ft

(
∇fi ·Xt + fidivXt

)
dx =

∫
∂Ft

fi(Xt · νFt) dHN−1 .

Moreover

g′′(0) =
d

dt

(∫
∂Ft

fi(X · νFt) dHN−1
)
|t=0

=

∫
∂F

fi
d

dt

(
(X ◦ Φt) · (νFs ◦ Φt)J

N−1Φt
)
|t=0

dHN−1

+

∫
∂F

(∇fi ·X)(X · νF ) dHN−1

=

∫
∂F

fi
[
divτ (X(X · νF )) + Z · ν − 2Xτ · ∇τ (X · ν) +DνF [Xτ , Xτ ]

]
dHN−1

+

∫
∂F

(∇fi ·X)(X · νF ) dHN−1

=

∫
∂F

fi
[
(X · ν)divX − divτ (Xτ(X · ν))

]
dHN−1 ,

where in the last step we used the same computations as in [1, Theorem 3.1]. �
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Remark 4.8. Notice that

d2

dt2
PenE(Et)

|t=0
= 2
∣∣∣∫
∂E

νE(X · νE) dHN−1
∣∣∣2 .

In order to define our penalized functional, we need the following technical
lemma, whose simple proof is left to the reader.

Lemma 4.9. Let E ⊂ TN be a regular set, and let M > ‖νE‖C1(∂E) . Then there

exists a constant ε > 0 with the following property: for every set F ⊂ TN with
dC2(E,F ) < ε , there exists a function fF : TN → RN with fF = νF on ∂F and
‖fF ‖C1(TN ;RN ) < M .

Moreover, for every η > 0 it is possible to find η̃ > 0 such that∣∣∣∫
∂Fψ

ϕfF dHN−1
∣∣∣ ≤ η ⇒

∣∣∣∫
∂Fψ

ϕνFψ dHN−1
∣∣∣ ≤ η̃ , (4.9)

for any function ϕ ∈ H̃1(∂Fψ) with ‖ϕ‖H1(∂Fψ) = 1 , whenever Fψ ⊂ TN is such

that ∂Fψ = {x+ ψ(x)νF (x) : x ∈ ∂F} for some ‖ψ‖W 2,p(∂F ) ≤ η̃ .

We are now in position to define our penalized functional.

Definition 4.10. Let E ⊂ TN be regular set, and let ε > 0 be the constant given
by Lemma 4.9. Then, for every set F ⊂ TN with dC2(E,F ) < ε , we define the
penalized functional

FγF (G) := Fγ(G) +
∣∣∣∫
G

fF (x) dx−
∫
F

fF (x) dx
∣∣∣2 ,

where G ⊂ TN and fF is the function given by Lemma 4.9.

Definition 4.11. Let F ⊂ TN as in Definition 4.10. For a set G ⊂ TN define the
quadratic form ∂2FγF (G) : H̃1(∂G)→ R as follows:

∂2FγF (G)[ϕ] := ∂2Fγ(G)[ϕ] + 2
∣∣∣∫
∂G

ϕfF dHN−1
∣∣∣2 .

Remark 4.12. Let F ⊂ TN be be a strictly stable critical point for Fγ . Then

∂2FγF (F )[ϕ] > 0 for all ϕ ∈ H̃1(∂F )\{0} .

Indeed, the term due to the second variation of the penalization is non-negative and
vanishes only for ϕ ∈ T⊥(∂F ). By the strict stability of F we know that ∂2Fγ(F )
is strictly positive on T⊥(∂F )\{0} .

We prove a uniform W 2,p -local minimality result for the penalized functional.

Lemma 4.13. Let p > max{2, N −1} , and let E ⊂ TN be a strictly stable critical
point for F γ̄ . Then there exist constants γ̃ > 0 , δ > 0 , ε > 0 and C > 0 with the
following property:

take γ ∈ (γ̄−γ̃, γ̄+γ̃) and let Eγ be a critical point for Fγ with dC1(E,Eγ) < ε ;
then

FγEγ (F ) ≥ FγEγ (Eγ) + C|Eγ4F |2 ,

for every set F ⊂ TN with |F | = |Eγ | and ∂F = {x+ψ(x)νEγ (x) : x ∈ ∂Eγ} for
some ‖ψ‖W 2,p(∂Eγ) ≤ δ .

Proof. Step 1. We claim that is possible to find constants γ̃ > 0, δ > 0, ε > 0 and
D > 0 such that, for any γ ∈ (γ̄− γ̃, γ̄+ γ̃), any critical set Eγ ⊂ TN for Fγ , with
|Eγ | = |E| and dC1(E,Eγ) < ε , we have

inf
{
∂2FγEγ (F )[ϕ] : ϕ ∈ H̃1(∂F ) , ‖ϕ‖H1(∂F ) = 1

}
≥ D , (4.10)
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whenever F ⊂ TN , with |F | = |E| , is such that

∂F = {x+ ψ(x)νEγ (x) : x ∈ ∂Eγ} ,

for some ψ ∈W 2,p(∂Eγ) with ‖ψ‖W 2,p(∂Eγ) ≤ δ .
Part 1. We first prove that we can find constants as above such that

inf
{
∂2FγEγ (F )[ϕ] : ϕ ∈ H̃1(∂F ) , |ϕ‖H1(∂F ) = 1 ,

∣∣∣∫
∂F

ϕνEγ dHN−1
∣∣∣ < δ

}
≥ D ,

for sets F ⊂ TN as above.
In this case we can reason as follows: suppose for the sake of contradiction that

there exist a sequence γn → γ̄ , a sequence of sets (Eγn)n with |Eγn | = |E| and
Eγn → E in C1 (by Lemma 4.2 we can say that the convergence holds in C3,β ), a
sequence of sets (Fn)n with |Fn| = |E| and

∂Fn = {x+ ψn(x)νEγn (x) : x ∈ ∂Eγn} ,

for ψn ∈ W 2,p(∂Eγn) with ‖ψn‖W 2,p(∂Eγn ) ≤ 1/n , and a sequence of functions

ϕn ∈ H̃1(∂Fn) with ‖ϕn‖H1(∂Fn) = 1 and
∫
∂Fn

ϕnνFn → 0, such that

∂2Fγn(Fn)[ϕn]→ 0 as n→∞ .

One can see that Eγn → E in C3,β implies that Fn → E in W 2,p . Then there
exist diffeomorphisms Φn : E → Fn converging to the identity in W 2,p(∂E). The

idea now is to consider the functions ϕ̃n ∈ H̃1(∂E) defined as

ϕ̃n := ϕn ◦ Φn − an ,

where , an :=
∫
∂E

ϕn ◦ Φn dHN−1 , and to prove that

∂2Fγn(Fn)[ϕn]− ∂2Fγn(E)[ϕ̃n]→ 0 , (4.11)

and that

∂2Fγn(E)[
(
ϕ̃n
)⊥

]− ∂2Fγn(E)[ϕ̃n]→ 0 . (4.12)

The above convergences are proved exactly as in Step 1 of [1, Theorem 3.9], where
we notice that the convergence of the term of the quadratic form due to the penal-
ization, is easily seen to converge.

This allows to conclude: indeed, from the fact that

∂2Fγn(E)[
(
ϕ̃n
)⊥

]− ∂2F γ̄(E)[
(
ϕ̃n
)⊥

]→ 0 , (4.13)

we obtain a contradiction with

inf
{
∂2F γ̄(E)[ϕ] : ϕ ∈ T⊥(∂E) \ {0}, ‖ϕ‖H1(∂E) = 1

}
≥ C > 0 .

This last fact follows from the strict positivity of the second variation (see [1,
Lemma 3.6]). In order to prove (4.11) and (4.12) we have just to repeat the same
computation as in step 1 of [1, Theorem 3.9]. Finally (4.13) is easily seen to be true.

Part 2. Let η > 0 such that (4.9) holds for some 0 < η̃ < δ , where δ > 0 is the
constant provided in the previous case. Then we have two possibilities: either∣∣∣∫

∂F

ϕfEγ dHN−1
∣∣∣ > η ,

and in this case ∂2FγEγ (F )[ϕ] > 2η2 , or∣∣∣∫
∂F

ϕνEγ dHN−1
∣∣∣ ≤ η , (4.14)
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and in this case the validity of the claim is provided by the result proved in the
previous part, since by Lemma 4.9 we have that (4.14) implies∣∣∣∫

∂F

ϕνEγ dHN−1
∣∣∣ ≤ η̃ < δ .

Step 2. To conclude, we have to check that all the estimates needed in the second
step of [1, Theorem 3.9] can be made uniform with respect to γ ∈ (γ̄ − γ̃, γ̄ + γ̃).
For any pair of sets Eγ and F as in the statement, consider the vector field Xγ

and its flow Φγ(·, t), provided by Lemma 4.5. Let Etγ := Φγ(Eγ , t). Fixed ε > 0,
it is possible to find ε > 0 and δ > 0 such that

‖νEγ − νEtγ
(
Φn(·, t)

)
‖L∞ < ε , ‖JN−1

(
Φγ(·, t)

)
− 1‖L∞ < ε .

Moreover, thanks to the C1 -closeness of Etγ to E , we can also suppose

‖4γvE
t
γ +HEtγ

− λγ‖L∞ < ε ,

where 4γvEγ + HEγ = λγ . Finally, thanks to the uniform control on the gradient
of the functions fEγ , up to take smaller ε > 0 and δ > 0, we have∣∣∣∫

Etγ

fEγdx−
∫
Eγ

fEγdx
∣∣∣ < ε ,

for every t ∈ [0, 1]. Thus, we can write

FγEγ (F )−FγEγ (Eγ) =

∫ 1

0

(1− t)

[
∂2FγEγ (Etγ)[Xγ · νEtγ ]

−
∫
∂Etγ

(4γvE
t
γ +HEtγ

)divτt(X
τt
γ (Xγ · νEtγ )) dHN−1

− 2
(∫

Eγt

fEγdx−
∫
Eγ

fEγdx
)
·
∫
∂Etγ

fEγdivτt(X
τt
γ (Xγ · νEtγ )) dHN−1

]
dt .

Since the vector fields Xγ ’s are uniformly closed in the C1 -topology, it is possible
to find a constant C > 0 such that

‖divτt(X
τt
γ (Xγ · νEtγ ))‖

L
p
p−1 (∂Etγ)

≤ C‖Xγ · νEtγ‖
2
H1(∂Etγ) ,

for every γ ∈ (γ̄−γ̃, γ̄+γ̃). Thus, the above uniform estimates allow us to conclude,
as in [1, Theorem 3.9]. �

Next result will allow us to obtain the above local minimality property also for
the functional Fγ .

Lemma 4.14. Let E and Eγ as in the statement of Lemma 4.13, and consider
the functions fγ given by Lemma 4.9. Then there exists ε > 0 with the following
property: for any F ⊂ TN with dC1(Eγ , F ) < ε , there exists v ∈ RN such that∫

F+v

fγdx =

∫
Eγ

fγdx .

Proof. Fix γ ∈ (γ̄ − γ̃, γ̄ + γ̃), where γ̃ > 0 is the constant given by Lemma 4.13.
Consider the function Tγ : RN → RN given by

Tγ(v) :=

∫
Eγ

fγ(x− v)dx .

Then

DTγ(0) = −
∫
Eγ

Dfγ(x)dx .
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In particular
(
DTγ(0)

)
ij

= −
∫
∂Eγ

νi · νj dHN−1 . By (3.3) we know that there

exists an orthonormal frame, respect to which the expression of DTγ(0) is the
identity matrix. In particular, we obtain that DTγ(0) is invertible. This implies
that there exist constants δ1, δ2 > 0 such that

Tγ
(
Bδ1(0)

)
⊃ Bδ2

(
Tγ(0)

)
.

One can see that, for any ε > 0 small enough, it is possible to find a constant
ε̃ > 0 with the following property: if F ⊂ TN is such that dC1(Eγ , F ) < ε , then
there exists a diffeomorphism Φ : Eγ → F of class C1 such that ‖Φ− Id‖C1 < ε̃ .
In particular it holds that ε̃→ 0 as ε→ 0.

Let F as above and consider the map TΦ
γ : RN → RN given by

TΦ
γ (v) :=

∫
Eγ

fγ
(
Φ−1(x)− v

)
JΦ(x) dx .

Then

DTΦ
γ (0) = −

∫
Eγ

Dfγ
(
Φ−1(x)

)
JΦ(x) dx .

Fixed µ > 0 there exists ε > 0 such that

‖DTΦ
γ (0)−DTγ(0)‖C0 ≤ µ ,

whenever dC1(Eγ , F ) < ε , and γ ∈ (γ̄ − γ̃, γ̄ + γ̃). This follows by using the fact
that ‖Φ− Id‖C1 < ε̃ and by the uniform control on the C1 -norm of the functions
fγ ’s. Thus, TΦ

γ ’s can be made uniformly closed to Tγ in the C1 topology.
This implies that it is possible to find ε > 0 such that if dC1(Eγ , F ) < ε , then

TΨ
γ (Bδ1/2(0)) ⊃ Bδ2/2(TΨ

γ (0)) . (4.15)

This follows, for instance, from the proof of the Inverse Function Theorem.
We can now easily conclude as follows: up to take a smaller ε , we can suppose

TΨ
γ (0) ∈ Bδ2/4(Tγ(0)), whenever dC1(Eγ , F ) < ε . Thus, by (4.15), we have that

there exists v ∈ Bδ1/2(0) such that TΨ
γ (v) = Tγ(0). This is exactly the statement

we wanted to prove. �

Lemma 4.15. Take p > max{2, N − 1} , E ⊂ TN be a strictly stable critical point
for F γ̄ , and let γ̃ > 0 , δ > 0 and C > 0 be the constants given by Lemma 4.13.
Then, for any γ ∈ (γ̄− γ̃, γ̄+ γ̃) and Eγ critical point for Fγ with dC1(E,Eγ) < ε ,
we have that

Fγ(F ) ≥ Fγ(Eγ) + C
(
α(Eγ , F

)2
,

for every set F ⊂ TN with |F | = |Eγ | and ∂F = {x+ψ(x)νEγ (x) : x ∈ ∂Eγ} for
some ‖ψ‖W 2,p(∂Eγ) ≤ δ .

Proof. Fix a number ε ∈ (0, ε̃), where ε̃ > 0 is the constant given by Lemma 4.14.
Then we know that we can find a vector v ∈ RN such that

PenEγ (F + v) = 0 .

Thus, by using the result of Lemma 4.13, we can write

Fγ(F ) = Fγ(F + v) = FγEγ (F + v) ≥ FγEγ (Eγ) + C|Eγ4F |2

≥ Fγ(Eγ) + C
(
α(Eγ , F )

)2
.

�

We now prove the uniform L∞ -local minimality result, i.e., the uniform version
of [1, Theorem 4.3].
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Lemma 4.16. Let E ⊂ TN be a strictly stable critical point for F γ̄ . Then there
exist constants δ > 0 , γ̃ > 0 and ε > 0 with the following property: for any
γ ∈ (γ̄ − γ̃, γ̄ + γ̃) and any Eγ critical point for Fγ with dC1(E,Eγ) < ε , it holds

Fγ(Eγ) ≤ Fγ(F ) ,

for every set F ⊂ TN with |F | = |Eγ | , such that Eγ4F b Nδ(Eδ) , where Nδ(Eγ)
is a tubular neighborhood of ∂Eγ of thickness δ .

Proof. Suppose for the sake of contradiction that there exist a sequence γn → γ̄ ,
Eγn → E in C1 , with |Eγ | = |E| , a sequence δn → 0 and a sequence of sets Fn
with |Fn| = |Eγn | , Eγ4Fn b Nδ(Eδn), such that

Fγn(Eγn) > Fγn(Fn) .

Let En be a solution of the following constrained minimum problem

min
{
Fγn(F ) + Λ

∣∣|F | − |Eγ |∣∣ : F4Eγ ⊂ Nδ(Eδn)
}
.

By using the C3,β convergence of the Eγn ’s to E , and reasoning as in the proof
of [1, Theorem 4.3], it is possible to find a constant Λ > 0 independent of γn such
that the sets En ’s are (4Λ, r0)-minimizers of the area functional, for some r0 > 0
independent of γn , and |En| = |Eγ | . This is because, if we set νn := ∇dn (defined
in (∂E)µ , for some µ > 0), where dn is the signed distance from En , we have that
‖div νn‖L∞ ≤ C for some constant C > 0 independent of n .

Since (En)n is a sequence of uniform (ω, r)-minimizers converging to E in the
L1 topology, by Theorem 2.7 we have that indeed En → E in the W 2,p -topology.
By using again the C3,β convergence of the Eγn ’s to E and the Euler-Lagrange
equation satisfied by each En , we obtain that dW 2,p(En, Eγn) → 0 as n → ∞ .
Since, by definition, Fγ(En) < Fγ(Eγn)we obtain a contradiction with the result
of Lemma 4.15. �

Proof of Proposition 4.3. Suppose for the sake of contradiction that there exists a
sequence γn → γ̄ , Eγn → E in C1 , with |Eγ | = |E| , a sequence δn → 0 and a
sequence of sets Fn with |Fn| = |Eγn | , and 0 < εn → 0, where εn := α(Fn, Eγn),
such that

Fγn(Fn) ≤ Fγn(Eγn) +
C

4

(
α(Eγn , Fn)

)2
.

Let En be a solution of the following constrained minimum problem

min
{
Fγn(F ) + Λ

√(
α(F,Eγn)− εn

)2
+ εn : |F | = |Eγ |

}
.

Then, by usign a Γ-convergence argument it is possible to prove that the En ’s
converge (up to a subsequence) in the L1 topology to a solution of the limiting
problem

min
{
F γ̄(F ) + Λ|α(F,E)| : |F | = |E|

}
.

Reasoning as in the proof of [1, Theorem 1.1] and by using the C3,β convergence of
the Eγn ’s to E (see Lemma 4.2), it is possible to prove that there exists a constant
Λ, such that, the unique solution to the limiting problem is E itself. Moreover,
reasoning again as in the proof of [1, Theorem 1.1] and using Lemma 2.14 we can
also infer that En is a sequence of uniform (ω, r)-minimizers, and that En → E in
the W 2,p -topology, and thus dW 2,p(En, Eγn) → 0 as n → ∞ . Using the previous

uniform L∞ -local minimality result is it also possible to prove that
α(En,Eγn )
α(Fn,Eγn ) → 1

(see [1, equation (4.17)]). Thus we may conclude

Fγn(En) ≤ Fγn(Fn) ≤ Fγn(Eγn)+
C

4

(
α(Eγn , Fn)

)2 ≤ Fγn(Eγn)+
C

2

(
α(Eγn , En)

)2
.

This yelds the contradiction with the result of Lemma 4.15.
�
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4.3. Continuous family of local minimizers. We now prove a uniqueness result
for critical points of Fγ closed enough to a regular critical stable point of the area
functional. We also prove that these critical points are isolated local minimizers.

Proposition 4.17. Let γ̄ ≥ 0 and let E ⊂ TN be a strictly stable critical point
for F γ̄ . Then there exist constants γ̃ > 0 and ε > 0 and a unique family γ 7→ Eγ ,
for γ ∈ (γ̄ − γ̃, γ̄ + γ̃) , with |Eγ | = |E| , such that

• dC1(Eγ , E) < ε ,
• Eγ is a critical point for Fγ .

Moreover γ 7→ Eγ is continuous in C3,β , for all β ∈ (0, 1) , and Eγ is an isolated
local minimizer of Fγ .

Proof. Step 1. First of all we notice that, by Theorem 3.6, we can find a constant
δ > 0 such that

Fγ(E) < Fγ(F ) ,

for any set F ⊂ TN with |F | = |E| , such that 0 < α(E,F ) < δ . Then it is possible
to use Theorem 2.25 to find a sequence (Eγ)γ , with |Eγ | = |E| , such that Eγ is a
local minimizer of Fγ , and α(Eγ , E)→ 0 as γ → γ̄ .

By using Corollary 2.15, we infer that the sequence (Eγ)γ is a sequence of
(ω0, r0)-minimizers, where the parameter ω0 can be choosen uniformly with re-
spect to γ (see Lemma 2.14). Hence, Theorem 2.7 allows to say that the Eγ ’s
actually converge to E in the C1,β -topology.

Step 2. Let ε0 > 0 and γ0 > 0 be the constants given by Proposition 4.3, and
take ε < ε0 and γ̃ < γ0 such that

dC1(Eγ , E) < ε ,

for any γ ∈ (γ̄ − γ̃, γ̄ + γ̃). By Proposition 4.3 there exists δ > 0 such that the
Eγ ’s are uniform local minimizers with respect to sets F with |F | = |Eγ | with
α(F,Eγ) ≤ δ . In particular, we have that

Fγ(Eγ) < Fγ(F ) ,

for any set F 6= Eγ with |F | = |Eγ | and α(F,Eγ) ≤ δ .
By taking a smaller ε (and a smaller γ̃ ) if necessary, we can assume that

dC1(F,E) < ε ⇒ α(F,Eγ) ≤ δ ,

for any set F ⊂ TN and any γ ∈ (γ̄ − γ̃, γ̄ + γ̃). This allows to infer that Eγ is
the unique critical point of Fγ with |Eγ | = |E| and dC1(Eγ , E) < ε . Indeed, if F
is another critical point of Fγ , with |F | = |E| with dC1(F,E) < ε , by using again
Proposition 4.3, we would obtain that F is an isolated local minimizer of Fγ with
respect to sets G with |G| = |F | and α(G,F ) ≤ δ . But this is in contradiction
with the isolated local minimality property of Eγ .

Step 3. Finally, we can deduce the continuity in the C3,β -topology of the family
γ 7→ Eγ as follows: fix γ ∈ (γ̄ − γ̃, γ̄ + γ̃), and let γn → γ . Then, up to a
subsequence, there exists a set F ⊂ TN such that Eγn → F in the L1 topology.
By the uniqueness property just proved, we have that F = Eγ .

Moreover, since (Eγn)n is a sequence of uniform (ω, r0)-minimizers, we can use
Lemma 2.7 to infer that Eγn → F in the C1,β topology. Thus, by using Lemma
4.2 we obtain the convergence of Eγn to Eγ in the C3,β -topology. �
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4.4. Periodic local minimizers with almost constant mean curvature. The
main result of this chapter is the following.

Theorem 4.18. Let E ⊂ TN be a smooth set that is critical and strictly stable for
the area functional, i.e., there exists λ ∈ R such that

H∂E = λ on ∂E ,

and ∫
∂E

(
|Dτϕ|2 − |B∂E |2ϕ2

)
dHN−1 > 0 for every ϕ ∈ T⊥(∂E)\{0} .

Fix constants γ̄ > 0 , ε > 0 . Then it is possible to find k̄ = k̄(γ̄, ε) ∈ N and
C = C(γ̄) > 0 such that for all k ≥ k̄ there exists a unique set F ⊂ TN that is
1/k -periodic and with

• dC0(F,Ek) < ε
k , where Ek is as Definition 2.1,

• dC1(F,Ek) < ε ,
• ‖∇τHF ‖L∞(∂F ) <

C
k , where HF is the mean curvature of ∂F .

Moreover F is an isolated local minimizer of F γ̄ with respect to 1/k -periodic sets,
i.e., there exists δ > 0 such that, for any set G ⊂ TN that is 1/k -periodic and with
|G| = |F | , it holds

F γ̄(F ) < F γ̄(G) ,

whenever 0 < α(G,F ) ≤ δ .

Proof. Consider the sequence

(γk)k := (γ̄k−3)k∈N\{0} .

Let γk 7→ Eγk be the unique family provided by Proposition 4.17 applied to E .
Take k̄ such that, for all k ≥ k̄ , dC1(Eγk , E) < ε and Eγk is an isolated local
minimizer of Fγ . This can be done by using the results of Proposition 4.17. Let
F := Ekγk . Now, it is easy to see that

dC0(F,Ek) =
1

k
dC0(Eγk , E) <

ε

k
, dC1(F,Ek) = dC1(Eγk , E) < ε .

Moreover, by (2.5) and (2.4), we have that

F γ̄(F ) = kNF γ̄k (Eγk) = k
[
PTN (Eγk) + γkNLTN (Eγk)

]
= kFγkTN (Eγk) .

Since Eγk is an isolated local minimizer for Fγk , we obtain that F satisfied the
isolated local minimimality property of the theorem.

Finally, we have that

H∂F (x) = kH∂Eγk
(kx) = k

(
λk − 4γkv

Eγk (kx)
)
,

where in the last step we have used the Euler-Lagrange equation satisfied by Eγk .
Thus, using the definition of γk , we obtain that

‖∇τHF ‖L∞(∂F ) ≤
4γ̄

k
‖∇vEγk ‖L∞(∂Eγk ) .

Since vEγk → vE in C1,β , up to choose a bigger k̄ , we also have the desired
estimate for ‖∇τHF ‖L∞(∂F ) . �
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Figure 4. An example of a strictly stable periodic surface with
constant mean curvature.

We finally show that the critical points constructed in the above theorem can be
approximated with local minimizers of the ε -diffuse energy OK γ̄

ε .

Corollary 4.19. Let E ⊂ TN be as in the previous theorem, and let F be a
periodic critical point constructed above. Define the function u := χF − χTN\F .
Then there exist a constant ε̄ > 0 and a family (uε)ε∈(0,ε̄) such that

• uε is a local minimzier of OK γ̄
ε ,

•
∫
TN uε =

∫
TN u ,

• uε → u in L1(TN ) as ε→ 0 .

Proof. The proof follows by Kohn and Sternberg’s theorem (see [15] and also [6,
Proposition 8]), thanks to the Γ-convergence of OK γ̄

ε to F γ̄ and using the fact that
F is an isolated local minimizer with respect to 1/k -periodic perturbations. �

Remark 4.20. One can see that a slightly more general local minimality property
holds true for the sets constructed in Theorem 4.18. The statement is the following:

let E ⊂ TN be a smooth set that is critical and strictly stable for the area
functional. Fix constants γ̄ > 0, ε > 0. Then it is possible to find k̄ = k̄(γ̄, ε) ∈ N
and C = C(γ̄) > 0 such that for all k ≥ k̄ there exists a unique set F ⊂ TN that
is 1/k -periodic and with

• dC0(F,Ek) < ε
k , where Ek is as Definition 2.1,

• dC1(F,Ek) < ε ,
• ‖∇τHF ‖L∞(∂F ) <

C
k , where HF is the mean curvature of ∂F .

Moreover the following isolated local minimality property holds true: there exist
constants δ > 0 and D > 0 such that

F γ̄(F ) +D
(
α(G,F )

)2 ≤ F γ̄(G) ,

for every set G ⊂ TN having |G| = |F | that satisfies

∂G = {x+ Ψ(x)νF (x) : x ∈ ∂F} ,
where Ψ ∈W 2,p(∂F ) is such that:
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• ‖Ψ‖W 2,p(∂F ) ≤ δ ,
• G restricted to every 1/k -periodicity cell has the same volume of the set
F restricted to the same periodicity cell,
• the restriction of Ψ on each 1/k -periodicity cell is 1/k -periodic.

Figure 5. An example of a 1/k -periodic set F (bold lines denotes
∂F ) and of an admissible competitor G (dotted lines denotes ∂G).

Indeed this follows by noticing that, for the family (Eγk)k considered in the
proof of Theorem 4.18, it holds that vEkγk

(x) = k−2vEγk (kx), and thus

‖∇vEkγk ‖L∞ → 0 , (4.16)

as k → ∞ . Now consider the second variation of F γ̄ computed at Ekγk , that is

given by (3.2) (since the sets Ekγk ’s are critical sets). Take a function ϕ ∈ T⊥(∂Ekγk)
with zero average in each periodicity cell and such that the restriction of ϕ on each
1/k -periodicity cell is 1/k -periodic. Notice that:

• the first term is strictly positive for k large: indeed, since ϕ satisfies the
two conditions above, this follows by using a rescaling argument, the fact
that Eγk → E in C3,β and that E is strictly stable for the area functional,
• the second term is uniformly small with respect to ϕ , by (4.16),
• the last term is non-negative, since it can be written as in (4.1).

Thus, we have that, for k large enough, the sets Ekγk ’s are strictly stable with
respect to this kind of admissible functions ϕ . This allows us to prove the above
claimed local minimilaty property, by reasoning as in [1, Theorem 3.9].
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