THE NONRELATIVISTIC LIMIT OF RELATIVISTIC VLASOV-MAXWELL SYSTEM

JACK SCHAEFFER AND LEI WU

ABSTRACT. We consider the one and one-half dimensional multi-species relativistic Vlasov-Maxwell system
with non-decaying(in space) initial data. We prove its well-posedness and nonrelativistic limit as the speed
of light ¢ — oo. These results mainly rely on a delicate analysis of energy structure and application of
estimates along the characteristic lines.
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1. INTRODUCTION

Consider the one and one-half dimensional relativistic Vlasov-Maxwell system:

0+ VE0u + e (Bt VB ) O + e (Ba = e VEG)B ) Oy =0
axEl = 47Tp, 8tE1 = —47Tj1,
0,y + 0, B = —dmjy, 4B + cdyFs = 0, (1.1)

e =3 (e [ rwandp). gen =3 (e [ voorenp)

[

Here t is time, z € R is position, p € R? is momentum, and f®(¢, z,p) is the number density in phase space
of particles of charge e® and mass m®. The velocity of a particle is

Ve(p) = b

/(ma)Q T c—zpz’
where ¢ is the speed of light. As defined in (1.1) p and j are respectively the charge and current densities.
The induced electromagnetic field is given by

(1.2)

— —

E = (Ey,E»,0), B=(0,0,B). (1.3)
As initial data for (1.1) we take
feta,p) = f5' (. p),
02— Fose) 10

to be given, where it is assumed that

OpEr = 47TZ (eo‘/ fé"(m,p)dp). (1.5)
« R2

The goal of this work is to study the behavior of f, Fy, F5, B as ¢ — oo. There are several papers in the
literature [1, 2, 8, 17, 19, 20, 29] that study this limit for solutions of the two and three dimensional versions
of (1.1) where f* — 0 as |x| — oco. The goal here is to consider solutions that do not decay as |z| — oo
and hence have infinite charge and energy. As ¢ — oo the limiting problem is the Vlasov-Poisson system
where the lack of spatial decay is a serious issue [3, 4, 5, 6, 7, 16, 21, 22, 23, 24, 27, 28]. Thus assumptions
must be made on the large |z| behavior of the initial data. As in [27] assume that for each « there are

F®:R? — [0,00) which is C! and positive constants Ry and Qg such that |x| > Ry implies

f3' (@, p) = F(p) = Ez0(x) = Bo(x) =0 (1.6)
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and |p| > Qo implies

Further assume that

and

Then define

and
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fo'(x,p) = F*(p) = 0.

(e [ ) <o
(e [ oo tean) o

T o

Bro) =2 [ )y -2 [ mly)dy.

—00 x

Note that (1.5) follows from (1.13) and for any |z| > Ry,

El,O (SC) =0.

Then the main results of this paper are the following two theorems:

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

Theorem 1.1. Let f§ >0, Eap, and By be C? and assume that (1.8) through (1.13) hold. Then there is
a global C* solution (f®, Ey1,E2, B) of (1.1) and (1.4). Moreover, for every T > 0 and ¢ > 1 there exists
Co > 0 (depending on T and initial data, but not on c¢) such that

|fa(t7x7p)| + |E1(t,$)| + ‘EQ(tv'xM + |B(t,I)‘ < CO

for every o and every (t,x,p) € [0,T] x R x R2.

To state the second theorem we must define f*>° and E° by

with

and

D f + Vi (p) Dy f4 + € B0y, f* =0,
o __ « a,ood
=X [,

. p
OC: e(l OZ,OOid,

EX® =27 / p>(y)dy — 2w / P> (y)dy,

oo x

f2(0,z,p) = f5' (2, p)

p
me’

Ves(p) =

From [21] it is known that (1.16) and (1.17) possesses a global C' solution.

(1.15)

(1.16)

(1.17)

(1.18)
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Theorem 1.2. Assume that
Ey0 =By =0. (1.19)

Then, with the same assumptions as in Theorem 1.1, for every T > 0 and ¢ > 1 there exists Cy > 0
(depending on T and initial data, but not on c¢) such that

[fo(t e, p) = FO(t 2, p)| + | B (t, @) — B (ta)| + | Ba(t, )| + | B(t,2)] < Coc™! (1.20)
for every o and every (t,x,p) € [0,T] x R x R2.

In the following, we will use |||, to represent L> norm either in (¢,z,p) € [0,7] x R x R?, (t,z) €
[0,7] x R, or (z,p) € R x R2. We will use C to indicate a universal constant, which may change from line
to line and may depend on 7" and initial data, but not on c.

The global existence of smooth solutions of (1.1) was established in [10]. This was extended to two
dimensions in [11] and [12], but remains open in three dimensions. However, it was shown in [13] that
solutions of the three dimensional problem can break down only if particle speeds approach the speed
of light. The global existence of smooth solutions for the Vlasov-Poisson system is better understood,
see [15, 18, 25, 26]. Also see [9] for a general reference on mathematical kinetic theory.

It has been suggested [14] that when studying a nonrelativistic limit it is desirable to keep the speed of
light constant and analyze the limiting behavior in some other parameter. While this framework is appealing,
it was not clear what other parameter to use that would not complicate both the analysis and comparison
with papers such as [1, 2, 8, 17, 19, 20, 29].

This paper is organized as follows: The proof of Theorem 1.1 is in section 2. Section 3 contains the proof
of Theorem 1.2. The assumptions of Theorem 1.1 are in force in section 2 and the assumptions of Theorem
1.2 are in force in section 3.

Let us also define the characteristics of the Vlasov equation (X*(s;¢,z,p), P*(s;t,z,p)) by

dxe
=V (P~ 1.21

s (P), (1.21)

dpla « -1y, [ «@

7 = Fi(s, X%) + ¢ 'V (PY)B(s, X?), (1.22)

dj: = Fy(s, X%) — ¢ 'V (PY)B(s, X?), (1.23)

with X“(¢,t, z,p) = z, and P*(t,t,z,p) = p.

2. WELL-POSEDNESS OF THE RELATIVISTIC VLASOV-MAXWELL SYSTEM

The global existence stated in Theorem 1.1 follows from the global existence result of [10] by a finite speed
of propagation argument. Note that it was assumed in [10] that the initial data had compact support. So to
construct the solution on (¢,z) € [0,T] x [-L, L] (with L > Ry) with initial data f§, Ea,, Bo as in Theorem
1.1, let fg,E2707§0 be smooth and satisfy

fo =18, Eao=FExo Bo=DBy (2.1)
if || < L+ T,
Jo=FEs0=Bo=0 (2.2)
if |¢| > L+ ¢T+ 1 and

Zea /R? Fodp=0 (2.3)

if || > L + ¢T. By [10] (1.1) possesses a global C! solution 7%, E1,E5, B with initial data ?S,Ezo,go.
Since increasing L and T will not change f*, E1, Eo, B on the set {(t,#) : 0 < t and |z| < L+ (T —t)}, it
follows that

(f* Ey,Ey,B) = lim (f",Ei,Es, B) (2.4)

L, T—o0

is a global smooth solution of (1.1).
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Note that by use of the characteristics of the Vlasov equation it follows that
0 < f* <max f§ <Cj. (2.5)
2.1. Estimate of F5 and B.
Lemma 2.1. We have
1E2]| Lo + 1Bl L~ < Co (2.6)
Proof. We divide the proof into several steps:
Step 1: Relativistic energy estimate.

We multiply \/(m®)2 + ¢—2p? on both sides of the Vlasov equation, sum up over «, and integrate over p € R?
to obtain

Z/ O f¥/ (m®)2 + ¢ 2p2dp + Z/ P10, fdp (2.7)
[0} Rz [e3% Rz
+Z/ e” (El (m)% +c2p% + c_lpr> Op, fdp
[0 Rz
+Z/ e (Em/(m‘*)2 +c2p2 — c_lplB> Op, f*dp = 0.
[0} Rz

Integrating by parts in (2.7), we get

at<2 Qf“\/mdp) ro.( X [Lmrar) (2.9

c pl c P2
— f¥dp =0,
2 R o -2 fosE SV T e

which further implies

(S Vo) o (S [ nra) 29)
—Elz/ e 2OV (p)dp — EQZ/ 2V (p)dp = 0.

Based on the definition of j(t, ), from (2.9), we deduce that
8t <62 Z/ fa\/ (ma)2 + C2p2dp> + 31 ( / fapldp) E1]1 + EQ]Q) 0. (210)
[e3 R2

Multiplying E, Es and B on the corresponding Maxwell equations, we obtain

Elé‘tEl = — 47TE1j1, (211)
EgatEg + CEgaﬁB = — 47TE2j2, (212)
BB + ¢BJ,FEs = 0. (2.13)
Summing them up yields
1
5at(Ef + B3 + B?) + c0,(FyB) = —4n (E1j1 + E2j2>. (2.14)

Substituting (2.14) into (2.10), we have
Oy <02 Z/ Fe (m*)2 + c—2p2dp) + 0y <c2 Z/ fapldp> (2.15)
« R? « R?

1
+—8,( B2+ B2+ B?) + —8,(E2B) = 0.
8 4
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Based on (2.15), we define

E=c (Z/ e/ (m)2 4 ¢—2 dp> <E1+E2+B2> (2.16)
R2
=c? “p1d —(E2B 2.1
C(%:/R?fplp + = (E:B), (2.17)
which satisfies
0€ + 0, M =0. (2.18)
In [10] (2.18) was the crucial ingredient. Since we need bounds independent of ¢ here, we further define
e=£-¢ “fed 2.19
¢ <za: L f p)7 (2.19)
M=M—c? (Z me Ve ( )dp>, (2.20)
and use the Vlasov equation and integration by parts to verify that
1€ + 0, M = (0, + O, M) — 2 Z/ m® (atfa + Vf"(p)azf“> dp (2.21)
R2
[e%
=2 Z /2 m® (ea (E1 + c_1V2°‘(p)B) Op, [ + € (E2 — c_lvlo‘(p)B) 3p2fa)dp
R

I
I
(]
S

—3B 3B
m“(— e CBnps o o Bpin f“) dp
2 ( (ma)Q + 072p2)3 ( (ma)2 + 072p2)3

Step 2: Characteristic triangle.

We consider the point (¢,2) € [0,7] x R in the time-space plane and the triangle bounded by 7 = 0,
y=x—c(t—7)and y = z+c(t—7) for 7 € [0,t]. Integrating (2.21) over this triangular region and applying
the divergence theorem we find that

a:—i—c t ‘r
0= / / (0-€+0,M)dydr =L+ M + N, (2.22)
where
x+ct
L= / ((@, 0 : <—1,0>)dy, (2.23)
z—ct 0,y)
t
M= / <<ez,zm LG ) V17 cdr, (2.24)
0 > (,x4c(t—71)) V L+c2

,—1) )
: V1+ c2dr. (2.25)
(ra—c(t-r) V14

N = /Ot <<@,sm>

Simplifying (2.22), we obtain

/:%t €(0,y)dy = /Ot (c(’f + 93?) (1,2 + c(t — 7))dr + /Ot (ct’f - fm) (12 —e(t = 7)), (2.26)

—ct

which further implies
(2.27)
x+ct t t
¢t / €(0,y)dy = / (QE + clim) (ryz+c(t—7))dr + / (Qf - cli)ﬁ) (r,z —c(t —7))dr.
T 0 0

—ct

We can simply denote (2.27) as I = II + III. Then we need to estimate I, IT and IT1.
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Step 3: Estimate of I.

Note that
1
- CQ(Z /2 o/ (me)? + c—2p2dp) + o (Ef + EZ 4 BQ) — 02(2 ] mafadp) (2.28)
R —Jr

= <Z fOZ V(m*)?2 4 c2p2 —m )dp>+1<Ef—|—E§—|—B2)
R2 8T

c_2p2 1 2 2 2
§ dp| +—(E2+E2+ B
R2 24+ c2p2 +me 8

1 a2 1 2 2 2
d — | Ef+ E; + B~ ).
(;Qma/ﬂpu » p)%( 2+ B} +

Therefore, we have

x+ct
I= c*l/ ¢(0,y) (2.29)

—ct

) x+ct ) X ztet q
Sc_/_ . nga/ |fo'|p~dp dy—f—c‘/ . 8 <E10+E20+Bo>d

a t
< 2tm£xx{ > oo /R2 | fo |p2dp} + 47Tmg?tx{Eio + E3, +B§}

IN

S 007

which is uniform in c.

Step 4: Estimate of 11 and I11.

Note that
(2.30)
eI = < Z/ f“W@) + 817r<E12 +E24 B2> _ &(Z mafadp)>
R2 ' e
+c ( (Z/ fapldp)+E2 —cC <Z mocfavl ) ))
<ZZ/ \/TZP*WL +c Hp mo‘Vlo‘))dp>
+ = (E2 +E}+B*+ 2E23>
<22/ \/ﬁ 0/) (1ic_1V1a)dp)+817T(E12+(E2i3)2>-
Since
E? +(Ey+ B)? >0, (2.31)
o™V = ‘ i S ’ _ 1, (2.32)
(™) +c 22 oS

VvV (m®)2 + ¢ 2p2 —m® >0, (2.33)

and f¢ > 0, we deduce

E+c 193“(>CQZ/ \/ 24 2p2 —m)(l:l:cflvlo‘)dpzo. (2.34)
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Define
I = /(m%)2 + ¢ 2p2.
Then based on (2.30), we have

= t ! T, +c(t —7))dT
117/0 <@+ zm)(, +e(t —7))d
> /0 <c2 Z - fE@* —m®) (14 'V dp) (r,z+c(t—7))dr >0,
17 = /0 ((’E—c_ EDT)(T,J;—c(t—T))dT
> /0 <c2 ; . [T =m®) (1—c 'V dp) (2 —c(t —7))dr > 0.

Step 5: Synthesis.
Collecting the results in (2.29), (2.36) and (2.37) in (2.27), we obtain

t
0< / ky(r,z 4+ c(t —71))dr < Cy,
0

t
0< / k_(1,z —c(t —71))dr < Cy,
0
where

ki =c? Z/ fEI* —m®) (L£e V) dp.
(e R2

This is the starting point for the following estimates. For convenience, we denote
ot =T —m*) (1+c V),
so that

hy — Z/R2 Foosdp.
[e3

Step 6: Estimate of js.
Since

2
(1+c'VP) = (Faima) (1+ eV,

we directly estimate

oL = ( (ma)2+c—2p2+ma (ma>2+c—2p2

Y

(ma>2 + C—2p2

(m®)? + c~*p3

)
2 ) 2 25 _ —1
P ;<ﬂww+cpcm>

v

(VP +e2?) (Ve + 22+ [p )

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)
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g builds the bridge between j and k4. In detail, we can decompose

=3 (e [ vretapa) (245)

«

-% ( /mc vy <t,x7p>dp) > ( / v <t,x7p>dp)
+ Za: (e“ /p<1 Vgaf“(t,x,p)dp)

Here we estimate these three terms separately:

e For |p| > ¢, we have

p? ((m®)? +c72p3) _ p*2m°c!py|

¢ 2.46
7 = 4(T)3 = 4T3 (246)
— 5771 C|V2 |(ma)2 +C_2 5 = 2m C|V2 |(')’na)72—~—1 Z COH/Q |
Hence, we know
> (6"‘/ Vzaf“(t,w,p)dp> <> (Ie" <g:J““(t,:a;v)cl;v) < Cokx. (2.47)
o Ip|>c o [p|>c ~0
e For 1 < |p| < ¢, we have
2 a2 )2 )2
o < P(m*)° _ po| [p[(m®)* _ 1 0, (m%)
> > > — . 2.4

9 = 4(T)3 = 4T« (Te)2 = 4|V2 ‘(ma)2 +1 (2.48)

Hence, we know

> ( / Slplch;on‘(t,%p)dp)

«

<iy (o1 . ) Lot nitp) (249

a (m~)?+1

< 4max|e k}i < C()k':t.
a (ma)Q

e For |p| <1, we know

S (e“ /W V;‘f“(t,x,pmp)

[e3

1
< max —az <|ea|
« mee lp|<1

<ay (el _w)<c
o [p|<1

Collecting the results in (2.45), (2.47), (2.49) and (2.50), we have

Fe(t, x,p)dp) (2.50)

72| < Co(1 + k). (2.51)
Step 7: Estimate of Fy and B.
From Maxwell equations, we know
OrFo + c0, B = — 47y, (2.52)
OB + cO,Ey = 0. (2.53)
Therefore, we have
Ot(Eg + B) £ ¢0,(Ey + B) = —4mjs. (2.54)

Hence, we have

(By £ B)(t,z) = (B + B)(0, 2 F ct) — 4 /0 ja(r, 2 F et — 7))dr, (2.55)
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which further implies

(B> % B)(t,2)] < |(F»+ B)(0,2F ct)| + 4r / Vol (r 2 F cft — 7))dr (2.56)
< Co+Cy /Ot(l'f-k:t)(T,x:FC(t—T))dT. (2.57)
Based on (2.38) and (2.39), we conclude
(B2 £ B)(t, z)| < Co, (2.58)
which further implies
[ E2llp < Co, (2.59)
1Bl < Co. (2.60)
O
2.2. Estimate of E; and f¢.
Lemma 2.2. We have
Bl e + [1f* ] 1w < Co. (2.61)

Also, for each t > 0, there exists Q(t) (independent of ¢) such that f*(s,z,p) = 0 for any |p| > Q(t) and
0<s<t.

Proof. We divide the proof into several steps:

Step 1: Truncated system.
Define a C*° cut-off function ¢ : R — [0, 1] satisfying

o= {3 Eoz0
For L > Ry, define

o (@) = 8 (@, p)¥(|z] — L), (2.63)
Eko() = Eso(w)i(|a] - L>, (2.64)
By (x) = Bo(z)y(|z| - L), (2.65)
=3¢ fo”‘L (2, p)dp = po(e)ib(Ja] - L), (2.66)
) =Y / T )V 0)dp = ol (la] — L), (267)
Bhoe) =20 [ skt -2 [ sk (2.68)

We can directly verify the truncated data satisfy the compatibility condition
BT o(x) = 4mpf (). (2.69)

The truncated initial data fg"L(x,p), E1L70(:1:), Eé:o(x), Bl (x), have compact support both in space and
momenta, so with fixed light speed ¢, we can apply the main theorem in [10] to obtain a global smooth
solution for EL EL BT,

Step 2: Characteristics.
Define the maximum velocity support of f** as

QL) = sup{ Ip| : foE(t,z,p) # 0 for some s € [0,t],2 € ]R}, (2.70)
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and characteristics XL (s;t,z,p), P“%(s;t,x,p) of the truncated system by

an,L
= Vo Pa,L
ds 1 ( )a
apyr
T = e (B X (P B X)),
,L
dP2a = @ <EL(S X(x,L) _ c—lva(Poz,L)BL(s Xa,L))
dS - 2 ’ 1 ) ’
Xob(t:t x,p) =
Pf’L(t;t7 1:7p> = pl,
PQO"L(t;tvxap) = P2,

Since
vaPet)| <
then for any |z| > L + ct, we have
FoE(t @, p) = B (t,2) = By (t,2) = B"(t,z) = p"(t,2) = j*(t,2) =0,
which means they are still compactly supported in space for any t.

Step 3: Estimate of Ef.
Integrating the Vlasov equation over p € R? and summing up over «, we obtain

opt + 0,5t = 0.

(2.71)

(2.72)

(2.73)

(2.74)

Since p’ and j% are of compact support, we can further integrate over x € R to obtain (since L > Ry)

/R Pt 2)dz = /R Pk (z)d = /R polx)da = 0.

Hence, from the equation 8, Ef((z) = 4mp§ (x), we obtain
x

Bty =20 [ pdy-2n [ M=t [ Heuay

— 00 x — 00

x oo

:47T/PL(tvy)1{ySm}dy’
R

Therefore, we have

B t,) - Bfola) = 4 [ (p%,y) _ p5<y>) Lyendy

= 4”ZGQ/R/R2 (f“’L(uy,p) - 5“’L(y,p)) 1iy<azydpdy.

Define the substitution (y,p) — (4,p) as

{

It is a classical result that the Jacobian of this substitution is 1. Then we have

// fa’L(t,y7p)1{ny}dpdy:// f(()lyL(gaﬁ)l{ny}dﬁdg
R JR2 R JR2

= /R/R2 f(?’L(?L]5>1{XmL(t;0,g,p')ga;}dﬁd§~

Substituting (2.79) into (2.77) and rewriting the dummy variables in (2.79) as (y,p) we get

X*L(0t,y,p),
PL(0;t,y, p).

e &€

ElL(t, x) — ElL’O(:c) = 47TZ eo‘/ /2 fg’L(y,p) <1{XQ,L(t;O’y7p)<I} — 1{y§x}>dpdy.
= R JR

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)
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For (y,p) such that féX’L(ym) # 0, we have
|PE(s5;0,y,p)] < Q%(s), (2.81)

which further implies

Pa,L . L
‘Va <P‘“<S; 07y,p)> < ’ | < € (2.82)
me me
Therefore, we get the bound for maximal distance between initial position and position at time ¢,
a,L ' [eY a,L 1 ! L
[ XOHE0,y0) =y = | [ V(P (s:0,0,0) |ds| < — [ Q¥ (s)ds. (2.83)
0 0
We decompose the integral over y € R in (2.80) to get

E{(t,x) — Efo(x) =1+ 11+ 111, (2.84)

1 t
where I is the integral over y € <x + 7/ QL(S)ds,+oo>, II is the integral over y € ( —00,T —
m=Jo

I I I
—/ QL(s)ds>, and I11 is the integral over y € [m - —/ QF(s)ds,x + —/ QL(s)ds].
me 0 me 0 me 0

e In the integral I, we have 1;xa.z (4,0, p)<z} — l{y<ey =1 —1 =0, which implies I = 0;
e In the integral /1, we have 1(xa.z(1,0,y.p)<z} — 1{y<e} =0 — 0 =0, which implies /1 = 0;

Therefore, we have
9 ot t
\BE(t, ) — BEo(x)| = [TTT] < 4n 3 [¢?| max fo (ma / QL(s)ds> (2Q0)? < Co / Q" (s)ds, (2.85)
- a,xT,p 0 0
which means we may take the supremum to obtain

sup |EL(s,z)| < Co+ Co / Q% (s) (2.86)
[0,¢] xR
On the other hand, based on the characteristic equation (2.71) and Lemma 2.1, we know for ¢ € [0, T7,
t
QL) — Qo < Co/ sup ( ’ElL(s,x)‘ + ’EQL(s,x)’ + ‘BL(s,x)‘ )ds < Co+Co sup |EL(s,z)|. (2.87)
0 @ [0,¢] xR

Combining (2.86) and (2.87), we obtain

t
QL(t) < Co+ Co / Q% (s)ds. (2.88)
0
By Gronwall’s inequality, we have for ¢ € [0, 77,
0 < QF(t) < Cy, (2.89)
which further implies
IEL|| . < Co, (2.90)

where Cy only depends on T' and the initial data and is independent of L and c.

Step 4: Synthesis:
For any finite ¢, the domain of dependence of the point (¢,z,p) is bounded in [0,7] x R x R?, so we can
always take L large enough that the solution f(t,z,p) = f*%(t,z,p). Hence, we have shown

B[l < Co. (2.91)
The existence of Q(t) is guaranteed by the analysis of Q% (¢). a

The proof of Theorem 1.1 is now complete.
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3. THE LIMIT AS ¢ TENDS TO INFINITY
Regarding f*°°, p°°, j*°, E{° as defined in (1.16), we have the following:
Theorem 3.1. We have
IET oo + 175 N poe + 102 f % e + (3.1)
[0p, f* N o + 10p2 f ¥ F N e < Co.
Also, for each t > 0, there exists Q> (t) such that f*>°(s,z,p) =0 for any |p| > Q°(t) and 0 < s <t < T.

Proof. The bound on || Ef°||; « + || f*°°]| - and the construction of Q>°(¢) may be obtained by the methods
of the previous section. To bound the derivatives define Ry = 0, f*>°, Ry = 0p, f*> and Ry, = 0p, f*°.
Then they satisfy

O Ry + V" ()0, Ry + e ET°0p, Ry = —e“ 0, E7°Ry) (3.2)
Oty + Vi (p)0u Ry, + e ET°0p, Ry = —0p, Vi~ (p) R,
8tR + Vi (p )8,;1%32 + e“Efoalegz =0,
with initial data
RZ(0,2,p) = 0. /7, (3.5)
Ry (0,2,p) = 0p, f§, (3.6)
Ry, (0,2, p) = 0y, f5-
By the bound on f*°° and using Q*°(t) we have

0,557 = J4mp™| < Co. (38)
So integration along the characteristics of (1.16) yields
t
|RS (¢, x,p)| < Co+ Co/ sup  |RY | ds, (3.9)
0 [0,s]xRxR2
t
|RS (t,2,p)| < Co +Co/ sup |RY|ds, (3.10)
0 [0,s]xRxR2
’ L (t, 2, p) ‘ < Cy. (3.11)
Combining (3.9) and (3.10) and ylelds
t
sup |Rg| < Co+ Cot + C’ot/ sup |Ry|ds (3.12)
[0,t] xRxR2 0 [0,s]xRxR?

t
<Coy+ C’o/ sup  |Ry|ds.
0 [0,s]xRxR2

By Gronwall’s inequality, we have

sup |Rg| < Co. (3.13)
[0,t] x RxR2
Similarly, we can prove
sup  |Ry | < Co. (3.14)
[0,t] x RxR2
]

3.1. Estimate of FE; and B.
Lemma 3.2. We have
1Bl oo + Bl oo < Coc™t. (3.15)
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Proof. We divide the proof into several steps:

Step 1: Setup.
Define

Do = Ro + (1 +T) sup(Q(t) + Q(1))
(0,77

and note that |z| > Do and f*(¢,z,p) # 0 implies
[tz p) = F*(X(0;t, z,p)).

D
Denote mg = min, m® and note that f*(¢,x,p) # 0 implies |V| < m—o. Let
0
t
A= {(t,x) 2t €1[0,T],|x| > Dy <1+)}.
mo
Thus, if (¢t,2) € A, with s € [0,¢] and f*(¢,x,p) # 0, then
t DO
X (38,2, p)| > \x|—/ vg(zaa(ﬁt,w))‘d@ o] - 20— 5)
s mo

t D
>D0<1+m>_7’n0(t_8)_D0(1+7’;>7
0 0 0

which implies (s, X*(s;¢,z,p)) € A. Denote
lo(t)||, =sup{lo(s,z)|: s €[0,t],(s,x) € A}.

Step 2: Estimate of j in A.
Consider (t,z,p) with (t,z) € A and f*(t,z,p) # 0. Then

Poc
dd LR— (El(s, X) + VR (PY)B(s, XO‘)>,
S
d:Q = <E2(s,X“) - clvl"‘(P”‘)B(&Xo‘)),
S

which implies

Py
) < co( 1zl + 11 )
dP¥
9E| <o hEly+ 151, ).
Therefore,
P2 (0taip) = < Cof 1Bl + 1Ball + 181, )
and

[f4(t2,p) = F(p)| = [F*(P*(0;t,2,p)) — F*(p)| < CO(HEl”A + 1 Eallx + HBHA)'

It follows from assumption (1.9) that

> <ea / FaVadp
RZ

[0}

= ‘Z ea 2F“(V“—p/m%dp)
< a Fa 72 |p| d < C
Z' | p < Coc 7

13

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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SO
i(t, )] = o | fevedp)| < Coc™? * *— F)V*d 3.28
i) = |5 (e [ rveap) | < ot |5 (e [ 7 Pvean) (3.29)
< o+ Ca( 1Bl + 1Bl + 1B ).
Hence, we know
17Ol < Coc™ + Co < [EL()l[5 + [E2(D)]5 + ”B(t)”A)' (3.29)
Step 3: Estimate of Fq in A.
Since E; satisfies 0, Fh = —4mj,, we have
t
Ey(t,z) = E1(0,z) — 47r/ Ji(s,x)ds. (3.30)
0
For (t,z) € A, we know E;(0,z) = 0. Thus,
t
|Eq1(t,x)| < 47r/ l71(s, )| ds. (3.31)
0
Therefore, we have
t
B0l < Coe 4 Co [ (1B + 1B+ 1B, Jas (3.32)
Step 4: Estimate of F, and B in A.
Next, we consider Fy and B for any (¢,z) € [0,7] x R. Based on (2.54), we can directly obtain
t
= —27r/ ( .’E—Ct—T))+j2(T,.’E+C(t—T)))dT, (3.33)
0
t
= —27r/ (32 T x—ct—T))—jQ(T,x—i—c(t—T)))dT. (3.34)
t t
Hence, in order to estimate F5 and B, we need to bound / jo(r,x — ¢(t — 7))dr| and / Jo(r,x + c(t — 7))dr|.
0 0
By substitution, we need to bound
t T T—y
/ Jo(m,x —c(t —1))dr = ¢t / J2 (t — ,y) dy, (3.35)
0 xr—ct ¢
and
t x+ct
. 1 . y—
/ Je(r,x+c(t—71))dr =c¢ / Jo (t - ,y) dy. (3.36)
0 T

Note that (s,y) ¢ A = |y| < Do(1+ s/mg) < Do(1+T/mg) = Cy so by (3.28) and Theorem 1.1

T ) T —y B Co .
/ Jo (t—,y> dy| <c 1/ 72l oo dy
T—ct ¢ —Co
T —
+c*1/ Co<02+HE1(tx y) +‘E2(t
xz—ct ¢ A

< Coc™ + Co/O <||E1(S)||A + 1 E2(s)lla + IIB(S)IIA>dS

071

Ty
=)

and similarly

[T (- )] <aet v [ (161 1RO+ 186 s 639
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This implies
t
Balt. o)l + (0| < Cot 4 G [ (1RO, + 1B+ 1B, Jas. (339
0

We may restrict (3.39) to A to obtain
¢
1B2()]l5 + BB, < Coc™" + Co/o <|E1(8)||A + [ E2(s)ll5 + B(S)lA)dS- (3.40)

Step 5: Synthesis.
In summary, we know from (3.32) and (3.40) that

t
IEx ()]s + B2 5 + [ B@) 5 < Coc™" + Co/o < [E1()l[a + [1B2(8)]]a + ||B(S)||A)d5' (3.41)
By Gronwall’s inequality, we have
IEx@®)ls + [B2()[4 + Bl < Coc™ et < Coc™. (3.42)
Therefore, by (3.39) we have
1B(t, )| oo + | B(t, )| oo < Coc™". (3.43)

3.2. Estimate of Fy — Ef° and f® — fS.
Lemma 3.3. We have

1By = Bl pee + 1F* = fSll oo < Coc™™ (3.44)
Proof. Since 0;Fy = —4mj; and O, E7° = —4mj°, we have

¢
|E1 — E{°| < 47r/ l71(s, ) — 37°(s, x)| ds (3.45)
0

< Cy Z/t || dpds
— Jo Jr2
where h%(t,z,p) = f4(t,z,p) — f*°(t,z,p). Note that h* satisfies the equation
Oh® + VI (p)dsh™ + e* (Br + ¢ 'V5*(p) B) Op b + €* (Bz — ¢ 'V (p) B) 0, h* (3.46)
= (V"% (p) = VI (0) e f ™ + € (E° — Ex — ¢ V3 (p)B) 8p, [ — € (B2 — ¢ 'V (p) B) 9, [

and
h*(0,z,p) = 0. (3.47)
By Theorem 3.1 and by Lemma 3.2 we have
(Vo= - Vi) o] < o (3.48)
le® (E® — By — ¢ 'V (p)B) Oy, f*™°| < Coc™ + [ s1]1p |Ey — Ef°, (3.49)
0,t] xR
e (B2 — ¢ ' Vi*(p) B) Op, f*°°| < Coc™ . (3.50)
Then integrating along the characteristics of the Vlasov equation, we have
t
|h(t, 2, p)| < Coc™' + CO/ sup |Ey — E{°|ds. (3.51)
0 [0,s]xR

Combining (3.45) and (3.51), we have

t
|Ey— E°| <Co ) / / sup  |h®|dpds (3.52)
o Jo ]

p|<Q(s)+Q(s) [0,5] X RxR?

t
< Cot(ct +/ sup |Ep — E{°|ds).
0 [0,s]xR
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Taking the supremum yields

t
sup |E) — E®| < CoT(c™? +/ sup |E; — E°|ds). (3.53)
[0,t] xR 0 [0,s]xR
Using Gronwall’s inequality, for ¢ € [0,T] we obtain
sup |Ey — E°| < Coc?, (3.54)
[0,t] xR
which is
1B~ B < Coe™. (3.55)
By (3.51) this implies
1% = foellpoe < Coc™t (3.56)
|
The proof of Theorem 1.2 is now complete.
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