Center for Nonlinear Analysis
CNA Home
People
Seminars
Publications
Workshops and Conferences
CNA Working Groups
CNA Comments Form
Summer Schools
Summer Undergraduate Institute
PIRE
Cooperation
Graduate Topics Courses
SIAM Chapter Seminar
Positions
Contact |
Publication 08-CNA-018
Stable Discretization of Magnetohydrodynamics in Bounded Domains Jian-Guo Liu
Robert L. Pego Abstract: We study a semi-implicit time-difference scheme for magnetohydrodynamics of a viscous and resistive incompressible fluid in a bounded smooth domain with perfectly conducting boundary. In the scheme, velocity and magnetic fields are updated by solving simple Helmholtz equations. Pressure is treated explicitly in time, by solving Poisson equations corresponding to a recently developed formula for the Navier-Stokes pressure involving the commutator of Laplacian and Leray projection operators. We prove stability of the time-difference scheme, and deduce a local-time well-posedness theorem for MHD dynamics extended to ignore the divergence-free constraint on velocity and magnetic fields. These fields are divergence-free for all later time if they are initially so. Get the paper in its entirety as |