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Abstract.

Under standard processing conditions, many materials possess polycrystalline microstructures
composed of a large number of small monocrystalline grains separated by grain boundaries. The
energetics and connectivity of the grain boundaries network plays a crucial role in defining the
properties of a material across a wide range of scales. A central problem in materials science is
to develop technologies capable of producing arrangements of grains—textures—that provide for a
desired set of material properties.

One of the most challenging aspects of this problem is to understand the role of topological
reconfigurations during coarsening. In this paper, we study mesoscopic behavior of a one-dimensional
grain boundary system and investigate the possibility of modeling texture evolution. We suggest a
stochastic framework based on the theory of continuous time random walks that may be used to model
this system. We compare the predictions of the corresponding evolution equations with simulations
and discuss their limitations and possible extensions to higher-dimensional cases.

1. Introduction. Most technologically useful materials arise as polycrystalline
microstructures, composed of myriads of small crystallites, called grains, separated by
interfaces, called grain boundaries. The energetics and connectivity of the network of
boundaries are implicated in many properties across wide scales, for example, func-
tional properties, like conductivity in microprocessors, and lifetime properties, like
fracture toughness in structures. Preparing arrangements of grains and boundaries
suitable for a given purpose is a central problem in materials science. It likewise
presents many challenges for mathematical modeling, simulation, and analysis. His-
torical emphasis here has been on the geometry, or more exactly, on statistics of simple
geometric features of experimental and simulated polycrystalline networks. We are
now turning our attention to texture, the mesoscopic description of arrangement and
properties of the network described in terms of both geometry and crystallography.

There is a great wealth of experimental work available concerning texture in poly-
crystalline systems: it has, after all been of recognized importance since the stone age
(see [1]) In recent years, we have witnessed a changing paradigm in the materials
laboratory with the introduction of automated data acquisition technologies. This
has permitted the collection of statistics on a vast scale and its use to optimize as-
pects of material behavior. There are situations, for example, where it is possible to
quantify the amount of alignment or misalignment sufficient to produce a corrosion
resistant microstructure. To rise beyond this level of anecdotal observation, the ther-
modynamics of the material system must be related to texture and texture related
properties. Said in a different way, are there any texture related distributions which
are material properties? Some geometric features of the configuration, like relative
area statistics have these properties in the sense that they are robust but they are not
strongly related to energetics. Recent work has provided us with a new statistic, the
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grain boundary character distribution, which has enormous promise in this direction.
The grain boundary character distribution is a measure of relative amount of grain
boundaries with a given net misorientation. Owing to our new ability to simulate the
evolution of large scale systems, we have been able to show that this statistic is robust
and, in elementary cases, easily correlated to the grain boundary energy [2], [3], [4].

We stress, however, that the mechanisms by which the distribution develops
from an initial population are not yet understood. As a polycrystalline configuration
coarsens, facets are interchanged and some grains grow larger and others disappear.
These critical events determine the evolution of our distribution. This is because the
system coarsens by the motion of the triple junctions, with low energy boundaries
sweeping out those of higher energy. The triple junction population, in turn, is de-
termined by the critical events. The regular evolution of the network is governed
by the Mullins equations of curvature driven growth supplemented by the Herring
condition force balance at triple junctions, a system of parabolic equations with com-
plementing boundary conditions (see [5],[6]). The critical events, on the other hand,
are stochastic.

The major difficulty in developing a theory of the grain boundary character dis-
tribution lies in the lack of understanding of these stochastic events. In this work we
concentrate our effort on the mechanisms governing these processes. Here we shall
investigate a simplified 1-dimensional model that serves as a surrogate, exhibiting the
main features of the interacting grain boundary network. In this model, we shall have
boundaries and junctions between boundaries moving under a form of gradient flow.
It is introduced precisely in the Section 2.2.

There are several approaches one might adopt to describe the behavior of the
grain boundary character density, from purely deterministic to stochastic. Motivated
by the apparent presence of stationary distributions coming out of the statistical anal-
ysis of such a system as described in Chapter 5.1, we consider theoretical frameworks
capable of describing it. For example, one possible such framework based on statis-
tical mechanics is introduced in [7], where we construct a Boltzmann-type equation
modeling grain interaction which can successfully reproduce simulation data in long
time scale with the adequate choice of parameters and has a good potential for gen-
eralization to higher dimension. In fact, it appears that this approach can yield even
better results in 2D due to the the restrictions that 1-dimensional problem poses on
grain interactions, in contrast to its visual simplicity. Here we focus our attention on
the strategy we found to be most promising. In Chapter 3.1 we look at the traditional
continuous time random walk (CTRW) theory, which turned out to be the most flex-
ible way to handle the complexity observed in this type of jump process. In addition
to the ”intuitive” random walk derivation, we provide an alternative way to derive the
master equation for the most general random walk, relying exclusively on probabilistic
tools. We conjecture the fractional nature of the grain boundary kinetics and propose
unified approach to model it in terms of generalized fractional master equations. We
test our theoretical ideas on a 1-dimensional problem designed specifically to target
critical events evolution observed in microstructure. In Chapter 5, we identify the
set of stable statistics and confirm the subdiffusive nature of the underlying kinetics.
Finally, in 5.2 we compare the statistics obtained by direct simulation with the results
of the generalized master equation developed through CTRW theory.

The purpose of this paper is to propose a set of tools that can be used to model
the evolution of critical events in microstructure. Without aiming to obtain a unique
solution to the problem, we describe a theory that has a potential for successfully
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describing each stage of the grain growth dynamics in the higher dimensional systems.

2. Simplified model description. Our principal goal is to understand whether
it is possible to derive a stochastic model of grain growth by conducting numerical ex-
periments for a large number of evolving grains, collecting the appropriate statistical
data, and using this data to formulate a mathematical model governing the evolu-
tion of relevant effective characteristics. In this paper, we demonstrate the feasibility
of this approach by considering a “toy” one-dimensional system of grain boundaries
represented by intervals on a number line. Note that we do not claim that such a
system is physically realistic—there is no curvature-driven propagation in one dimen-
sion. Rather, our interest is in studying the dynamics of a system where interactions
between grain boundaries resemble qualitatively those observed in a real polycrys-
talline material. We assume that each grain boundary is described by its length and a
prescribed “orientation”. We require that there are only nearest-neighbor interactions
between the grain boundaries and that the strength of the interactions depends on
values of the orientation parameter for the neighboring boundaries.

To make our construction precise, fix L > 0 and consider the intervals [xi, xi+1],
i = 0, . . . , n− 1 on the real line where xi ≤ xi+1, i = 0, . . . , n − 1 and xn = x0 + L.
The locations of the endpoints xi, i = 0, . . . , n may vary in time however the total
length L of all intervals remains fixed. For each interval [xi, xi+1], i = 0, . . . , n − 1,
choose a number αi from the set {αj}j=1,...,n. The intervals [xi, xi+1] correspond to
grain boundaries and the points xi represent to the triple junctions. The parameters
{αi}i=1,...,n can be viewed as representing crystallographic orientations. The length
of the ith grain boundary is given by li = xi+1−xi. Now choose a non-negative energy
density f(α) and define the energy

En(t) =
∑

f(αi)(xi+1(t) − xi(t)) (2.1)

Consider gradient flow dynamics characterized by the system of ordinary differ-
ential equations

ẋi = f(αi) − f(αi−1), i = 0, . . . , n. (2.2)

The parameter αi is prescribed for each grain boundary initially according to
some random distribution and does not change during its lifetime. The velocities of
the grain boundaries can be computed from the relation

vi = ẋi+1 − ẋi = f(αi+1) + f(αi−1) − 2f(αi) (2.3)

Notice that the velocities remain constant until the moment a neighboring grain
boundary collapses, at which instant a jump of the velocity occurs. Every such crit-
ical event changes the statistical state of the model through its effect on the grain
boundary velocities and therefore affects further evolution of the grains. Notice that
the lengths of the individual grain boundaries vary linearly between the corresponding
jump events and depend entirely on the corresponding grain boundary velocities.

An important feature of the thermodynamics of grain growth is that it is dissi-
pative for the energy during normal grain growth. At critical events, the algorithm is
designed to enforce dissipation. To verify that (2.2) is also dissipative, first consider
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a time t when there is no critical event. Then

dEn

dt
(t) =

∑

f(αi)vi

=
∑

f(αi)(f(αi+1) − f(αi) − f(αi) + f(αi−1))

=
∑

f(αi)(f(αi+1) + f(αi−1) − 2
∑

f(αi)
2

≦ 2
(

∑

f(αi)
2
)

1

2

(

∑

f(αi)
2
)

1

2

− 2
∑

f(αi)
2

= 0

by periodicity and the Schwarz Inequality. This also corresponds to the fact that for
any gradient flow dynamics

(ẋi)
2 = −

∂En

∂xi
ẋi,

so that

∂En

∂t
= −

∑

ẋ2
i < 0.

Now suppose that the grain boundary [xc, xc+1] vanishes at time t = tcrit and it
is the only grain boundary vanishing at tcrit. Then the velocity of that boundary
vc(t) < 0, t < tcrit, namely,

1

2
(f(αc+1) + f(αc−1)) < f(αc).

and lc → 0 for t→ t−crit. Now

En(t) >
∑

i 6=c

f(αi)li, t < tcrit,

and

En(tcrit) = lim
t→tcrit

∑

i 6=c

f(αi)li ≦ lim
t→tcrit

En(t).

Thus the model system is dissipative.
Figure 2.1 shows the behavior of velocity and length parameters of a typical grain

interface in the course of the evolution. It is clear that the two quantities describing
this process are the waiting times between the collision events and corresponding jump
sizes of the velocities, that is there is an underlying jump process in the sense of the
theory presented in earlier chapters.

From the materials science perspective, it is important to know the distributions
of relative lengths, as well as grain orientations. In the most general case, we have a
state space S = {(l, v, α)}, where l ∈ R

+, v ∈ R, α ∈ (a, b).
Our goal is to obtain the set of equations describing time evolution of the joint

probability density function ρ(l, v, α, t). These equations would completely describe
the dynamics of the one-dimensional grain growth model generated by the gradient
flow equation (2.2).
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Fig. 2.1. Schematic view of grain boundary velocities evolution.

3. Derivation of evolution equations.

3.1. Continuous time random walk derivation of a master equation.

Consider a walker making random steps in a state space X. For a walk started at x0

at time t0, we denote by p̄(x, t|x0, t0) the conditional probability of being found at
site x at time t (site occupancy probability). We let φ̄(x2, t2|x1, t1) be the conditional
probability that, if the walker arrives at site x1 at time t1, his next step is to site x2

and it occurs at time t2.
Let us make the following standard assumptions on the random walk. Let the

walk be homogeneous in the following sense: if the walker arrives to a point x at a
time t, the probability φ(y, s) of making the next step of size y after a pause s depends
on y and s, but not on x and t. Also, assume that the transition probability density
φ can be factored into a product of a function of time and a function of step length:

φ(y, s) = µ(y)w(s).

Here w(s) is the waiting time density and µ(y) is the step-length density defined as the
marginals of the transition density φ. This assumption is known as a Montroll-Weiss
model [8], [11].

Let P (x, t) be the occupancy probability, i.e. the probability of finding the walker
at the state x at time t, given that at time zero the walker was at the origin, i.e.
P (x, 0) = δ(x). Due to the homogeneity assumption above, if the walker arrives at x′

at time t′, the probability of finding him at x at time t is P (x− x′, t− t′).
Given w, we can compute the probability that a walker arriving at a site pauses

for at least time t before leaving that site:

ψ(t) = 1 −

∫ t

0

w(t′)dt′.

The occupancy density P and the transition probability density φ(x, t) are related
via a master equation that we can formally derive as follows. At time t either the
walker has never left the starting site, or he has made at least one step. The probability
of the former has the density ψ(t) and the corresponding contribution to P (x, t) is
given by ψ(t)δ(x). If the walker makes one or more jumps, we may partition all
possible motions over the outcome and time of occur

P (x, t) = δ(x)ψ(t) +

∫ t

0

∫ ∞

−∞

P (x− x′, t− t′)µ(x′)w(t′)dx′dt′. (3.1)
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Intuitively, the first term on the right-hand side above accounts for a walker who

Fig. 3.1. Random walk: partitioning over the first jump.

fails to move from the starting position before time t elapses. The integral expresses
the fact that a walker found at site x at time t after making at least one step must
have made his first jump from x0 = 0 to x′ at some time t′ and subsequently found
his way to site x in remaining time t− t′, as shown in Figure 3.1.

3.2. Probabilistic derivation of the master equation. Let Ti, i = 1, 2, . . .
be nonnegative independent and identically distributed (i.i.d) random variables with
distribution w(t) that model waiting times between consecutive jumps of a walker.
Set T (0) = 0 and let

T (n) =

n
∑

i=0

Ti

be the time of the n-th jump. Suppose that the jump sizes are given by the i.i.d
random variables Xi, i = 0, 1, . . . , with the distribution µ(x) independent of Ti. Then
we can consider the random process

N(t) = max{n ≥ 0 : T (n) ≤ t}

counting the number of jumps up to time t and define the position of the walker at
time t via

X(t) =

N(t)
∑

i=0

Xi.

In the previous section, we derived the evolution equation for P (x, t) = P(x <
X(t) < x + dx) based on the CTRW formalism. Here we present an alternative
derivation relying strictly on probabilistic tools.

First, by the formula of total probability,

P (x, t)dx = P(x <

N(t)
∑

i=0

Xi < x+ dx)

=
∞
∑

k=0

P

(

x <

N(t)
∑

i=0

Xi < x+ dx
∣

∣

∣
N(t) = k

)

P(N(t) = k)

= δ(x)P(N(t) = 0)dx+

∞
∑

k=1

P

(

x <

k
∑

i=1

Xi < x+ dx
)

P(N(t) = k).

(3.2)
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Notice that P(N(t) = 0) is the probability a walker starting at x = 0 and not making
any moves until time t

P(N(t) = 0) = 1 − P(T0 ≤ t) = 1 −

∫ t

0

w(τ )dτ,

the survival probability, denoted as ψ(t) in the previous section. Hence the contri-
bution of this term in P (x, t) has the form δ(x)ψ(t). Next, consider separately each
term in the right hand side sum in (3.2). Recall from the properties of the conditional
probability that for any random event B and any random variable Y with probability
density fY ,

P (B) =

∫ ∞

−∞

P(B|Y = y)fY (y)dy.

Since Ti are i.i.d. random variables with probability density w, for all k > 0 and all
t > 0 we have

P(N(t) = k) =

∫ t

0

P(N(t) = k|T1 = τ )w(τ )dτ =

∫ t

0

P(N(t− τ ) = k − 1)w(τ )dτ.

Similarly, due to the independence of identically distributed jumps Xi,

P

(

x <
k

∑

i=0

Xi < x+ dx
)

=

∫ ∞

−∞

P

(

x <
k

∑

i=1

Xi < x+ dx
∣

∣

∣
X1 = x′

)

µ(x′)dx′

=

∫ ∞

−∞

P

(

x− x′ <

k
∑

i=2

Xi < x− x′ + dx
)

µ(x′)dx′

=

∫ ∞

−∞

P

(

x− x′ <

k−1
∑

i=1

Xi < x− x′ + dx
)

µ(x′)dx′.

Therefore, from (3.2) and using Fubini theorem to justify interchange of limits of
integration,

P (x, t)dx = δ(x)ψ(t)dx+
∞
∑

k=1

∫ ∞

−∞

∫ t

0

P

(

x− x′ <

k−1
∑

i=1

Xi < x− x′ + dx
)

P(N(t− τ ) = k − 1)µ(x′)w(τ )dτdx′

= δ(x)ψ(t)dx+

∫ ∞

−∞

∫ t

0

P (x− x′, t− τ )µ(x′)w(τ )dτdx′.

This recovers the master equation (3.1) for the probability density P (x, t), that we
derived earlier using intuitive arguments of the continuous time random walk theory.

3.3. Evolution equation for the random initial distribution. We gave two
alternative derivations of the equation (3.1) for the probability density P (x, t) with
initial condition P (x, 0) = δ(x). Now suppose that the initial state of the walker is not
known precisely, but given by initial distribution p(x, 0) = p0(x). In this situation,
we can write the probability of being in state x at time t as

p(x, t) =

∫

P (x− y, t)p0(y)dy (3.3)
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which yields

p(x, t) = p0(x)ψ(t) +

∫ t

0

∫ ∞

−∞

p(x− x′, t− t′)µ(x′)w(t′)dx′dt′. (3.4)

Just as equation (3.1), equation (3.4) is called the master equation for continuous-time
random walks and it holds for any walk satisfying the homogeneity and separability
assumptions given above. It is worth noting that following the definition (3.3), p(x, t)
admits a representation E(p0(x−X(t))), which corresponds to a ”backward” approach
in the terminology of the Markov processes. In complete analogy with the above
derivations, one can derive the ”forward” evolution equation for the quantity q(x, t) =
E(p0(x+X(t))), which satisfies

q(x, t) = p0(x)ψ(t) +

∫ t

0

∫ ∞

−∞

q(x+ x′, t− t′)µ(x′)w(t′)dx′dt′. (3.5)

4. Markov and non-Markov jump processes.

4.1. Generalized master equation and memory kernel. It is convenient to
work with equation (3.4) in Laplace space. Indeed, denote the Laplace time variable as
u and the Laplace transforms of p(x, t) and w(t) by p̂(x, u) and ŵ(u) correspondingly.
Then we arrive at

p̂(x, u) =
p0(x)(1 − ŵ(u))

u
+ ŵ(u)

∫ ∞

−∞

p̂(x− x′, u)µ(x′)dx′. (4.1)

We can look at this equation from a slightly different perspective, similar to that
offered in [15]. After some simple algebra we can rewrite (4.1) as follows:

1 − ŵ(u)

uŵ(u)
(up̂(x, u) − p0(x)) + p̂(x, u) =

∫ ∞

−∞

p̂(x− x′, u)µ(x′)dx′

and let

Φ̂(u) =
1 − ŵ(u)

uŵ(u)
.

Then after changing variables inside the integral we have

Φ̂(u)(up̂(x, u) − p0(x)) =

∫ ∞

−∞

[p̂(x− x′, u) − p̂(x, u)]µ(x′)dx′, (4.2)

and by taking inverse Laplace transform

∫ ∞

0

Φ(t− t′)
∂

∂t
p(x, t′)dt′ =

∫ ∞

−∞

[p(x− x′, t) − p(x, t)]µ(x′)dx′. (4.3)

Following [15] we call Φ(t) the ”memory function” of the CTRW.
It is easy to see that (4.3) formally reduces to a differential equation if the process

is Markov (”memoryless”). Then Φ(t) =
1

λ
δ(t), where λ = const and

∂

∂t
p(x, t) = λ

∫ ∞

−∞

[p(x− x′, t) − p(x, t)]µ(x′)dx′. (4.4)
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This is equivalent to having Φ̂(u) =
1

λ
and

ŵ(u) =
λ

u+ λ
and w(t) = λe−λt.

In other words, in order to have a Markovian CTRW one needs to have exponentially
distributed waiting times. However, we can derive a generalized master equation of
the form (4.4) for a much wider class of processes. Namely, suppose

Φ̂(u) =
1

λ
uβ−1, (4.5)

then equation (4.2) becomes

1

λ
(uβ p̂(x, u) − p0(x)u

β−1) =

∫ ∞

−∞

[p(x− x′, t) − p(x, t)]µ(x′)dx′, (4.6)

which corresponds to

∂β

∂tβ
p(x, t) = λ

∫ ∞

−∞

[p(x− x′, t) − p(x, t)]µ(x′)dx′. (4.7)

Here we employ the so-called Caputo fractional derivative definition

dβ

dtβ
f(t) =

1

Γ(1 − β)

∫ t

0

f ′(τ )

(t− τ )β
dτ ,

for which

L
[ dβ

dtβ
f(t)

]

= uβ f̂(u) − uβ−1f(0).

The choice of Φ̂(u) in (4.5) suggests the form of waiting times distribution that gen-
eralizes exponential behavior of the Markovian case. Namely,

ŵ(u) =
λ

uβ + λ
,

which after inversion gives

w(t) = −
d

dt
Eβ(−tβ), (4.8)

where Eβ =

∞
∑

n=0

zn

Γ(βn+ 1)
is the Mittag-Leffler function, which interpolates between

the stretched exponential form and long-time inverse power law behavior. This is
the only choice of a waiting time distribution that allows one to transform the basic
CTRW equation 3.4 directly into a fractional evolution equation without a limiting
procedure (see [14]). As shown in [15], we get the following asymptotic behavior for
the waiting times in this case:

w(t) =
1

t1−β

∞
∑

n=0

(−1)n tβn

Γ(βn+ β)
, t ≥ 0,

w(t) ∼
sinβn

π

Γ(β + 1)

tβ+1
, t→ ∞.

(4.9)
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When β = 1 we recover the exponential waiting time behavior of the Markovian case.
Recall that in the special case of a symmetric stable Levy measure µ with index

0 < α < 1, i.e.

µ(s) = αs−α−1, 0 < α < 1, s > 0, (4.10)

following [9], one can define the so-called Riesz fractional derivative as

∂αf

∂|x|α
=

−1

Γ(1 − α)

∫ ∞

0

(f(x− y) − 2f(x) + f(x+ y))αy−1−α dy,

which corresponds to the pseudo-differential operator (−∆)α/2 with symbol −|k|α,
[14]. In the asymmetric case, it generalizes to

∂α1f

∂(−x)α1

+
∂α2f

∂xα2

, (4.11)

where

Dα
−f =

∂αf

∂(−x)α
=

−α

Γ(1 − α)

∫ ∞

0

(f(x) − f(x− y))y−1−α dy

Dα
+f =

∂αf

∂xα
,=

−α

Γ(1 − α)

∫ ∞

0

(f(x+ y) − f(x))y−1−α dy

are the one-sided fractional derivatives of f .
In [16], it is shown that the one sided derivatives defined this way coincide with

the one-sided Riemann-Liouville fractional integrals, i.e.

Dα
−f(x) = Iα

−f(x) = −
d

dx
I1−α
− =

1

Γ(α)

∫ ∞

x

(s− x)α−1f(s)ds

Dα
+f(x) = Iα

+f(x) = −
d

dx
I1−α
+ =

1

Γ(α)

∫ x

−∞

(x− s)α−1f(s)ds.

Notice that in the case of asymmetric stable jump sizes distribution µ, the right-hand
side of the equation (4.7) is proportional to (4.11) defined above. Hence in this special
case the equation (4.7) takes on the form of a fractional equation in both time and
space:

∂βp(x, t)

∂βt
= Aα,β

∂α1

∂(−x)α1

p(x, t) +Bα,β
∂α2

∂xα2

p(x, t). (4.12)

In the case of exponential waiting times with arbitrary jump sizes, equation 4.7 co-
incides with the evolution equation for the Poisson jump process as developed in the
theory of Levy processes (see [12],[13]).

These observations link together the theories of continuous time random walks,
Levy processes and diffusion processes and justify the fact that the equation (4.7) is
the most general form of the evolution equation one can get for an arbitrary space
homogeneous jump process.

4.2. Asymptotic behavior and fractional kinetics. Equation (3.4) is true
for any jump process expressed as a CTRW, and it depends on the forms of the model
functions w and µ. We have shown how a fractional evolution equation can result
from (3.4) for a special choice of waiting times (4.8) and jump sizes (4.10) densities.
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In general, if the closed form of probability densities is not known, we can derive
the same equation in the asymptotic limit for t → ∞. The starting point for this
derivation is the Montroll-Weiss equation

ˆ̃p(k, u) =
p̃0(k)(1 − ŵ(u))

u(1 − ŵ(u)µ̃(k))
, (4.13)

representing a Fourier-Laplace transform of (3.4). Here ˆ̃p denotes the Fourier-Laplace
transform of p, whereas µ̃(k) and ŵ(u) are the Fourier and Laplace transforms of µ(x)
and w(t) correspondingly.

If both waiting time and jump size distributions have finite variances T and Σ2

respectively, the long-term limit of the CTRW corresponds to the Brownian motion.
This easily follows from expanding Poissonian waiting times and Gaussian jump sizes
in Laplace and Fourier variables correspondingly:

ŵ(u) ∼ 1 − uτ +O(u2),
µ̂(k) ∼ 1 − k2σ2 +O(k4),

where τ = T and Σ2 = 2σ2. Equation (4.13) then takes on the form

ˆ̃p(k, u) =
p0(k)

k + σ2u2/τ

and by inversion converts to the classical Fokker-Planck equation ([10]). On the other
hand, infinite variances corresponding to long rests and/or long jumps can result in
the following expansions instead

ŵ(u) ∼ 1 − (uτ )β +O(uβ)
µ̃(k) ∼ 1 − (kσ)α +O(kα).

Substituting these expansion into (4.13), we get

ˆ̃p(k, u) =
uβ−1

uβ + |k|α
.

This gives rise to the same type of fractional kinetic equation that we discussed in the
previous section:

∂βp(x, t)

∂βt
= Dα,β

∂αp(x, t)

∂xα
.

Note that this equation has the closed form solution in the form

p(x, t) =
1

tβ/α
Wα,β

( x

tβ/α

)

,

where Wα,β is the inverse Laplace transform of the Mittag-Leffler function Eα,β(z) =
∞
∑

j=0

zj

Γ(αj + β)
.

We remark that the fractional derivative in time introduces dependence on the
past history, which brings in extra memory requirements for the corresponding nu-
merical scheme. We will return to this point later when discussing the numerical
implementation of the aforementioned fractional evolution equation.

11



5. Numerical results.

5.1. Simulation statistics. The first step toward a mesoscopic model is the
identification of stable statistics. If the distributions behave chaotically or fail to
stabilize, the analysis is significantly more complicated. To this end, we simulated
the 1-dimensional system described above according to the laws of motion (2.3). The
statistics of several numerical experiments for s system of 10000 grain boundaries is
presented below. We refer to each grain boundary disappearance event as a simulation
”step”. Hence, unless there are coincident events, 10000 boundaries disappear exactly
after 10000 steps.
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Fig. 5.1. Evolution of marginal pdf for: (a) relative lengths, (b) relative

velocities for f = (x − 0.5)2

Figure 5.1 shows evolution of the relative area and relative velocity distributions
for the case of a single well potential. Both statistics do not change their shape in the
later part of the simulation, however, their spread narrows with time, since fewer and
fewer grains take part in the statistics. In this figure, the axes are scaled accordingly
and we observe the stabilization of both distributions.

In Figure 5.3 we depict similar distributions for the orientation parameter α for
the choice of f having either a single or triple minima. The graphs clearly show that
the shapes of f and orientations distribution are inversely correlated.

Since we also want to model the evolution of these statistics at the mesoscopic
level, we also need to study the waiting times and jump sizes for the grain boundary
velocities, as described in Figure 2.1. Figure 5.3 shows typical behavior of these
distributions. One can notice that, although the waiting times are close to being
exponentially distributed, their tails might be closer to the power-law fit. As for the
jump sizes, their distribution clearly depends on the form of the potential f , but
remains asymmetric in both cases. Thus the observed behavior cannot be represented
by the regular Gaussian distribution. Having made these observations, it becomes
clear that the jump process underlying the grain growth dynamics in the 1-d case
does not fit into the regular diffusion framework. However, the existence of stable
statistics for both length, velocities and orientations motivates the search for a suitable
statistical model for this type of dynamics.

As expected for a fractional dynamics model, our numerical experiments show
that the cumulative arrivals do not behave linearly with respect to time. Figures
5.4(a) and (b) show the log-log graph of the cumulative arrivals N(t) until time t for
the first 4000 events and consecutive 2000 events respectively. The behavior conforms

12



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Orientations distribution and corresponding energy for f(x)=(x−0.5) 2

histogram

energy

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

50

100

150

200

250
Orientations distribution and its corresponding 3−min energy function

histogram

energy
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Fig. 5.3. Distribution of (a) waiting times fitted by exponential and power law

curves; (b) jump sizes for f(x) = (x − 0.5)2 and f(x) = |x − 0.5|

well with N(t) ∼ t in the beginning. However, when we look at N(t) −N0 vs. t− t0
with t0 being the time of the 4000th arrival and N0 = 4000 in Figure 5.4(b), we notice
that

N(t) −N0 = (t− t0)
β , where β ∼ 0.5.

This points to a fact that the dynamics of the process experiences a transition from one
mode to another at some critical point tcr in the simulation. At the same critical time
tcr the stabilization of relative distributions is observed, as shown in Figure 5.1. Note
that although by the time t = tcr almost half of the boundaries have disappeared,
the absolute time elapsed from the onset of simulation remains minuscule (of the
order of 10−2 for a 100 msec long simulation). The change in the behavior of the
system can be attributed to ”washing-out” of transients during the relaxation stage
until it reaches the steady state. It is interesting to notice, however, that the ”stable”
regime corresponding to the stabilized distributions deviates significantly from regular
diffusion, with β = 0.5, in contrast with the normal diffusion, where β = 1. Hence we
have a case of an anomalous (sub)diffusion.

What is even more intriguing, the fractional diffusion exponent does not depend
on the choice of the interfacial energy f , as shown in Figure 5.5 below. The cumulative
arrival graph for all simulations experiences a transition from a N(t) ∼ t to a N(t) ∼
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Fig. 5.4. Cumulative arrivals vs. time in log-log scale with a linear fit for the (a) first stage of
the simulation (first 4000 arrivals), (b) middle stage of the simulation (consecutive 2000 arrivals))

t1/2 regime around the same tcr and the slope of the graph converges to the same
value before and after the transition.

Fig. 5.5. Cumulative arrivals N(t) vs. time t in log-log scale for different choices of the
potential: f(x) = x2, f(x) = |x−0.5|, f(x) = (x−0.5)2, f(x) = |x−0.5|1/2, f(x) = (x−0.5)6, f(x) =
(x − 0.5)2(x − 1)3. Simulation is repeated 10 times for each potential.

5.2. Direct simulation of fractional equation. Numerically, this equation is
best solved by using Grunwald-Letnikov formulation of fractional derivative:

∂βf(t)

∂tβ
= lim

h→0

1

hβ

[t/h]
∑

k=0

ωβ
k f(t− kh), where ω

(β)
k = (−1)k

(

β
k

)

.

Taking β = 0.6, numerical solution of the fractional Fokker-Planck equation can be
obtained by using the explicit FTCS difference scheme,

p
(m+1)
j = p

(m)
j + Sβ

m
∑

k=0

ω
(1−β)
k

[

p
(m−k)
j−1 − 2p

(m−k)
j + p

(m−k)
j+1

]

,
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where Sβ = (∆t)β

(∆x)2 , which has been shown in [17] to be stable as long as

∆t ≤
1

43/2−β
(∆x)

2

β .

In the case of arbitrary µ(s), we have a modified numerical scheme

p
(m+1)
i,j = p

(m)
i,j +

m
∑

k=0

ω
(1−β)
k [Dβvj∆lp

(m−k)
i,j + SβI

(m−k)
i,j ], (5.1)

where the constants take the form Sβ =
(∆t)β

(∆l)2
, Dβ =

(∆t)β

(∆l)
.

Here we employ the following notations. The first derivative in l is computed
using an upwind scheme

∆lp
(m−k)
i,j =

1

∆l

{

p
(m−k)
i,j − p

(m−k)
i−1,j , vj ≥ 0

p
(m−k)
i+1,j − p

(m−k)
i,j , vj < 0

where a natural boundary condition is assumed for the part of the domain with v > 0.
The contribution of the jump part corresponds to the following discretization of the
integral:

I
(m−k)
i,j =

∑

sl:j+sl∈[1,Nj]

µl[p
(m−k)
i,j+sl

− p
(m−k)
i,j ],

where µl = µ(xl). We determine µ(s) from the empirical jump probability density
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Fig. 5.6. (a) Weights ω
(1−β)
k in Grunwald-Letnikov formulation derivative, (b)Empirical jump

sizes distribution used in the simulation.

shown in Figure 5.2 and run the model with Poisson parameter λ = 1 (4.5). Figure 5.2
shows that the results of the the FPDE simulation (right) are in reasonable agreement
with simulation (left).

6. Discussion. During microstructure evolution grains coarsen by the motion
of the triple junctions. The effect of topological changes (facet interchanges and dis-
appearances) on this process is not yet understood. We propose a framework capable
of describing the jump process associated with these events via a generalized contin-
uous time random walk theory. We consider a simplified 1-dimensional model that
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Fig. 5.7. (a) Evolution of grain boundary velocities as collected from simulation; (b) numerical
solution of the fractional equation (5.1).

exhibits the main characteristics of the evolution of triple junctions and analyze the
grain boundary distributions generated by a gradient flow dynamics imposed for this
model. We show that the model possesses stable statistics for lengths, velocities and
orientations and uncover a subdiffusive nature of the evolution of grain boundary ve-
locities. By means of a continuous time random walk theory, we obtain a fractional
evolution equation for grain boundary densities that shows good agreement with the
statistics generated by the gradient flow dynamics in the 1-dimensional model. Al-
though the results presented are confined to the topology of a 1-dimensional model,
the form of the evolution equation will be preserved in higher-dimensions, with the
only difference being the choice of distributions w(t), µ(s). Numerical implementation
and testing of the higher-dimensional model are the focus of current work and will be
presented in consequent publications.
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