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Abstract. Weak topology implicit schemes based on Monge-Kantorovich or
Wasserstein metrics have become prominent for their ability to solve a variety

of diffusion and diffusion-like equations. They are very flexible, encompassing

a wide range of nonlinear effects. They have interesting interpretations as de-
scent algorithms in an infinite dimensional manifold setting or as dissipation

principles for motion in a highly viscous environment. Transport plays a funda-

mental role in these schemes, as noted by Brenier and Benamou and reviewed
below. The reverse implication is less explored and, at least at the outset,

less obvious. Here we discuss the simplest situations in the context of systems

of transport equations. We show how arbitrary Fokker-Planck Equations in
one dimension conform to the mass transport paradigm. Finally, we provide

some additional examples, including a simple existence result for velocity-jump
processes.

1. Introduction. Weak topology implicit schemes based on Monge-Kantorovich
or Wasserstein metrics have become prominent for their ability to solve a variety
of diffusion and diffusion-like equations. They are very flexible, encompassing a
wide range of nonlinear effects. They have interesting interpretations as descent
algorithms in an infinite dimensional manifold setting or as dissipation principles
for motion in a highly viscous environment. Transport plays a fundamental role
in these schemes, as noted by Brenier and Benamou and reviewed below. The
reverse implication is less explored and, at least at the outset, less obvious. Here
we discuss the simplest situations in the context of systems of transport equations.
We show how arbitrary Fokker-Planck Equations in one dimension conform to the
mass transport paradigm. Finally, we provide some additional examples, including
a simple existence result for velocity-jump processes.
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For the moment we consider one space dimension. The Wasserstein metric, or
2-Wasserstein metric, on probability density functions f, f∗ on Ω = (0, 1), or R with
finite variance, is given by

d(f, f∗)2 = min
P

∫∫
Ω×Ω

(x− y)2dp(x, y),

P = set of joint distributions with marginals f and f∗.

Extended to probability measures on Ω (with finite variance if Ω = R), d induces
the weak ? topology. In this section, for simplicity of exposition we are setting Ω
the unit interval. The same results hold for R with densities of finite variance, for
example.

Let us consider the basic Wasserstein implicit scheme for a standard Fokker-
Planck Equation. Let M(Ω) denote the set of probability densities on Ω. For a
smooth potential ψ ≥ 0 and σ > 0, let

I(f) = I [f∗] (f) =
1
2τ
d(f, f∗)2 +

∫
Ω

(ψf + σf log f)dx, f, f∗ ∈M(Ω). (1.1)

We now consider the implicit scheme: given an initial datum f (0) ∈ L1(Ω), a
probability density, determine iteratively the sequence f (k) ∈ L1(Ω) by setting
f∗ = f (k−1) and f (k) the solution of

I(f) = min .

Of course, the sequence f (k) depends on τ . Interpolating with

f (τ)(x, t) = f (k)(x), kτ ≤ t ≤ (k + 1)τ,

and passing to the limit as τ → 0,

f (τ) → f where

∂

∂t
f =

∂

∂x
(σ

∂

∂x
f + ψ′f) in Ω (1.2)

σ
∂

∂x
f + ψ′f = 0 on ∂Ω. (1.3)

For a more general example, the implicit scheme based on the functional
1
2τ
d(f, f∗)2 +

∫
Ω

(ψf + ϕ(f))dx (1.4)

produces a solution of the problem
∂

∂t
f =

∂

∂x
(
∂

∂x
α(f) + ψ′f) in Ω

∂

∂x
α(f) + ψ′f = 0 on ∂Ω,

where α is a Legendre transform of ϕ,

α(f) = fϕf − ϕ. (1.5)

The implicit scheme is a descent algorithm in the weak ? topology of probability
measures on Ω. It always has a solution since the integral functional is convex and
superlinear. In the case ϕ(f) := σf log f , it affords us a direct and natural identi-
fication of its parameters with those of the Ito diffusion, or stochastic differential
equation,

dX = −ψ′(X)dt+
√

2σdBt, X(0) = x0, (1.6)
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where Bt is the standard Brownian motion [13].
Next we take a closer look at the Wasserstein metric itself. The Wasserstein

metric minimizes (a quadratic) cost among all measure preserving transformations
from f∗ to f . Given f∗, f , consider all transfer functions h : Ω → Ω such that∫

Ω

ζfdy =
∫

Ω

ζ(h(x))f∗(x)dx, ζ ∈ C(Ω). (1.7)

Then

d(f, f∗)2 =
∫

Ω

(x− φ(x))2f∗(x)dx = min
h

∫
Ω

(x− h(x))2f∗(x)dx. (1.8)

In one dimension, in fact, there is only one such h, which is given by φ(x) =
F ∗−1(F (x)), where F ∗, F are the distribution functions of f∗, f respectively [9].

We may interpolate from f∗ to f via a sequence of deformations f(y, t) (Eulerian)
or of transfer functions φ(x, t), 0 ≤ t ≤ τ (Lagrangian) related by∫

Ω

ζ(y)f(y, t)dy =
∫

Ω

ζ(φ(x, t))f∗(x)dx, 0 ≤ t ≤ τ, ζ ∈ C(Ω), (1.9)

for which there is a velocity v(y, t) = φt(x, t). It follows from (1.9) that (f, v)
satisfies

ft + (vf)x = 0 in Ω, 0 < t < τ, (1.10)
f |t=0 = f∗, f |t=τ = f. (1.11)

This is connected to the Wasserstein metric by the result of Benamou and Brenier
[3],

1
τ
d(f, f∗)2 = min

∫ τ

0

∫
Ω

v2fdxdt, (1.12)

where the minimum is taken over pairs (f, v) satisfying (1.11). In one dimension, it
may be easily checked by choosing a special path (see Proposition 2).

Looking back at the implicit scheme, we see that transport is an important feature
of the mass transportation approach to solving equations. But the mass transport
implicit scheme cannot be directly applied to the solution of a transport equation,
for example,

∂f

∂t
=

∂

∂x
(ψ′f) in Ω, t > 0, (1.13)

since the associated functional

I(f) =
1
2τ
d(f, f∗)2 +

∫
Ω

ψfdx (1.14)

is not superlinear in f (see next section for details). We shall establish a more
intimate connection between mass transport and transport and resolve this difficulty
by using a Lagrangian-style formulation.

We noted above the straight forward connection between the stochastic differen-
tial equation and the Wasserstein implicit scheme functional (1.1). A more general
one dimensional Ito diffusion is the stochastic differential equation

dX = −ψ′(X) + a(X)dBt, X(0) = x0.

The associated forward Chapman-Kolmogorov equation, or Fokker-Planck Equa-
tion, for its distribution u, is

∂u

∂t
=

∂2

∂x2
(Ku) +

∂

∂x
(ψ′u),
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where K(x) = a(x)2/2. Following the reasoning in Section 3, one can easily see that
there is no readily available identification between this more general Fokker-Planck
equation and the Monge-Kantorovich type variational principle (in fact, we will see,
in a more general framework, that no identification is available at all). We shall
show, however, that the general equation may be captured as a relaxation limit of
weakly coupled transport systems. Providing a framework for the weakly coupled
transport system is part of our work here.

Returning to the minimization of I from (1.14), we can easily resolve the one-
dimensional problem. Given probability densities f, f∗ on Ω, let h denote the
transfer function (1.7). Then

J(h) = I(f) =
1
2τ
d(f, f∗)2 +

∫
Ω

ψfdx

=
∫

Ω

{
1
2τ

(x− h(x))2 + ψ(h(x))
}
f∗(x)dx.

For τ small, depending only on ψ, J(h) is strictly convex and the integral can be
minimized by minimizing the integrand. The minimizer φ = φ(x, τ) satisfies

−1
τ

(x− φ) + ψ′(φ) = 0 or (1.15)

x = φ+ τψ′(φ) or (1.16)
φ−1(y) = y + τψ′(y) (1.17)

and is independent of f∗ and f . For this φ we may write, substituting y = φ(x),∫
Ω

ζfdy =
∫

Ω

ζ(φ(x))f∗(x)dx

=
∫

Ω

ζ(y)f∗(φ−1(y))
dφ−1(y)
dy

dy.

Hence,
f(y) = f∗(y + τψ′(y))(1 + τψ′′(y)), y ∈ Ω. (1.18)

Note that

φx + τψ′′(φ)φx = 1,
φτ + τψ′′(φ)φτ + ψ′(φ) = 0

whence
φτ = −ψ′(φ)φx,

so φ as a function of (x, τ) is just the backwards characteristic of the transport
equation.

To see how the transport equation arises from this scheme, we derive its approx-
imate Euler Equation. We have that

1
τ

∫
Ω

ζ(f(x)− f∗(x))dx+
∫

Ω

ζ ′(x)ψ′(x)f(x)dx

=
∫

Ω

{
1
τ

(ζ(φ(x))− ζ(x)) + ζ ′(φ(x))ψ′(φ(x))
}
f∗(x)dx.

Substitute using the Taylor expansion

ζ(x) = ζ(y) + ζ ′(y)(x− y) +
1
2
ζ ′′(zx,y)(x− y)2
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to obtain, using (1.15),

1
τ

(ζ(φ(x))− ζ(x)) = −1
τ

[
ζ ′(φ(x))(x− φ(x))− 1

2τ
ζ ′′(zx,φ(x))(x− φ(x))2

= − 1
2τ
ζ ′′(zx,φ(x))(x− φ(x))2 − ζ ′(φ(x))ψ′(φ(x)).

Substituting this above gives, in view of the formula (1.8)∣∣∣∣1τ
∫

Ω

ζ(f − f∗)dx+
∫

Ω

ζ ′ψ′fdx

∣∣∣∣ ≤ 1
2τ

max |ζ ′′|
∫

Ω

(x− φ(x))2f∗(x)dx(1.19)

=
1
2τ

max |ζ ′′|d(f, f∗)2, (1.20)

the approximate Euler Equation.
It is interesting that the estimates which lead to the convergence of the scheme

amount to solving the transport equation in the weak ? topology.

2. Further connections. As noted, the mathematical importance of the time-
dependent optimal transportation theory, i.e. the problem of connecting two prob-
ability measures µ0 and µ1 regarded as initial and final states by an optimal path
(geodesic in the Wasserstein space), was introduced by Benamou and Brenier in [3],
who employed an interpretation of the Wasserstein distance with a fluid mechanics
flavor. In the sequel we shall employ the conventional notations.

Let ρ0 and ρτ , for some relaxation time τ > 0, be two compactly supported
probability densities in RN and consider all smooth (ρ, v) satisfying ρt + div(ρv) = 0 in RN × (0,∞),

ρ(·, 0) = ρ0 in RN ,
ρ(·, τ) = ρτ in RN .

Then
1
τ
d(ρ0, ρτ )2 = inf

(ρ,v)

∫ τ

0

∫
RN

ρ(x, t)|v(x, t)|2dxdt.

The velocity of the optimal pair satisfies v = ∇ψ, where the potential ψ is a solution
for the Hamilton-Jacobi equation ψt + 1

2 |∇ψ|
2 = 0 (i.e. the optimal solution is given

by a pressureless potential flow). In one dimension, this turns out to be Burgers’
equation for v. Put it differently, the pair (ρ, ψ) given by

ρt + div(ρ∇ψ) = 0 in RN × (0,∞),
ψt + 1

2 |∇ψ|
2 = 0 in RN × (0,∞),

ρ(·, 0) = ρ0 in RN ,
ρ(·, τ) = ρτ in RN ,

also gives the Wasserstein distance between ρ0 and ρT by the formula

1
τ
d(ρ0, ρτ )2 =

∫ τ

0

∫
RN

ρ(x, t)|∇ψ(x, t)|2dxdt.

An excellent source for further reading on the topic is [21]. We would only like
to mention two very important results. They express the important roles played
by transport and Hamilton-Jacobi equations in the study of the optimality con-
ditions for the time-dependent mass transportation. First is the Hamilton-Jacobi
formulation of the Kantorovich duality:
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Theorem 1. Let c : RN → R+ be a strictly convex, superlinear cost function and
let µ0, µ1 be two probability measures on RN . Then the c-optimal total cost for
transporting µ0 into µ1 satisfies

Tc(µ0, µ1) = sup
{ ∫

RN

f(x, 1)dµ1(x)−
∫

RN

f(x, 0)dµ0(x)
}
,

where the supremum is taken over all solutions f : RN × [0, 1] → R of{
ft + c∗(∇xf) = 0 in RN × (0, 1),

f(·, 0) = f0 ∈ Cb(RN ),

where c∗ is the Legendre transform of c.

The following concept will be used throughout the paper.

Definition 1. We say that the measurable map S : X → Y pushes forward µ into
ν and we write S#µ = ν if, equivalently, one of the following holds:
(i) ν(A) = µ(S−1(A)) for all Borel sets A ⊂ Y ;
(ii)

∫
Y
f(y)dν(y) =

∫
X
f(S(x))dµ(x) for all f ∈ C(Y ).

The displacement interpolation in Eulerian formulation:

Theorem 2. Let ρ0, ρ1 be two probability densities with finite second order moments
in RN and let ∇Φ be a gradient of a convex function such that ∇Φ#ρ0 = ρ1 (we
know, due to Brenier, that such gradient is unique and solves the Monge problem).
Let u0 := Φ− Id2/2 and, for 0 < t ≤ 1, let

ut(x) := inf
y∈RN

{
u0(y) +

|x− y|2

2t

}
(Hopf−Lax formula).

Moreover, let ρt := Tt#ρ0 be McCann’s interpolant between ρ0 and ρ1, namely
Tt := (1− t)Id+ t∇Φ. Then ut is locally Lipschitz for all 0 < t < 1 and its gradient
vt := ∇xut is also locally Lipschitz in t and x on Tt(RN ). Furthermore, {ρt}0<t<1

satisfies the linear transport equation
∂ρt

∂t
+∇x · (ρtvt) = 0 weakly on RN × (0, 1)

The present work explores new connections focussing on the role played by opti-
mal mass transportation via Hamilton-Jacobi in the study of linear transport and
some of its applications.

2.1. Optimal transport. Our plan is to examine the N -dimensional version of the
minimization problem discussed in the introduction. Let Ω ⊂ RN be open (either
bounded or RN ) and consider a Ψ ∈ C2(Ω) which is either bounded or nonnegative.
Set:

M(Ω) :=
{
ρ : Ω → R+

∣∣∣∣ ρ is Lebesgue measurable and
∫

Ω

ρ(x)dx = 1
}
.

Fix τ > 0, ρ∗ ∈ M(Ω) and denote by Iτ [ρ∗] : M(Ω) → R ∪ {+∞} the functional
given by:

Iτ [ρ∗](ρ) :=
1
2τ
d(ρ, ρ∗)2 +

∫
Ω

ρ(x)Ψ(x)dx. (2.1)

We will prove that Iτ [ρ∗] has a unique minimizer in M(Ω). Note that the corre-
sponding problem with an entropy term E(ρ) :=

∫
Ω
φ(ρ)dx added to

∫
Ω
ρΨdx has

been extensively studied in [13], [17], [16], [1] in some cases even for more general
cost functions. The superlinear growth of φ or some other growth properties ([1])
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cannot be employed here to obtain existence in L1 or L∞. As already observed, the
innovative idea used in this work is to rethink the minimization problem in ρ (prob-
ability density) and translate it into a minimization problem for the optimal map s
pushing ρ∗ forward to ρ. The uniqueness part follows from the strict convexity of
Iτ [ρ∗] which is a consequence of the strict convexity of d2(·, ρ∗) (proved by Otto in
[18]) although, in some form, it also comes out independently from our proof in the
sequel.

Denote by P the set all Borel probability measures on Ω and by Pac the set
of probability measures on Ω that are absolutely continuous with respect to the
Lebesgue measure (which may be identified with M).

Proposition 1. Let Ψ ∈ C2(Ω) be such that |∇2Ψ| ∈ L∞(Ω). If Ω is bounded, also
assume ∇Ψ ∈ C1

0 (Ω̄; RN ). If ρ∗ ∈M(Ω) is positive a.e., then, for τ > 0 sufficiently
small, there exists a unique minimizer µ0 over P(Ω) for

Iτ [µ∗](µ) :=
1
2τ
d(µ, µ∗)2 +

∫
Ω

Ψ(x)dµ(x),

where µ∗ ∈ Pac(Ω) satisfies dµ∗ = ρ∗dx. Furthermore, µ0 ∈ Pac(Ω); therefore,
there exists ρ0 ∈ M(Ω) such that dµ0 = ρ0dx. If ρ∗ ∈ M(Ω) ∩ Lp(Ω) for some
1 ≤ p ≤ ∞, then for τ small enough ρ0 ∈M(Ω) ∩ Lp(Ω) and

(1− ατ)1/p′‖ρ∗‖Lp(Ω) ≤ ‖ρ0‖Lp(Ω) ≤ (1 + ατ)1/p′‖ρ∗‖Lp(Ω) (2.2)

for any given α > ‖∆Ψ‖L∞(Ω).

Proof: Most of the ensuing argument follows closely the one dimensional case
whose proof was sketched in the introduction. Assume Ω is bounded. We will only
emphasize the main difficulties one comes across in multiple dimensions. First of
all, for a given µ ∈ P(Ω), the map s such that s#µ∗ = µ exists (even if µ∗ is not
absolutely continuous, yet it does not give mass to sets of Hausdorff measure at
most N − 1; see, e.g. [21]) but may not be unique. However, the optimal one is, i.e.
there exists a unique Lebesgue measurable sµ such that sµ(Ω) ⊂ Ω and satisfies

sµ
#µ

∗ = µ and d(µ, µ∗)2 =
∫

Ω

|x− sµ(x)|2dµ∗(x) =
∫

Ω

|x− sµ(x)|2ρ∗(x)dx.

Therefore,

Iτ [µ∗](µ) =
∫

Ω

{
|x− sµ(x)|2

2τ
+ Ψ(sµ(x))

}
ρ∗(x)dx.

If ψτ := idΩ + τ∇Ψ is a diffeomorphism of Ω̄, then we have seen that the above
quantity has a unique minimizer s0 := ψ−1

τ which yields a unique minimizer µ0 ∈
P(Ω) that belongs, in fact, to Pac(Ω). All we need to show is that ψτ : Ω̄ → Ω̄
is onto (as the fact that it is one-to-one follows trivially for small τ). Since ∇Ψ ∈
C1

0 (Ω̄; RN ), we obviously have ψτ (x) = x for all x ∈ ∂Ω. Now, if we consider y ∈ Ω
we infer y ∈ RN\ψτ (∂Ω) which together with ψτ ≡ id on ∂Ω leads to

deg(ψτ ,Ω, y) = deg(idΩ,Ω, y) = 1,

where deg denotes the Brouwer degree. Thus, the claim that ψτ ∈ Diff(Ω̄) (the
diffeomorphisms of Ω̄) is verified. Next let M2(Ω) 3 ρ0 := dµ0/dx which is, as
before, given by

ρ0(x) = ρ∗(x+ τ∇Ψ(x))det(1 + τ∇2Ψ(x)) for all x ∈ Ω. (2.3)
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We have so far proved

Iτ [µ∗](µ) ≥
∫

Ω

{
|x− ψ−1

τ (x)|2

2τ
+ Ψ(ψ−1

τ (x))
}
ρ∗(x)dx ≥ Iτ [ρ∗](ρ0)

for all µ ∈ P(Ω). The second inequality is due to d(ρ0, ρ∗)2 ≤
∫
Ω
|x−ψ−1

τ (x)|2ρ∗(x)dx.
Therefore,

Iτ [ρ∗](ρ0) = Iτ [µ∗](µ0) = min
µ∈P(Ω)

Iτ [µ∗](µ)

which also implies d(ρ0, ρ∗)2 =
∫
Ω
|x − ψτ (x)|2ρ∗(x)dx, i.e. ψτ is optimal. This is

in agreement with the theory of optimal transportation which asserts that ψτ is the
gradient of a convex function; indeed ψτ = ∇(|id|2/2 + τΨ) and such potential is
convex for the small values of τ presently considered. We conclude the proof by
noting that det(1 + τA) = 1 + τtrA + O(τ2) for all bounded A ∈ MN×N which
gives det(1 + τ∇2Ψ(x)) = 1 + τ∆Ψ(x) + O(τ2) for all x ∈ Ω. We now apply (2.3)
to obtain (2.2).

Note that, if Ω = RN , then the fact that φy := y − τ∇Ψ is a contraction for
sufficiently small τ for all y ∈ RN suffices to infer ψτ is a diffeomorphism of RN .
Furthermore, ∇Ψ ≡ 0 on ∂Ω for bounded Ω would translate into lim|x|→∞∇Ψ(x) =
0 in the Ω = RN case. However, this is not required in Proposition 1 and turns out
to be unnecessary for proving existence of weak solutions for the transport equation.
This is, to some extent, counterintuitive since a formal integration of ρt = div(ρ∇Ψ)
may appear to yield conservation of mass for ρ only if ∇Ψ vanishes at infinity in
RN . In fact, ∇Ψ may even be unbounded.

The map t → (id + t∇Ψ)−1 is, as noted in the introduction, the backwards
characteristic associated with the transport equation ρt = div(ρΨ). It is easy to see
that its inverse in x and regarded as a function of t, i. e. t → id + t∇Ψ, realizes
the optimal path (or geodesic in the Wasserstein space) connecting the minimizer
ρ and the initial ρ∗. More precisely,

Proposition 2. For sufficiently small τ > 0, the map x→ x+ τ∇Ψ(x) is the opti-
mal transfer function that pushes ρ forward (“backwards” if we regard ρ as the final
object) to ρ∗ while the map x →

(
id + τ∇Ψ

)−1(x) is the optimal transfer function
that pushes ρ∗ forward to ρ0. Furthermore, the family of maps {id+t∇Ψ, 0 ≤ t ≤ τ},
is optimal in the McCann interpolation sense while {

(
id + t∇Ψ

)−1
, 0 ≤ t ≤ τ} is,

in general, not optimal in the McCann interpolation sense.

Proof: The first statement is obvious, since x → |x|2/2 + τΨ(x) is convex for
sufficiently small τ > 0. As in, e. g., [21], take now T := id + τ∇Ψ which satisfies
T#ρ

0 = ρ∗ and let Tt := (1 − t/τ)id + (t/τ)T be McCann interpolating maps,
0 ≤ t ≤ τ . Indeed, T0 = id, Tτ = T and, if we compute Tt, we obtain

Tt = (1− t/τ)id + (t/τ)(id + τ∇Ψ)id + t∇Ψ,

which concludes the proof of the second statement. Next, note that T−1 (the
optimal s from the proof of Proposition 1) is the optimal map such that T−1

# ρ∗ = ρ0.
However, we claim that the corresponding McCann interpolating maps

(
T−1

)
t

do

not satisfy, in general,
(
T−1

)
t
6=

(
Tt

)−1 unless t = τ . To prove this, first observe
that

(
T−1

)
t

= Tτ−t ◦ T−1. Indeed, this follows easily from Tτ−t = (t/τ)id + (1 −
t/τ)T . Therefore,

(
T−1

)
t
=

(
Tt

)−1 for all 0 ≤ t ≤ τ is equivalent to T = Tt◦Tτ−t for
all 0 ≤ t ≤ τ . If we differentiate with respect to t we obtain 0 = ∇Ψ(x)·∇Ψ(Tτ−t(x))
for all x ∈ Ω and 0 ≤ t ≤ τ . Let t = τ and take into account T0 = id to infer ∇Ψ = 0



TRANSPORT VIA MASS TRANSPORTATION 9

in Ω. Consequently, Ψ must be constant in order for t→
(
id+t∇Ψ

)−1 to be optimal
(the trivial case).

2.2. Convergence of the discrete scheme. Throughout this section ρ0 ∈M(Ω)
is such that

∫
Ω
ρ0Ψdx < +∞. The implicit scheme, given ρ0 ∈ M(Ω) and τ > 0,

reads:
For every integer k ≥ 1 we define ρk as the minimizer in

1
2τ
d(ρ, ρk−1)2 +

∫
Ω

Ψ(x)ρ(x)dx = min . (2.4)

Existence and uniqueness follow by applying Proposition 1 iteratively. Obviously,
the time-interpolant defined as

ρτ (x, t) := ρk(x) for kτ ≤ t < (k + 1)τ, (2.5)

satisfies ‖ρτ‖L1(ΩT ) = T‖ρ0‖L1(Ω) = T for T < ∞, where ΩT := Ω × (0, T ) for
0 < T ≤ ∞. Furthermore, fix n ∈ N large enough and let τ := T/n. We infer, due
to (2.2), that

(1− ατ)k/p′‖ρ0‖Lp(Ω) ≤ ‖ρk‖Lp(Ω) ≤ (1 + ατ)k/p′‖ρ0‖Lp(Ω). (2.6)

Let 1 < p <∞ and observe that

‖ρτ‖p
Lp(ΩT ) =

∫ T

0

∫
Ω

(
ρτ

)p
dxdt = τ

n−1∑
k=0

‖ρk‖p
Lp(Ω).

By (2.6) we deduce{
τ

n−1∑
k=0

(1− ατ)kp/p′
}1/p

‖ρ0‖Lp(Ω) ≤ ‖ρτ‖Lp(ΩT )

≤
{
τ

n−1∑
k=0

(1 + ατ)kp/p′
}1/p

‖ρ0‖Lp(Ω).

Summing leads to the inequalities{
τ

1− (1− ατ)(p−1)T/τ

1− (1− ατ)p−1

}1/p

≤ ‖ρτ‖Lp(ΩT )/‖ρ0‖Lp(Ω)

≤
{
τ

(1 + ατ)(p−1)T/τ − 1
(1 + ατ)p−1 − 1

}1/p

. (2.7)

If p = ∞, (2.6) leads to

(1− ατ)T/τ‖ρ0‖L∞(Ω) ≤ ‖ρτ‖L∞(ΩT ) ≤ (1 + ατ)T/τ‖ρ0‖L∞(Ω). (2.8)

We will now give the approximate Euler equation.

Proposition 3. Let Ψ ∈ C2(Ω) be such that |∇2Ψ| ∈ L∞(Ω). Also, assume
∇Ψ ≡ 0 on ∂Ω if Ω is bounded. Let ρ0 ∈ M2(Ω) ∩ Lp(Ω) and {ρk}k∈N be the
solution of (2.4). Then ρk ∈M2(Ω) ∩ Lp(Ω) for all k ≥ 1 and∣∣∣∣ ∫

Ω

{
1
τ

(ρk − ρk−1)ζ + ρk∇Ψ · ∇ζ
}
dx

∣∣∣∣ ≤ 1
2τ

sup
RN

|∇2ζ| d(ρk−1, ρk)2, (2.9)

for every ζ ∈ C∞c (RN ).
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Proof: Recall that the optimal mass transfer map that pushes ρk backwards to
ρk−1 is ψτ = idΩ + τ∇Ψ for all k. It follows

1
τ

(
ψτ − idΩ

)
ρk − ρk∇Ψ = 0 in Ω. (2.10)

Let ζ ∈ C∞c (RN ) and multiply (2.10) by ∇ζ to obtain∫
Ω

(ψτ (x)− x) · ∇ζ(x)ρk(x)dx− τ

∫
Ω

ρk(x)∇Ψ(x) · ∇ζ(x)dx = 0. (2.11)

The following finite Taylor expansion formula holds

ζ(ψτ (x))− ζ(x) = (ψτ (x)− x) · ∇ζ(x) + (1/2)(ψτ (x)− x)T (∇2ζ)(zx,τ )(ψτ (x)− x),

for all x ∈ Ω and the corresponding zx,τ ∈ RN . Along with (2.11) this yields, if we
denote by I the left hand side of (2.9),

I =
∣∣∣∣ ∫

Ω

[ζ(ψτ (x))− ζ(x)− (ψτ (x)− x) · ∇ζ(x)]ρk(x)dx
∣∣∣∣

≤ 1
2

sup
RN

|∇2ζ|
∫

Ω

|ψτ (x)− x|2ρk(x)dx

=
1
2
‖∇2ζ‖∞d(ρk−1, ρk)2 for all ζ ∈ C∞c (RN ),

which is equivalent to (2.9).
The estimates (2.7) and (2.8) show that, if 1 < p <∞, then up to a subsequence

(not relabelled) we obtain ρ ∈ Lp(ΩT ) such that

ρτ ⇀ ρ weakly in Lp(ΩT ) or weakly ? if p = ∞. (2.12)

Now, following mainly [20], [17] and [16], we consider ζ ∈ C∞c (RN×[0, T )), integrate
in time from (k − 1)τ to kτ the inequalities (2.9) for k = 1..n− 1 and add them to
conclude (by passing to the limit as τ → 0) that ρ is a weak solution of

ρt = div(ρΦ) in Ω× (0,∞) with ρ(·, 0) = ρ0 in Ω, (2.13)

(where Φ := ∇Ψ). As a consequence of (2.7) and of the fact that α is an arbitrary
constant greater than α0 := ‖∆Ψ‖∞, the solution satisfies{

1− e−α0T (p−1)

α0(p− 1)

}1/p

‖ρ0‖Lp(Ω) ≤ ‖ρ‖Lp(ΩT ) ≤
{
eα0T (p−1) − 1
α0(p− 1)

}1/p

‖ρ0‖Lp(Ω)

if 1 < p <∞ and

e−α0T ‖ρ0‖L∞(Ω) ≤ ‖ρ‖L∞(ΩT ) ≤ eα0T ‖ρ0‖L∞(Ω)

if p = ∞.
Recall ([20], [13] etc.) that essential to the existence result is the vanishing

cumulative error as τ ↓ 0, i.e. we need
∑n−1

k=1 d(ρk, ρk−1)2 = O(τ). It is easy to see
that, as ρk is the minimizer of Iτ [ρk−1], we obtain

Iτ [ρk−1](ρk) ≤ Iτ [ρk−1](ρk−1) =
∫

Ω

ρk−1Ψdx

which, by summation, yields either
∞∑

k=1

d(ρk, ρk−1)2 ≤ 4τ‖Ψ‖L∞(Ω) (2.14)
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if Ψ is bounded or
∞∑

k=1

d(ρk, ρk−1)2 ≤ 2τ
∫

Ω

ρ0Ψdx (2.15)

if Ψ is nonnegative. Furthermore, note that, for fixed 0 < T < ∞ and τ := T/n

(n is a positive integer) we can prove in some cases that
∑n−1

k=1 d(ρk, ρk−1)2 = O(τ)
without using the variational principle for the minimum. Indeed, if ∇Ψ is bounded,
then

n−1∑
k=1

d(ρk, ρk−1)2 = τ2
n−1∑
k=1

∫
Ω

|∇Ψ(x)|2ρk(x)dx ≤ τT‖∇Ψ‖2∞

since we can compute the Wasserstein distance directly by knowing the optimal
transfer map ψτ at each step. It thus seems natural to attempt proving existence
by using such transfer maps (they may be non-optimal) φτ := idΩ + τΦ for Φ ∈
C1

0 (Ω̄; RN ) (if Ω is bounded) which is not necessarily a gradient vector field. If
Ω = RN then it suffices to have Φ ∈ C1(RN ; RN ) ∩ W 1,∞(RN ; RN ). For given
ρ0 ∈M(Ω), we define iteratively the push-forwards:

ρk := (φ−1
τ )#ρk−1 for all integers 1 ≤ k < n, (2.16)

i. e. ρk = (ρk−1 ◦ φτ )det(∇φτ ) in Ω.
Obviously, ρk ∈M(Ω) for all k. Let ρτ be defined as in (2.5). Clearly, the estimates
(2.7) and (2.8) remain valid if we set α := 2‖divΦ‖L∞(Ω). The corresponding version
of Proposition 3 with ∇Ψ replaced by Φ is also true with the error term from
(2.9) (the right hand side) replaced by (τ/2)‖∇2ζ‖∞‖Φ‖2∞. Therefore, we similarly
obtain a weak solution for (2.13) for any vector field Φ ∈ C1

0 (Ω̄; RN ) (not necessarily
a gradient).
From here, it is a small step to proving (for 1 < p ≤ ∞)

Corollary 1. The initial-value problem (2.13) admits a weak solution for every
Φ ∈W 1,∞(Ω; RN ) with Φ ≡ 0 on ∂Ω and every ρ0 ∈M(Ω) ∩ Lp(Ω).

Proof: We consider a sequence {Φ(n)}n ⊂ C1
0 (Ω̄; RN ) which converges to Φ in

W 1,∞(Ω; RN ) strong. This is equivalent to Φ(n) and ∇Φ(n) converging uniformly
to Φ and ∇Φ respectively. Thus, we can obtain uniform bounds for ‖ρ(n)‖Lp(ΩT ) as
in (2.7) and (2.8), where ρ(n) is the weak solution constructed above for Φ(n) and
the initial value ρ0. Consequently, ρ(n) ⇀ ρ weakly in Lp(ΩT ) (or weak ? if p = ∞)
for some ρ ∈ Lp(ΩT ). Due to this and to the uniform convergence Φ(n) → Φ, we
are able to pass to the limit and infer that ρ is the desired solution.

We can prove something even more general in the case Ω = RN . Fix 0 < T <∞.

Theorem 3. Let 1 < p ≤ ∞ and ρ0 ∈ M(RN ) ∩ Lp(RN ). The problem (2.13)
admits a weak solution in RN × (0, T ) provided that Φ ∈ Lp′(RN ; RN ) and divΦ ∈
L∞(RN ).

For the proof it suffices to approximate Φ by functions in W 1,∞(RN ; RN ) whose
divergences are uniformly essentially bounded (see [7]).

2.3. Explicit Euler schemes for characteristics. Here we would like to stress
the connection with the method of characteristics. This approach to transport is
equivalent to the explicit Euler scheme for the associated characteristic equation.
We argue that it is even more natural because it exploits the structure of transport
as steepest descent of the potential energy in the weak topology.
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We go back to (2.16) and note that

ρk := (φ−1
τ )(k)

# ρ0 for all integers 1 ≤ k < n,

i. e. ρk = [ρ0 ◦ (φτ )(k)]det[∇(φτ )(k)] in Ω,

where (φτ )(k) := φτ ◦ φτ ◦ ... ◦ φτ k times. Therefore, if nτ = t, then

ρτ = (φ−1
τ )(n)

# ρ0 = [ρ0 ◦ (φτ )(n)]det[∇(φτ )(n)] in Ω. (2.17)

The solution of (2.13) can be obtained by the method of characteristics in the
following way: construct a family {T (t; ·)}t≥0 of diffeomorphisms solving

d

dt
T (t;x) = Φ(T (t;x)) for t > 0, T (0;x) = x, x ∈ RN . (2.18)

Then, it is well known that the solution of (2.13) is given by ρ(·, t) = T (t; ·)#ρ0. Note
that the explicit Euler scheme with step τ applied to (2.18) yields the approximants
T τ

k satisfying
T τ

k+1(x) = T τ
k (x) + τΦ(T τ

k (x)), k ≥ 0.

Since T τ
0 (x) = T (0;x) = x, it is immediate that T τ

k = (φτ )(k). It is known that, if
we are in a bounded domain, then for fixed times t > 0 the Euler method converges
uniformly to the solution of the ODE at rate τ from which the weak convergence
of the sequence

{
ρt/n

}
n≥1

(where ρt/n is defined in (2.17)) to ρ(·, t) can be easily
inferred.

If we differentiate (2.18) with respect to x, then we obtain the following equation
for the matrix U(t;x) := ∇xT (t;x)

d

dt
U(t;x) = ∇Φ(T (t;x))U(t;x) for t > 0, U(0;x) = 1, x ∈ RN .

One can deduce that, if ∇Φ is Lipschitz continuous, we have uniform convergence
of ∇T t/n

n to ∇xT (t; ·) (via the explicit Euler approximants U t/n
n of U). Thus, in this

case, we have strong L1 convergence of ρt/n to ρ(·, t) (even uniform convergence if
ρ0 is continuous).

2.4. Rates of convergence in the Wasserstein metric. Let Φ(ρ) :=
∫
Ω

Ψρdx.
The metric slope is defined, for ρ∗ ∈M, in [2] as

|∂Φ|(ρ∗) := lim sup
ρ→ρ∗

(
Φ(ρ∗)− Φ(ρ)

)+

d(ρ∗, ρ)
, (2.19)

where the ρ→ ρ∗ denotes the weak ? convergence of measures. The same reference
makes the following optimal uniform estimate available.

Proposition 4. The estimate

d(ρτ (·, T ), ρ(·, T )) ≤ τ√
2
|∂Φ|(ρ0) (2.20)

holds for any initial ρ0 ∈M and every τ, T > 0.

We will next give a simple way of obtaining the metric slope in this case.

Lemma 1. If |∇Ψ| ∈ L2(Ω; dρ∗) and |∇2Ψ| ∈ L∞(Ω), then

|∂Φ|(ρ∗) = ‖∇Ψ‖L2(Ω;dρ∗).
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Proof: Since the limit turns out to be positive, it suffices to show that

Φ(ρ∗)− Φ(ρ)
d(ρ∗, ρ)

≤ ‖∇Ψ‖L2(Ω;dρ∗) + Cd(ρ∗, ρ) (2.21)

for all ρ ∈M and find a sequence ρε → ρ∗ such that

lim
ε↓0

Φ(ρ∗)− Φ(ρε)
d(ρ∗, ρε)

= ‖∇Ψ‖L2(Ω;dρ∗). (2.22)

Let s be the optimal map pushing forward ρ∗ into ρ. Then

Φ(ρ∗)− Φ(ρ) =
∫

Ω

[Ψ(x)−Ψ(s(x))]ρ∗(x)dx

≤
∫

Ω

(x− s(x)) · ∇Ψ(x)ρ∗(x)dx+ sup |∇2Ψ|d(ρ∗, ρ)2.

Since ∫
Ω

(x− s(x)) · ∇Ψ(x)ρ∗(x)dx

≤
( ∫

Ω

|x− s(x)|2ρ∗(x)dx
)1/2( ∫

Ω

|∇Ψ(x)|2ρ∗(x)dx
)1/2

,

(2.21) follows with C := sup |∇2Ψ|.
Next let ε > 0 small enough such that sε := Id+ ε∇Ψ is a diffeomorphism of Ω and
let ρε := sε

#ρ
∗. It is easy to see that (2.22) holds for this sequence.

3. Weakly coupled transport systems. Fokker-Planck equation in one
dimension. For i = 1, 2 let Ψi ∈ Liploc([0,∞);C2(RN )) bounded from below with
|∇2Ψi| ∈ L∞(RN × (0,∞)) and let νi : RN × (0,∞) → R+ be essentially bounded
away from zero and infinity. Choose the initial data such that

ρ0
i ∈M(RN ) ∩ L2(RN ) and

∫
RN

ρ0
i (x)Ψi(x, 0)dx <∞ for i = 1, 2. (3.1)

Consider the weakly coupled system:
ρ1,t = div(ρ1∇Ψ1)− ν1ρ1 + ν2ρ2 in RN × (0,∞),
ρ2,t = div(ρ2∇Ψ2) + ν1ρ1 − ν2ρ2 in RN × (0,∞),

ρi(·, 0) = ρ
(0)
i in RN .

(WS)

Inspired by [5] and [19], we set up the following iterative minimization problem:
For i = 1, 2 and for every integer k ≥ 1 we define ρk

i as the minimizer in

1
2τ
d(ρ, (ρk−1Pk

τ )i)2 +
∫

RN

ρ(x)Ψk
i (x)dx = min, (3.2)

where

Mk
i (RN ) :=

{
ρ : RN → R+

∣∣∣∣ ∫
RN

ρ(x)dx =
∫

RN

(ρkPk+1
τ )idx

}
and

Pk
τ :=

(
1− τνk

1 τνk
1

τνk
2 1− τνk

2

)
= 1 + τ

(
−νk

1 νk
1

νk
2 −νk

2

)
. (3.3)

We have used the notations

νk
i (x) :=

1
τ

∫ kτ

(k−1)τ

νi(x, t)dt, Ψk
i :=

1
τ

∫ kτ

(k−1)τ

Ψi(x, t)dt for i = 1, 2 and k ≥ 1.
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According to the previous results, the minimizers are given by:

ρk
1 =

{
(Id +∇Ψk

1)−1
}

#
[(1− τνk

1 )ρk−1
1 + τνk

2 ρ
k−1
2 ]

and
ρk
2 =

{
(Id +∇Ψk

2)−1
}

#
[τνk

1 ρ
k−1
1 + (1− τνk

2 )ρk−1
2 ],

or, equivalently,

ρk
1 =

{
[(1− τνk

1 )ρk−1
1 + τνk

2 ρ
k−1
2 ] ◦ (Id +∇Ψk

1)
}
det(1 +∇2Ψk

1) (3.4)

and
ρk
2 =

{
[τνk

1 ρ
k−1
1 + (1− τνk

2 )ρk−1
2 ] ◦ (Id +∇Ψk

2)
}
det(1 +∇2Ψk

2). (3.5)
Let λ := min{ess inf ν1, ess inf ν2} and Λ := max{ess sup ν1, ess sup ν2}. Then we
have

‖(1− τνk
1 )ρk−1

1 + τνk
2 ρ

k−1
2 ‖p ≤ (1− λτ)‖ρk−1

1 ‖p + Λτ‖ρk−1
2 ‖p

and
‖τνk

1 ρ
k−1
1 + (1− τνk

2 )ρk−1
2 ‖p ≤ Λτ‖ρk−1

1 ‖p + (1− λτ)‖ρk−1
2 ‖p,

where ‖·‖p denotes the standard Lp(RN )-norm. According to the inequalities above
and (2.2), we have

‖ρk
1‖p ≤ (1 + τα1)1/p′

{
(1− λτ)‖ρk−1

1 ‖p + Λτ‖ρk−1
2 ‖p

}
(3.6)

and
‖ρk

2‖p ≤ (1 + τα2)1/p′
{
Λτ‖ρk−1

1 ‖p + (1− λτ)‖ρk−1
2 ‖p

}
, (3.7)

for given αi > ‖∆Ψi‖∞. If we let ωk :=
(
‖ρk

1‖p , ‖ρk
2‖p

)T , then we may write (3.6)
and (3.7) combined as

ωk ≤ Aτωk−1, where Aτ :=
(

(1− λτ)(1 + τα1)1/p′ Λτ(1 + τα1)1/p′

Λτ(1 + τα2)1/p′ (1− λτ)(1 + τα2)1/p′

)
,

where “≤” means the suggested inequality componentwise. The simplest way to
obtain a bound for ωn for τ = t/n (and thus on the solution of the system) is to let
α = max{α1, α2}, M = max{‖ρ0

1‖p , ‖ρ0
2‖p}. It follows

‖ρn
i ‖p ≤ (1 + αt/n)n/p′

[
1 + (Λ− λ)t/n

]n
M

which leads to

‖ρi‖p ≤Mexp{[(α/p′) + (Λ− λ)]t}.
Optimal estimates, which we do not seek here, require computing limn↑∞An

t/n

which is a difficult task. To prove this procedure leads to the solution for our system
we employ (2.9) with (ρk−1Pk

τ )i instead of ρk−1
i for i = 1, 2.

Note that the time-dependence of the potential Ψ can be dealt with by using
its time-average over [kτ, (k + 1)τ ] in the variational principle at step k. The same
“trick” works in conjunction with a possible diffusion term of type f = f(t, ρ) for
problems that we discuss below.

The Fokker-Planck, or more generally, the forward Kolmogorov Equation for a
stochastic diffusion, is just a second order linear parabolic equation whose highest
order coefficients need not be constant. At this time in the development of mass
transport theory, we know that many diffusion equations can be regarded as gradient
flows with respect to the Wasserstein distance, and, as mentioned earlier, there is an
extensive literature about this. For the most general cases studied see [1] and [19].
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Agueh utilizes general cost functions and proves convergence for doubly degenerate
diffusion equations of the form:

∂ρ

∂t
= div{ρ∇c∗[∇(F ′(ρ) + V )]},

where c∗ is the Legendre transform of a convex c having specified growth proper-
ties. In [19] the authors prove convergence for general, non-autonomous, diffusion
equations of the form

∂ρ

∂t
= ∆f(t, ρ) + div(ρ∇Ψ(x, t)). (3.8)

The direct dependence of f (and Ψ) on t is treated by means of time-averaging
(see [19]). However, the gradient flow method has not been extended to functions
f which also depend explicitly on x. More precisely, we have the following formula
for the gradient of a functional F = F (ρ) in the Wasserstein space (see, e.g. [21]):

graddF (ρ) = −divx

(
ρ∇x

δF

δρ

)
,

where δF/δρ is the gradient of F with respect to the standard L2 distance. There-
fore, a PDE of the form

∂ρ

∂t
= −divx

(
ρ∇x

δF

δρ

)
can be interpreted as the gradient flow of F in the Wasserstein space. Furthermore,
it is apparent that such an interpretation may work even if F = F (t, ρ) is of the
form

F (t, ρ) =
∫
φ(t, ρ(x, t))dx

and may lead to equations of type (3.8) since all the derivatives involved are spatial
(see [19]).

Absent so far has been a discussion of equations whose highest order terms depend
explicitly on x, even when they are lineas, e.g., equations of the general form

∂ρ

∂t
= −div

[
A(x, t)ρ

]
+

1
2

N∑
i,j=1

∂2

∂xi∂xj

{[
B(x, t)BT (x, t)

]
ij
ρ
}
. (3.9)

The solution ρ(·, t) for this equation is the probability density function of the process
Xt which satisfies the stochastic differential equation

dX = A(X, t)dt+ B(X, t)dWt, (3.10)

where the N -vector-valued A is the drift term, the N ×N -matrix-valued B is the
stochastic force and Wt is the standard N -dimensional Wiener process.

Our next goal is to show that, at least in one dimension, the Fokker-Planck
equation arises as the limit of a sequence of weakly coupled systems of the form
(WS). First, we will briefly explain why it cannot be solved directly by time-
discretization in the Wasserstein space.

When F = F (t, ρ) is of the form F (t, ρ) =
∫
Ω
φ(x, t, ρ(x, t))dx the L2-gradient of

F becomes δF/δρ = φρ(x, t, ρ) . Thus, the gradient with respect to the Wasserstein
distance becomes, say, in dimension one,

graddF (t, ρ)(x) := − ∂

∂x

{
ρ

[
φρx(x, t, ρ) + φρρ(x, t, ρ)

∂ρ

∂x

]}
. (3.11)
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In dimension one, an SDE of the form

dX = −b(X, t)dt+ a(X, t)dBt (3.12)

leads to the Fokker-Planck equation

∂ρ

∂t
=

∂

∂x
[b(x, t)ρ] +

1
2
∂2

∂x2
[a2(x, t)ρ]. (3.13)

It is easy to see now that, unless a is independent of x (i.e. a = a(t)), the right
hand side of (3.13) cannot be obtained from (3.11) for any φ. A similar argument,
although more complex, applies in arbitrary dimension. An interesting question
arises at this point: is there any other type of F (not of the form

∫
φ(x, t, ρ(x, t))dx)

whose gradient flow in the Wasserstein space is precisely (3.13) for general functions
a? We give a formal answer at the end of the section.

Let Ω ⊂ R be an open interval and assume b, a are smooth functions on Ω̄×[0,∞)
such that α ≤ a ≤ β for two constants 0 < α ≤ β < ∞. Next, define φ, ψ on
Ω̄× [0,∞) by

φ(x, t) := a2(x, t)exp
(

2
∫ x

x0

b(y, t)
a2(y, t)

dy

)
, ψ(x, t) := a2(x, t)exp

(
4

∫ x

x0

b(y, t)
a2(y, t)

dy

)
,

(3.14)
where x0 ∈ Ω is arbitrary but fixed. Furthermore, assume |φx| is bounded and ψ is
bounded away from 0 and ∞ in Ω̄× [0, T ] for all 0 < T <∞.

The conditions on φ and ψ are automatically satisfied if, for example, Ω is a
bounded interval.

Let us consider the linear system:

∂tξε = − 1
ε∂x(ξεφ)− 1

ε2ψ(ξε − ηε) in Ω× (0,∞),

∂tηε = 1
ε∂x(ηεφ) + 1

ε2ψ(ξε − ηε) in Ω× (0,∞),

ξε = 0, ηε = 0 on ∂Ω× (0,∞),

ξε(·, 0) = ρ0, ηε(·, 0) = ρ0 in Ω,

(S)

where ε > 0 is a positive integer. Obviously, this system is of the form (WS)
and, since the coefficients satisfy all the requirements, it can be solved exactly as
described above provided that ρ0 ∈ L1(Ω) is nonnegative.

We are inspired by [10], where we find “the simplest example that illustrates the
regime in which a diffusion equation can be obtained from a velocity-jump process
[...]”, particles moving along the real axis at constant speed s, reversing direction
at random instances according to a Poisson process with constant parameter λ. If
p±(x, t) are the densities of particles at (x, t) that are moving to the right (+) and
left (-), then they satisfy a system of the form (WS) with Ψi = ∓sId and νi = λ,
i = 1, 2. By letting p = p+ + p− and j = s(p+ − p−), a simple calculation yields

∂tp+ ∂xj = 0,
∂tj + 2λj = −s2∂xp

which decouples to give the telegraph equation for p

ptt + 2λpt = s2pxx.

If one places s = σ/ε, λ = 1/ε2 and lets ε ↓ 0, there results the classical heat
equation with diffusion constant σ2. Next we show how the general Fokker-Planck
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equation is obtained by choosing appropriate variable coefficients in the system
above while still maintaining the form (WS).

Theorem 4. Let ξε and ηε be the solutions for (S) with ρ0 ∈ L2(Ω) being a proba-
bility density. Then, as ε ↓ 0 both ξε and ηε converge weakly in L2

loc(Ω̄× [0,∞)) to
the solution of the Fokker-Planck equation (3.13) with ρ0 as initial data.

Proof: If we multiply the first equation by ξε and the second by ηε, then integrate
twice (first in space and then in time), we obtain, using the boundary conditions,

‖ξε(·, t)‖2L2(Ω) + ‖ηε(·, t)‖2L2(Ω) +
∫ t

0

∫
Ω

ψ(x, s)ε−2[ξε(x, s)− ηε(x, s)]2dxds (3.15)

= 2‖ρ0‖2L2(Ω) −
1
2

∫ t

0

∫
Ω

φx(x, s)ε−1[ξε(x, s)− ηε(x, s)][ξε(x, s) + ηε(x, s)]dxds

for all 0 < t <∞. Denoting

uε(t) := ‖ξε(·, t)‖2L2(Ω) + ‖ηε(·, t)‖2L2(Ω), vε(t) := ‖(ξε − ηε)/ε‖L2(Ω×(0,t)),

we infer, due to (3.15),

uε(t) + αv2
ε(t) ≤ 2‖ρ0‖2L2(Ω) +

‖φx‖L∞(ΩT )√
2

vε(t)
( ∫ t

0

uε(s)ds
)1/2

(3.16)

for all 0 < t < T < ∞ where ΩT := Ω × (0, T ). Inequality (3.16) implies, for any
δ > 0,

uε(t) + αv2
ε(t) ≤ 2‖ρ0‖2L2(Ω) +

‖φx‖L∞(ΩT )

2
√

2

{
δv2

ε(t) +
1
δ

∫ t

0

uε(s)ds
}
. (3.17)

By choosing δ small enough, we obtain,

uε(t) +
α

2
v2

ε(t) ≤ 2‖ρ0‖2L2(Ω) +
‖φx‖L∞(ΩT )

2
√

2δ

∫ t

0

uε(s)ds. (3.18)

We can neglect the terms containing vε and apply Gronwall’s lemma to deduce
that uε(t) is bounded independently of ε. So is

∫ t

0
uε(s)ds and we go back to

(3.18) to infer vε enjoys the same property. Therefore, ξε, ηε and (ξε − ηε)/ε are
uniformly bounded in L2(ΩT ) for all finite T > 0. Up to a subsequence, they are
weakly convergent in L2(ΩT ). We do not relabel and, due to the convergence of the
latter, the former two converge to the same limit, say, ρ ∈ L2(ΩT ).
We will next prove that ρ is the solution for (3.13) with initial data ρ0 (and natural
BC if Ω is bounded). Let us begin by adding the first two equations to obtain

(ξε + ηε)t = −[φ(ξε − ηε)/ε]x.

Let f denote the L2-weak limit of (ξε − ηε)/ε as ε ↓ 0, so that

2ρt = −(fφ)x. (3.19)

Note that the weak convergence of φ(ξε−ηε)/ε to fφ holds due to the boundedness
of φ.
Now we subtract the first two equations in the system to obtain

(ξε − ηε)t = −[φ(ξε + ηε)/ε]x − ψ[(ξε − ηε)/ε]/ε.

If we multiply by ε and pass to the limit as ε ↓ 0 we further obtain

0 = −2(ρφ)x − 2ψf. (3.20)
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We combine (3.19) and (3.20) by eliminating f to write

∂ρ

∂t
=

1
2
∂

∂x

(
φ

ψ

∂

∂x
(φρ)

)
.

It is easy to see by direct computation that this PDE is equivalent to (3.13).
Note that, if we tried to write (3.13) as the Wasserstein-gradient flow of some

functional F , we would end up with the equation

∂

∂x

δF

δρ
(t, ρ)(x) = −b(x, t)− a(x, t)ax(x, t)− a2(x, t)

2
∂

∂x
log ρ(x, t). (3.21)

If B is a primitive (in x) of b, then we should have

δF

δρ
(t, ρ)(x) = −B(x, t)− 1

2
a2(x, t)[1 + log ρ(x, t)] +

∫ x

x0

a(y, t)ay(y, t) log ρ(y, t)dy

for some x0, maybe time-dependent. The first two terms from the right hand
side can trivially be written as the L2-gradients of some functionals of the form∫
φ(x, t, ρ(x, t))dx. However, we argue that the remaining integral term cannot be

the L2-gradient of any functional, not necessarily of the form mentioned before,
unless φ is independent of x, rendering the term zero!

In the following formal discussion we drop the dependence on t (which is irrelevant
in this context) and we let f(x) = a(x)a′(x). Indeed, if there is an F such that

δF
δρ

(ρ)(x) =
∫ x

x0

f(y) log ρ(y)dy,

then the Gateaux derivative of F in the v-direction will be

〈F ′(ρ), v〉 =
∫

R
v(x)

∫ x

x0

f(y) log ρ(y)dydx.

Assume that ρ is bounded from below away from zero and all integration require-
ments are in place. Then the map ρ → 〈F ′(ρ), v〉 is obviously C∞, so F must be
C∞. Consequently, the second Gateaux derivative must be a symmetric, bilinear
form. However, we have

〈F ′′(ρ), (v1, v2)〉 =
∫

R
v1(x)

∫ x

x0

f(y)v2(y)
ρ(y)

dydx

which, in general, violates

〈F ′′(ρ), (v1, v2)〉 = 〈F ′′(ρ), (v2, v1)〉.

Can Theorem 4 be extended to arbitrary dimensions? The answer is yes, it can
be, but only for some special Fokker-Planck equations. Here are some details.

We rewrite (3.9) in divergence form as

∂ρ

∂t
= div

{
−

[
A(x, t)ρ

]
+

1
2
ρdivQ

}
(3.22)

where Q(x, t) := B(x, t)BT (x, t) has rows denoted by Qi and divQ is the N -vector
field whose components are divQi (all derivatives are spatial). In dimension N , φ
from (S) is replaced by an N -vector field denoted by Φ. Thus, the N -dimensional
version of (S) is ∂tξε = −ε−1div(ξεΦ)− ε−2ψ(ξε − ηε) in RN × (0,∞),

∂tηε = ε−1div(ηεΦ) + ε−2ψ(ξε − ηε) in RN × (0,∞),
ξε(·, 0) = ρ0, ηε(·, 0) = ρ0 in RN .

(SN )
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The assumption |φx| is bounded is now replaced by divΦ ∈ L∞(RN × (0, T )) for
all T > 0. One can retrace the proof of Theorem 4 with only minor changes to
conclude that, as ε ↓ 0, both ξε and ηε converge weakly in L2(RN × (0, T )) to the
solution ρ for the second-order PDE

∂ρ

∂t
=

1
2
div

(
Φ
ψ

div(Φρ)
)
. (3.23)

It is intuitively obvious that such a PDE can be identified with (3.22) (and, thus,
with (3.9)) only in some very special cases. Indeed, there are N2 +N independent
entries/components in B and A, whereas only N +1 in Φ and ψ. They only match,
of course, when N = 1. Next we will see what is required for Φ and ψ to be
determined from B and A if N > 1.
We equate the right hand sides of (3.22) and (3.23) to obtain, componentwise,

−Aiρ+
1
2
div(ρQi)

Φi

2ψ
div(ρΦ)

for all i = 1..N , where Ai are the components of A. If we impose these equations
independently of ρ, we obtain, after identifying the coefficients of ρ and ∇ρ,

−Ai +
1
2
divQi =

Φi

2ψ
divΦ (3.24)

and
Qi =

Φi

ψ
Φ (3.25)

for all i = 1..N . The latter yields Qij = ΦiΦj/ψ which basically means that
Qij := qiqj for some N -vector field q. We deduce Φi = qiψ

1/2 for all i = 1..N .
Going back to (3.24) we discover, after some computation,

q · ∇ logψ = −4Ai/qi + 2q · ∇ log qi
for all i = 1..N . To summarize, we need Q of the form (qiqj)ij for some vector q
and the following compatibility condition

−2Ai/qi + q · ∇ log qi = λ(x, t) is independent of i. (3.26)

Then we choose ψ as any solution of q · ∇ logψ = 2λ.
Note that B has to have identical entries on each row, i.e. Bij = bi for some vector
field b(x, t), and qi = biN

1/2.

4. More applications.

4.1. Velocity-jump processes. Let V ⊂ RN be open and the turning kernel
T : V × V → [0,∞) (see [10]) with the following properties∫

V

T (v, w)dw = 1 for all v ∈ V (4.1)

and ∫
V

∫
V

T 2(v, w)dvdw =: M <∞. (4.2)

Next consider the transport equation:
∂

∂t
ρ(x, v, t) + v · ∇xρ(x, v, t) = −λρ(x, v, t) + λ

∫
V

T (v, w)ρ(x,w, t)dw (4.3)

describing a velocity-jump process ([15]). Here ρ(x, v, t) denotes the density of par-
ticles at position x ∈ RN which move with velocity v ∈ V at time t ≥ 0. The
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constant λ > 0 is the turning rate while 1/λ measures the mean run length between
velocity jumps. The kernel T (v, w) gives the probability of a jump from w to v if a
jump occurs.
Denote by F (x, v; ρ) := −λρ+ λ

∫
V
T (v, w)ρ(x,w)dw and consider the IVP:{

ρt + v · ∇xρ= F (x, v; ρ) in RN × V × (0,∞),
ρ(x, v, 0) = ρ0(x, v) for all (x, v) ∈ RN × V.

(4.4)

Consider initial data ρ0 such that

ρ0(·, v) ∈M(RN ) for almost all v ∈ V, (4.5)

and
ρ0 ∈ L2(RN × V ). (4.6)

In [20], [19] the authors exploit the implicit scheme introduced by Kinderlehrer
and Walkington in [14] for proving existence of solutions for nonhomogeneous diffu-
sion problems. This approach modifies the standard schemes to accommodate the
nonhomogeneous term. Here we fix v ∈ V and consider the following version of
(2.4):

For every integer k ≥ 1 we define ρk as the solution of
1
2τ
d(ρ, ρk−1,1)2 +

∫
RN

(x · v)ρ(x)dx = min, (4.7)

where ρk,1 := ρk + τF (·, ·; ρk) for all integers k ≥ 0.
Note that the above scheme assumes that ρk,1 ∈M(RN ). Indeed, we have

ρk,1(x, v) = (1− λτ)ρk(x, v) + λτ

∫
V

T (v, w)ρk(x,w)dw. (4.8)

By integrating (4.8) with respect to x and using induction, we see that (4.1) and
(4.5) yield

ρk,1(·, v) ∈M(RN ) for all k ≥ 0, 0 < τ ≤ 1
λ

and for almost all v ∈ V. (4.9)

According to the previous chapter, the optimal transfer map is the translation
ψτ := id + τv. Along with (4.8), this leads to

ρk(x, v) := ρk−1,1(x+ τv, v)

= (1− h)ρk−1(x+ τv, v) + h

∫
V

T (v, w)ρk−1(x+ τv, w)dw,(4.10)

where h := λτ . This implies

|ρk(x, v)|2 ≤ (1 + h)(1− h)2|ρk−1(x+ τv, v)|2

+
(

1 +
1
h

)
h2

( ∫
V

T (v, w)ρk−1(x+ τv, w)dw
)2

.

It follows, after using Holder inequality for the last term and then integrating in x
over RN (‖ · ‖2 denotes the L2-norm in RN )

‖ρk(·, v)‖22 ≤ (1− h)(1− h2)‖ρk−1(·, v)‖22

+h(1 + h)
∫

V

‖ρk−1(·, v)‖22dv
∫

V

T 2(v, w)dw. (4.11)

Now denote by ‖·‖2,V the L2-norm in RN ×V and integrate (4.11) over V to obtain

‖ρk‖22,V ≤ (1− h)(1− h2)‖ρk−1‖22,V + h(1 + h)‖ρk−1‖22,V

∫
V

∫
V

T 2(v, w)dvdw.
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According to (4.2) we get

‖ρk‖22,V ≤ ‖ρk−1‖22,V {(1− h)(1− h2) +Mh(1 + h)}.
Let a := M − 1. Then, for small enough τ , we have (by induction)

‖ρk‖22,V ≤ ‖ρ0‖22,V [1 + ah(1 + h) + h3]k. (4.12)

According to (4.2) and (4.6), T (v, ·) ∈ L2(V ) and ρ0(·, v) ∈ L2(RN ) for almost all
v ∈ V . Consequently, the set V ′ ⊂ V defined below is of full measure:

V ′ :=
{
v ∈ V

∣∣∣∣ ∫
V

T 2(v, w)dw =: M(v) <∞, ρ0(·, v) ∈M(RN ) ∩ L2(RN )
}
.

(4.13)
Fix v ∈ V ′. Then (4.11) and (4.12) imply

‖ρk(·, v)‖22 ≤ (1− h)(1− h2)‖ρk−1(·, v)‖22
+M(v)‖ρ0‖22,V h(1 + h)[1 + ah(1 + h) + h3]k−1. (4.14)

If we let ak := ‖ρk(·, v)‖22, αh := (1− h)(1− h2), β := M(v)‖ρ0‖22,V and
ch := 1 + ah(1 + h) + h3, then (4.14) reads

ak ≤ αhak−1 + βh(1 + h)ck−1
h for all integers k ≥ 1.

It follows

ak ≤ a0α
k
h +

β

M
(ckh − αk

h)
(
a0 −

β

M

)
αk

h +
β

M
ckh.

Therefore,

‖ρτ (·, ·, v)‖2L2 = τ
n−1∑
k=0

ak

≤ 1
λ

{(
a0 −

β

M

)
1− α

λT/h
h

1 + h− h2
+

β

M

1− c
λT/h
h

(1−M) + h− h2

}
(4.15)

which leads to the fact that {ρτ}τ↓0 is bounded in L2(RN × V × (0, T )). Indeed,
(4.2) and (4.6) imply the integrability over V of the right hand side of (4.15). Next
we extract (no relabelling) a subsequence {ρτ}τ↓0 such that

ρτ ⇀ ρ weakly in L2(RN × V × (0, T )) (4.16)

Again, due to (4.15) there exists a subsequence {τv} depending on v such that

ρτv (·, v, ·) ⇀ ρ(·, v, ·) weakly in L2(RN × (0, T )). (4.17)

By taking the limit as τ ↓ 0 in (4.15), we observe

‖ρ(·, v, ·)‖2L2(RN×(0,T )) ≤
(
a0 −

β

M

)
1− e−λT

λ
+

β

M
C(M,T, λ), (4.18)

where

C(M,T, λ) :=
eλT (M−1) − 1
λ(M − 1)

if M 6= 1 and C(M,T, λ) := T if M = 1.

Our goal is to prove the following

Proposition 5. Let T and ρ0 be nonnegative and such that (4.1), (4.2), (4.5) and
(4.6) are satisfied. Then the initial-value problem (4.4) admits a weak solution in
ΩT := RN × V × (0, T ) verifying

‖ρ‖2L2(ΩT ) ≤ ‖ρ0‖22,V C(M,T, λ). (4.19)
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Let us now define what a weak solution is:

Definition 2. A weak solution for (4.4) is a function ρ(x, v, t) satisfying
(i) ρ ∈ L2(RN × V × (0, T ));
(ii) For every ζ ∈ C∞c (RN × [0, T )) and all v ∈ V ′ we have∫ T

0

∫
RN

{
ρ∂tζ − (v · ∇ζ)ρ− λ[ρ(·, v, ·)

−
∫

V

T (v, w)ρ(·, w, ·)dw]ζ
}
dxdt = −

∫
RN

ρ0(x, v)ζ(x, 0)dx.

We now drop the subscript in τv to simplify notation. According to Proposition
3, the approximate Euler equation for the variational principle (4.7) reads∣∣∣∣ ∫

Ω

{
1
τ

(ρk − ρk−1,1)ζ + ρk(v · ∇ζ)
}
dx

∣∣∣∣ ≤ 1
2τ

sup
RN

|∇2ζ| d(ρk−1,1, ρk)2, (4.20)

for every ζ ∈ C∞c (RN ) and all integers k ≥ 1. Taking (4.10) into account, we infer

d(ρk−1,1, ρk) = τ |v|.

Subsequently, we integrate (4.20) over [kτ, (k + 1)τ ] with respect to time, add for
k = 1..n− 1 and recall the definition of ρτ to obtain∣∣∣∣− ∫ T−τ

τ

∫
Ω

ρτ (x, v, t)
1
τ

(ζ(x, t+ τ)− ζ(x, t))dxdt− 1
τ

∫ τ

0

∫
RN

ρ0(x, v)ζ(x, t+ τ)dxdt

+
∫ T

τ

∫
RN

ρτ (·, v, ·)(v · ∇ζ)dxdt+
1
τ

∫ T

T−τ

∫
RN

ρτ (·, v, ·)ζdxdt

−
∫ T−τ

0

∫
RN

F (·, v, ρτ )ζdxdt
∣∣∣∣ ≤ 1

2
‖∇2ζ‖∞

n−1∑
k=1

τ2|v|2 ≤ 1
2
‖∇2ζ‖∞Tτ |v|2.

Let τ ↓ 0. Finally, we use (4.17) for most of the terms in the left hand side of the
above display and (4.16) for the last, nonlocal term to pass to the limit as τ ↓ 0 and
see that ρ is a weak solution for (4.4). Clearly, (4.19) is an immediate consequence
of (4.18).

Second-order partial differential equations involving the convective derivative
∂/∂t + v · ∇x have been studied via optimal transportation methods by Carlen
and Gangbo [4], Huang and Jordan [12], Huang [11]. However, since there are no
v-derivatives in (4.4), the differential operator from the left hand side represents
ordinary transport in the x-direction and has nothing to do with convection.

4.2. General first-order transport systems. Here we analyze similar schemes
for systems of first-order equations. Let Ω be either R or (0, 1). We next study the
IVP

ρt = (ρΦ)x in Ω× (0,∞) for all i = 1..d and ρ(·, 0) = ρ0 in Ω, (4.21)

where ρ = (ρ1, ..., ρd) and Φ ∈ Md×d is a matrix function. Let 1 < p ≤ ∞. For
given ρ0 ∈

[
M2(Ω)

]d ∩ Lp(Ω; Rd) and small enough τ > 0 we wish to construct
iteratively ρk, then obtain ρτ by interpolating time (as in (2.5)). Next we give the
definition of a weak solution for our system.
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Definition 3. A weak solution for (4.21) is a vector field ρ : Ω × (0,∞) → Rd

satisfying
(i) ρi ∈ L∞loc((0,∞);Lp(Ω)) for all i = 1..d;
(ii) for every ζ ∈ C∞c (R× [0,∞); Rd) we have

d∑
i=1

∫∫
Ω∞

{
ρi ∂ζ

i

∂t
−

d∑
j=1

ρjΦij
∂ζi

∂x

}
dxdt = −

d∑
i=1

∫
Ω

ρi
0ζ

i(·, 0)dx. (4.22)

The discrete scheme used in [5] to show existence only works for weakly coupled
systems, i. e. Ψ is diagonal and there is a zero-order term F (x, t, ρ) in the equation
(if F ≡ 0 then the system is completely decoupled which is not interesting). Our
goal here is to come up with an appropriate discrete scheme for (4.21). The trick is
to first look at the approximate Euler equation (2.9) and consider what should be
changed to replace it with something of the form:∣∣∣∣ ∫

Ω

{
1
τ

(ρi
k − ρi

k−1)ζ +
d∑

j=1

ρj
kΦijζ

′
}
dx

∣∣∣∣ ≤ O(τ) sup
R
|ζ ′′|, (4.23)

for all i = 1..d and all ζ ∈ C∞c (R). Denote by si the transfer map pushing ρi
k−1

into ρi
k. Then (4.23) becomes∣∣∣∣ ∫

Ω

{
[ζ(si(x))− ζ(x)]ρi

k−1 + τ
d∑

j=1

ρj
k−1Φij(sj)ζ ′(sj)

}
dx

∣∣∣∣ ≤ o(τ) sup
R
|ζ ′′|, (4.24)

where τ−1o(τ) → 0 as τ ↓ 0. To simplify, let us assume that ρi := ρi
k−1 are given

strictly positive and smooth such that ρi/ρj is bounded away from zero and infinity
for all i, j. Then, the problem is to find si’s such that (4.24) holds for all ζ, all
i and for o(τ) independent of the step k − 1 → k. We have ζ(si(x)) − ζ(x) =
(si(x) − x)ζ ′(x) + |si(x) − x|2ζ ′′(y) for some y between x and si(x). Also, we add
and subtract τ

∑d
j=1 ρ

j
k−1Φij(sj)ζ ′ in the integrand from (4.24) and assume we are

able to prove that∫
Ω

d∑
j=1

ρj
k−1Φij(sj)(ζ ′(sj)− ζ ′)dx ∼ O(τ), d(ρi

k−1, ρ
i
k) ∼ O(τ) (4.25)

for si chosen so that

ψi
τ (si) + τ

d∑
j 6=i

(ρj/ρi)Φij(sj) = id in Ω, (4.26)

where ψi
τ := id + τΦii for all i = 1..d. Obviously, by assuming Φij ≡ 0 for i 6= j,

the equations (4.26) become d completely decoupled equations with the solutions
si = (ψi

τ )−1. Thus, we are back to single equations.
Our goal is to establish a minimal set of assumptions on the matrix Φ in order to

ensure existence and uniqueness of the si’s which must also have requisite properties,
e.g., to imply (4.25).
For clarity of exposition we consider the d = 2 case, i.e. two by two systems. Then
(4.26) becomes {

ψ1
τ (s1) + τ ρ2(x)

ρ1(x)Φ12(s2) = x,

ψ2
τ (s2) + τ ρ1(x)

ρ2(x)Φ21(s1) = x,
(4.27)
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which is to be solved to give si := si(x) for all x ∈ Ω. Assume, as in the previous
section, that Φii ∈ C1(Ω) ∩ W 1,∞

0 (Ω), i = 1, 2 (so that, for τ sufficiently small,
ψi

τ are both diffeomorphisms of Ω). Our goal is to prove that (4.27) has a unique
solution (s1, s2) and then study its properties. The interesting feature of the d = 2
case is that (4.27) decouples and we have the equations:

ψ1
τ (s1) + τ

ρ2(x)
ρ1(x)

Φ12 ◦ θ2τ (x− τ
ρ1(x)
ρ2(x)

Φ21(s1))− x = 0 (4.28)

and

ψ2
τ (s2) + τ

ρ1(x)
ρ2(x)

Φ21 ◦ θ1τ (x− τ
ρ2(x)
ρ1(x)

Φ12(s2))− x = 0 (4.29)

for all x ∈ Ω, where θi
τ := (ψi

τ )−1.
Furthermore, let us assume Ω = R. We can prove:

Lemma 2. The system (4.27) has a unique solution (s1, s2) for sufficiently small
τ > 0. Also, si ∈ Diff(R) for i = 1, 2.

Proof: Let us only analyze (4.28) since (4.29) is similar. For x ∈ R, we define
F (x, ·) : R → R by

F (x, s) := θ1τ (x− τβ(x)Φ12 ◦ θ2τ (x− τα(x)Φ21(s))),

where α := ρ1/ρ2 and β := ρ2/ρ1. Obviously, F is differentiable in both x and s.
Furthermore,

∂

∂s
F (x, s) =

τΦ′12(a1)
1 + τΦ′11(a2)

τΦ′21(s)
1 + τΦ′22(a3)

, (4.30)

where ak, k = 1, 2, 3 are functions of x, s, τ . If Φ′ij are bounded in R, then F (x, ·) is
a contraction for all x ∈ R and all sufficiently small τ > 0. Therefore, the equation
s = F (x, s) has a unique solution s = s1(x) for each x ∈ R. Therefore, there exists
a unique map s1 : R → R such that s1(x) = F (x, s1(x)) for all x ∈ R. In order to
see that s1 : R → R is one-to-one and onto, it suffices to show that s = F (x, s) has
a unique solution x for all s ∈ R. This latter equation is equivalent to:

x = ψ1
τ (s) + τβ(x)Φ12 ◦ θ2τ (x− τα(x)Φ21(s)) (4.31)

and it is elementary to prove that the r.h.s. is a contraction in x (for yet smaller τ >
0), ensuring thus the existence and uniqueness of x as desired. Therefore, s = s1(x)
is the unique map satisfying s(x) = F (x, s(x)) for all x ∈ R. The Implicit Functions
Theorem yields that s is differentiable and s′(x) = Fx(x, s(x)) + s′(x)Fs(x, s(x)).
Idem for s2. Also, in order for si to be transfer maps, we need them to be strictly
increasing. According to the previous proof, s′1(x)(1−Fs(x, s1(x))) = Fx(x, s1(x)).
Since Fs is given in (4.30), let us now write Fx in detail. We have:

∂

∂x
F (x, s) =

1
1 + τΦ′11(b1)

{
1− τβ′(x)Φ12(b2)− τβ(x)Φ′12(b3)[1− τα′(x)Φ21(s)]

}
,

for bk, k = 1, 2, 3 functions of x, s, τ . It is now clear that s′1 = Fx/(1−Fs) ∼ 1 for
small enough τ > 0. Same goes for s2.
If we let ri := s−1

i , then we define ρi
k := (ρi

k−1 ◦ ri)r′i. It is now easy to prove, since
ri ∼ id + O(τ) and r′i ∼ 1 + O(τ), that (4.25) are true. However, the choice of
the appropriate τ depends on the L∞ norms of ρ1

k−1/ρ
2
k−1, ρ

2
k−1/ρ

1
k−1 and, what is

worse, on the norms of their derivatives.
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5. General costs. It is interesting to realize that only for gradient vector fields do
we obtain the solution approximants by steepest descent or discretized gradient flow
of the functional ρ →

∫
Ω
ρΨdx with respect to the quadratic Wasserstein distance

on M(Ω). We are then led to existence of a weak solution in Ω × (0,∞). It may
seem that no such interpretation is available for the nonconservative case. However,
while the steepest descent interpretation becomes unavailable, in some special cases
we may still employ time-discretized implicit schemes involving generalized time-
step scaled Kantorovich distances to obtain solutions for all times. To this effect,
consider the Hamiltonian H : RN → [0,∞) of class C2 satisfying

H(0) = 0, H is strictly convex, i.e. H is convex and det(∇2H) > 0 in RN , (5.1)

and

H is coercive, i.e. lim
|x|↑∞

H(x)
|x|

= ∞. (5.2)

Let τ > 0 and define (see, e.g., [1])

W τ
L(ρ0, ρ1) := inf

p∈P

∫∫
RN×RN

L

(
x− y

τ

)
dp(x, y), (5.3)

where ρ0, ρ1 ∈ M(RN ), L := H∗ is the Legendre transform of H and P is the set
of all Borel probability measures on RN × RN with marginals ρ0dx and ρ1dx (see
[1]). Next we analyze the following version of (2.4):

For every integer k ≥ 1 we define ρk as the solution of

τW τ
L(ρ, ρk−1) +

∫
RN

Ψ(x)ρ(x)dx =: Iτ [ρk−1] = min . (5.4)

Assume ρ0 > 0 a.e. and note that, as in the proof of Proposition 1, we may write

Iτ [ρk−1](µ) =
∫

RN

{
τL

(
x− sµ(x)

τ

)
+ Ψ(sµ(x))

}
ρk−1(x)dx, (5.5)

where µ ∈ P(RN ) and sµ is the unique transfer map pushing forward ρk−1dx to µ
that achieves W τ

L(µ, ρk−1) according to its definition (5.3) (note that it can easily be
extended to probability measures not necessarily absolutely continuous with respect
to the Lebesgue measure). It is well-known from the classical theory of Hamilton-
Jacobi equations (e.g., [8]) that, for all x ∈ RN , there exists a unique minimizer
sτ := (id + τ∇H ◦ ∇Ψ)−1 for the integrand in (5.5) which does not depend on the
step k and

u(x, τ) := min
y∈RN

{
τL

(
x− y

τ

)
+ Ψ(y)

}
= τL

(
x− sτ (x)

τ

)
+ Ψ(sτ (x)) (5.6)

is the unique semiconcave solution for the Hamilton-Jacobi IVP:{
ut +H(∇u) = 0 in RN × (0,∞),

u(·, 0) = Ψ in RN .
(5.7)

Therefore, the scheme (5.4) admits a unique solution {ρk}k. Based on this, we
recall the construction of the time-interpolants ρτ which, under some conditions,
can be shown to converge to the weak solution for (2.13) in RN × (0,∞). Let us
next sketch the proof of the following:

Proposition 6. Let Φ ∈ C1(RN ; RN ) be of the form Φ = ∇H ◦ ∇Ψ, where H ∈
C2(RN ) is convex with H(0) = 0 as its minimum and such that H(x) ≤ K|x|2
for all x ∈ RN and some K > 0. Assume |∇2H ◦ ∇Ψ|, |∇2Ψ| ∈ L∞(RN ) and
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ρ0 ∈M(RN ) ∩ Lp(RN ) for some 1 < p ≤ ∞. Then there exists a weak solution for
(2.13) in RN × (0,∞).

Proof: Note that, for every ε > 0, Hε(x) := H(x) + ε|x|2/2 satisfies (5.1) and
(5.2). We will show existence of solutions ρε for (2.13) with Φε := ∇Hε◦∇Ψ instead
of Φ. Then we will pass to the limit as ε ↓ 0 and obtain a weak solution for our
problem in view of the uniform boundedness of ρε in Lp. Note that

divΦε =
N∑

i=1

N∑
j=1

∂2Hε

∂xi∂xj
(∇Ψ)

∂2Ψ
∂xi∂xj

= (∇2H ◦ ∇Ψ + ε1) · ∇2Ψ
= (∇2H ◦ ∇Ψ) · ∇2Ψ + ε∆Ψ.

According to the hypothesis, this equality shows that if we can prove existence of
ρε as the limit as τ ↓ 0 of the time-interpolants ρτ

ε , then (2.7) or (2.8) is sufficient
to infer uniform bounds in Lp for ρε. In order to prove existence of ρε note that,
the inequality (2.7) or (2.8) gives the boundedness of {ρτ

ε }τ in Lp
loc(RN × (0,∞)).

This leads to the weak (or weak ?) convergence of a subsequence to ρε. To show
that ρε is the expected weak solution we can apply Proposition 3 combined with an
appropriate version of (2.14) or (2.15). Note that, instead, (5.4) gives

τ

∞∑
k=1

W τ
Lε(ρε,k, ρε,k−1) ≤ 2‖Ψ‖L∞(RN ) (5.8)

if Ψ is bounded or

τ

∞∑
k=1

W τ
Lε(ρε,k, ρε,k−1) ≤

∫
RN

ρ0Ψdx (5.9)

if Ψ is nonnegative. We have seen that the map pushing ρε,k back to ρε,k−1 is
ψε

τ := id + τ∇Hε ◦ ∇Ψ. It follows

W τ
Lε(ρε,k, ρε,k−1) =

∫
RN

Lε(∇Hε ◦ ∇Ψ(x))ρε,k(x)dx.

Since 0 ≤ H ≤ K|id|2, we have Lε(z) ≥ C(ε,K)|z|2 for certain C(ε,K) > 0 (for
small ε). This and the equation above lead to

τ2
∞∑

k=1

∫
RN

|∇Hε ◦ ∇Ψ|2ρε,kdx ≤
τ2

C(ε,K)

∞∑
k=1

W τ
Lε(ρε,k, ρε,k−1).

In view of this and (5.8) or (5.9) we obtain
∞∑

k=1

∫
RN

|x− ψε
τ (x)|2ρε,kn(x)dx ≤ Cτ

for some constant C = C(ε,K,Ψ) > 0. Thus, the proof is concluded.
What happens if Ω is a bounded domain? Then we have the following proposition:

Proposition 7. Let Φ ∈ C1
0 (Ω̄; RN ) be of the form Φ = ∇H ◦ ∇Ψ, where H ∈

C2(RN ) is strictly convex with H(0) = 0 as its minimum and such that H(x) ≤
K|x|q for all x ∈ RN and some K > 0, q > 1. Assume |∇2H ◦ ∇Ψ|, |∇2Ψ| ∈
L∞(RN ) and ρ0 ∈ M(RN ) ∩ Lp(RN ) for some 1 < p ≤ ∞. Then there exists a
weak solution for (2.13) in RN × (0,∞).
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Proof: Let T > 0 and τ > 0 such that T/τ =: n is a positive integer. The
inequality H(x) ≤ K|x|q yields L(x) ≥ K ′|x|q′ for some K ′ > 0 and, consequently,∫

Ω

|x− ψτ (x)|2ρk(x)dx ≤ τ q′

K ′W
τ
L(ρk, ρk−1). (5.10)

Inspired by [1], we distinguish two cases:
Case 1: 1 < q < 2 implies 2 < q′ < ∞. Then, according to (5.10) and Jensen’s
inequality, we have∫

Ω

|x− ψτ (x)|2ρk(x)dx ≤
( ∫

Ω

|x− ψτ (x)|q
′
ρk(x)dx

)2/q′

≤ τ2

(K ′)2/q′

[
W τ

L(ρk, ρk−1)
]2/q′

.

By summation we get

n∑
k=1

∫
Ω

|x− ψτ (x)|2ρk(x)dx ≤ τ2

(K ′)2/q′

(
T

τ

)1−2/q′[ n∑
k=1

W τ
L(ρk, ρk−1)

]2/q′

.

It follows

n∑
k=1

∫
Ω

|x− ψτ (x)|2ρk(x)dx ≤ T 1−2/q′ τ

(K ′)2/q′

[
τ

n∑
k=1

W τ
L(ρk, ρk−1)

]2/q′

≤ Cτ,

with C independent of n.
Case 2: 2 ≤ q implies 1 < q′ ≤ 2. Note that (5.10) implies∫

Ω

|x− ψτ (x)|2ρk(x)dx ≤
( ∫

Ω

|x− ψτ (x)|q
′
ρk(x)dx

)2/q′

≤ (diamΩ)2−q′

(K ′)2/q′
τ q′W τ

L(ρk, ρk−1).

Summing over k leads to

n∑
k=1

∫
Ω

|x− ψτ (x)|2ρk(x)dx ≤ Cτ q′−1,

with C independent of n. Therefore, in both situations, the cumulative error term
tends to zero.

Case 1 does not rely on Ω being bounded while case 2 does. However, in case 2
we deal with a summable series (the constant C is independent not only of n but
also of T ).
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