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Abstract We describe a dissipation principle/variational principle which may be
useful in modeling motion in small viscous systems and provide brief
illustrations to brownian motor or molecular rachet situations which
are found in intracellular transport.
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Introduction
Intracellular transport in eukarya is attributed to motor proteins that

transduce chemical energy into directed mechanical motion. Muscle
mysosin has been known since the mid-nineteenth century and its role
in muscle contraction demonstrated by A.F. Huxley and H.E. Huxley in
the 1950’s. Kinesins and their role in intracellular transport were dis-
covered around 1985. These nanoscale motors tow organelles and other
cargo on microtubules. They function in a highly viscous setting with
overdamped dynamics; we are anticipating Reynolds’ numbers about
5×10−2. Taken as an ensemble, they are in configurations far from con-
ventional notions of equlibrium even though they are in an isothermal
environment. Because of the presence of significant diffusion, they are
sometimes referred to as Brownian motors. Since a specific type tends
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to move in a single direction, for example, anterograde or retrograde to
the cell periphery, these proteins are sometimes referred to as molecular
rachets.

Here we describe a dissipation principle that describes transport in
a typical motor system, like conventional kinesin. This begins a chain
of events. It suggests, in a natural way, a variational principle and an
implicit scheme in the sense of Otto [14], [15] and Jordan, Kinderlehrer
and Otto [9]. This determines, in turn, a system of equations analogous
to that proposed by Adjari and Prost [1] or Peskin, Ermentrout, and
Oster [17]. We have a clear notion of equilibrium or minimum energy
for a macroscopic process, however most of the systems we meet are only
metastable. It is, indeed, common to model situations in a way that this
metastability disappears. Moreover, even when we are cognizant of this
behavior, when we think of evolution, especially when we have a smooth
solution in hand, we often neglect to think that when writing that states
are close to each other, we are imposing a notion of closeness, a topology,
on the dynamics. The novelty of our idea is that it sets this dynamical
process in a weak topology as described by a Kantorovich-Wasserstein
metric. This owes in part to a result of Brenier and Benamou, [3]. It
illustrates the feasibility of mesoscale modeling for these systems.

The flashing rachet, a different type of Brownian motor, was discussed
in [10]. One explanation of this was given in [2] and it has been suggested
as a description of processivity in the KIF-1A family of kinesins, [12],
[13]. There is a discussion in [6] as well as the Parrondo Paradox, a coin
toss game somethimes thought to mimic molecular motor behavior, in
[7].

With a thermodynamically consistent system of differential equations
in hand, we inquire of conditions that ensure transport. In the example
we describe, a model for conventional kinesin, diffusion and conforma-
tional change collaborate with transport in periodic potentials. This
model is highly over simplified. Asymmetry of the potentials within
their period intervals is critical for transport. The origins of this asym-
metry are as yet unclear but could reside in the details of the binding
mechanisms of the heads to the microtuble, as well as other features.

This is a description of joint work with Michal Kowalczyk, Michel
Chipot, Jean Dolbeault, and Stuart Hastings.

1. A variational principle
Consider an ensemble of statistically homogeneous non-interacting

particles in a highly viscous medium, thought of simply as spring-mass-
dashpots. For our setup, suppose we have probability densities f∗(x) and
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f(x), x ∈ Ω = (0, 1), and interpolating densities f(x, t), x ∈ Ω, 0 ≤ t ≤
τ with f∗(x) = f(x, 0) and f(x) = f(x, τ). For this ’Eulerian’ descrip-
tion, there is a ’Langrangian’ description in terms of a family of measure
preserving mappings, transfer functions, φ(x, t), x ∈ Ω, 0 ≤ t ≤ τ
related by ∫

Ω
ζ(y)f(y, t)dy =

∫
Ω
ζ(φ(x, t))f∗(x)dx.

For f(x, t) there is a velocity v(x, t) such that

ft + (vf)x = 0 in Ω, 0 < t < τ (continuity equation)

and likewise in the ’Lagrangian’ version

f(φ(x, t), t)φx = f∗(x).

This is actually the Monge-Ampere Equation. They are also related by
φt(x, t) = v(φ(x, t), t).

For the ensemble of spring-mass-dashpots, the viscous dissipation
moving from f∗ to f via f(x, t) is simply

γ

∫ τ

0

∫
Ω
v2fdxdt

for a parameter γ. When the system moves in response to a potential
ψ, its free energy at a density ϕ is

F (ϕ) =
∫
Ω

(ψϕ+ σ ϕ log ϕ)dx

In this way, we arrive at a simple mesoscopic dissipation principle. The
state f is admissible from f∗ provided

γ

∫ τ

0

∫
Ω
v2fdxdt+ F (f) ≤ F (f∗) (1)

for some interpolating density f(x, t) with f∗(x) = f(x, 0) and f(x) =
f(x, τ). We regard τ as a relaxation time. To connect this to a varia-
tional principle, we observe that [3]

1
2τ
d(f, f∗)2 = infA

1
2

∫ τ

0

∫
Ω
v2fdxdt (2)

where A is the family of interpolating densities and d is the Kantorovich-
Wasserstein metric defined by

d(f, f∗)2 = infP

∫
Ω×Ω

|x− y|2dp(x, y)

P = joint distributions with marginals f, f∗.
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The optimality condition for f, v in (2) is

vt + vvx = 0 in Ω, 0 < t < τ (Burgers′Equation)

Its ’Lagrangian’ form is

φ(x, t) = x+
t

τ
(φ(x, τ)− x), x ∈ Ω, 0 < t < τ

The metric d delivers the weak* topology on measures, i.e., its topology
as the dual space of C(Ω), and the ’Lagrangian’ form suggests that the
optimality condition describes a geodesic path in this space.

For convenience we set γ = 1
2 . Our variational principle is now: given

f∗, determine f such that

1
2τ
d(f, f∗)2 + F (f) = min (3)

The variational principle (3) provides an implicit scheme: Given f (k−1),
set f∗ = f (k−1) and determine fk from the minimum principle. The
great merit of the Wasserstein metric is that it may be, in essence,
differentiated. Thus, in the limit as τ → 0, the sequence f (k) tends to
the solution f of the standard Fokker-Planck Equation, [9], [14], [15]

∂f

∂t
= σ

∂2f

∂x2
+

∂

∂x
(ψ′f) in Ω, t > 0 (4)

σ
∂

∂x
f + ψ′f = 0 on ∂Ω, t > 0 (5)

Variational principles such as (3) above may be considered without
thinking about physical systems, of course, and there is now a significant
literature in this topic, and even traditional problems have unexpected
interpretations, [19]. (3) firmly establishes that the coarse graining of mi-
croscopic system gives rise to weak topology dynamics at the mesoscale.
For situations, like the one below, where equilibrium is never achieved,
this may provide additional insight into their metastable nature. From
the analysis point of view, one observes that the basic variational princi-
ple is convex and superlinear, so existence of the iterates in the implicit
scheme is not usually a difficulty. Convergence as τ → 0 could be, espe-
cially for nonlinear problems.

2. A look at conventional kinesin
Conventional kinesin has two identical head domains (heavy chains)

which walk in a hand over hand fashion along a rigid microtubule. This
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is a complicated process with a complicated transformation path com-
prising both the ATP hydrolysis (chemical states) and the motion (me-
chanical states), [8], [20]. For a crude reckoning, at a gross combinatorial
level, each head is attached or in motion and is nucleotide bound or not.
Assuming that a given motor has one head bound and one free at any
instant leads to eight possible pathways for each cycle. We shall give
a simplified description by considering the nucleotide binding and then
the subsequent motion. Our dissipation/variational principle is flexible
enough to accomodate this process.

As an accounting measure, divide the heads of the ensemble of motors
into two sets, set 1 and set 2; for example, the set 1 motors bind to
odd labled sites on microtubules and the set 2 motors bind to even
labeled sites. This permits distance along the microtubule to be used
as a process variable. Regard the conformational change and nucleotide
binding to be the result of first order chemistry and the motion to be
the result of ineraction with potentials, diffusion, and dissipation. Let
ρ1 and ρ2 denote the relative densities of the set 1 and set 2 motors
in the powerstroke state, when they are undergoing motion. Introduce
potentials and coefficients for conformational change,

σ > 0 constant

ψi ≥ 0 and νi ≥ 0, i = 1, 2, smooth and periodic of period
1
N

with supp ν1 = supp ν2 and ν1 + ν2 ≤ 1. Let

P = 1 + τ

(
−ν1 ν2

ν1 −ν2

)
where τ is a relaxation time. Denote the free energy of this system by

F (ρ) =
2∑

i=1

∫
Ω

(ψi ρi + σ ρi log ρi)dx (6)

We may envision a cycle starting with density ρ∗ = (ρ∗1, ρ
∗
2) and proceed-

ing by
ρ∗ → ρ∗P → ρ

subject to the dissipation principle: given ρ∗ with∫
Ω
(ρ∗1 + ρ∗2)dx = 1 and ρ∗i ≥ 0 in Ω, (7)

determine ρ by
2∑

i=1

1
2τ
d(ρi, (ρ∗ P )i)2 + F (ρ) = min (8)
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Ω
ρi dx =

∫
Ω
(ρ∗ P )i dx (9)

The variational principle (8) lucidly shows the roles of the dissipation,
conformational change, and free energy in the system. It is clear that
much more complex features of the process could be considered. Al-
though there are some subtleties, (8) admits an Euler Equation which
is the system [5]

∂ρ1

∂t
=

∂

∂x
(σ
∂ρ1

∂x
+ ψ′1ρ1)− ν1ρ1 + ν2ρ2 in Ω, t > 0 (10)

∂ρ2

∂t
=

∂

∂x
(σ
∂ρ2

∂x
+ ψ′2ρ2) + ν1ρ1 − ν2ρ2 in Ω, t > 0 (11)

σ
∂ρ1

∂x
+ ψ′1ρ1 = 0 on ∂Ω, t > 0

σ
∂ρ2

∂x
+ ψ′2ρ2 = 0 on ∂Ω, t > 0

ρi(x, 0) = ρ0
i ≥ 0, in Ω, i = 1, 2∫

Ω
(ρ1 + ρ2) dx = 1

and moreover this system has a solution for all time. There is, in addi-
tion, a unique stationary solution, namely the solution ρ] of the system
of ordinary differential equations [4]

d

dx
(σ
dρ]

1

dx
+ ψ′1ρ

]
1)− ν1ρ

]
1 + ν2ρ

]
2 = 0 in Ω (12)

d

dx
(σ
dρ]

2

dx
+ ψ′2ρ

]
2) + ν1ρ

]
1 − ν2ρ

]
2 = 0 in Ω (13)

σ
dρ]

1

dx
+ ψ′1ρ

]
1 = 0 on ∂Ω

σ
dρ]

2

dx
+ ψ′2ρ

]
2 = 0 on ∂Ω∫

Ω
(ρ]

1 + ρ]
2) dx = 1

Note that in general ρ] does not minimize (6).

Finally, we discuss the transport properties of ρ]. Although we have
not yet untangled all details of the collaboration between diffusion and
transport here, the role of asymmetry is prominent. The main idea is,
writing the system above in terms of its fundamental matrix (as a first
order 4 × 4 system) starting from x = 1, to exploit the sign changes in
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Figure 1. Interdigitated asymmetric potentials ψ1 and ψ2 (left) and stationary state
ρ] demonstrating about 0.9 of its mass on the right half of the interval.

ψ′i. For this we assume that between successive maxima, ψi decreases
monotonically to a unique minimum and then increases to its maximum.
In this framework, our main result is that if

there is no interval where ψ1 and ψ2 are both increasing, and

ν1 > 0 and ν2 > 0 in Ω

then

ρ]
1(x−

1
N

)+ρ]
2(x−

1
N

) ≤ Ke−
C
σ (ρ]

1(x)+ρ]
2(x)), x ≤ 1− 2

N
(14)

At this writing, the relationship of the supports of the conformational
change coefficients νi and the potentials ψi is still not clear. One obvious
situation where no transport can be expected is when the system (10),
(11) decouples. This happens when

ν ∝ (e−
ψ2
σ , e−

ψ1
σ ) (15)

This is sometimes referred to as detailed balance, but it only concerns the
balance in part of the equations. However, even in this case, retaining the
σ = σ0 above in (15)but diminishing sufficiently the diffusion coefficient
σ in (10), (11) will result in transport according to our theorem.
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