| 
  Center for                              Nonlinear Analysis 
  CNA Home
  People
  Seminars
  Publications
  Workshops and Conferences
  CNA Working Groups
  CNA Comments Form
  Summer Schools
  Summer Undergraduate Institute
  PIRE
  Cooperation
  Graduate Topics Courses
  SIAM Chapter Seminar
  Positions
  Contact | 
  
Publication 17-CNA-004
 Leading-Order Nonlocal Kinetic Energy in Peridynamics for Consistent Energetics and Wave Dispersion  Kaushik  Dayal The paper next examines peridynamics as the limit model along a sequence of strain-gradient models that consistently approximate both the energetics and the dispersion properties of peridynamics. Formally examining the limit suggests that the inertial term in the dynamical equation of peridynamics - or equivalently, the peridynamic kinetic energy - is necessarily nonlocal in space to balance the spatial nonlocality in the elastic energy. The nonlocality in the kinetic energy is of leading-order in the following sense: classical elasticity is the zeroth-order theory in both the kinetically nonlocal peridynamics and the classical peridynamics, but once nonlocality in the elastic energy is introduced, it must be balanced by nonlocality in the kinetic energy at the same order. In that sense, the kinetic nonlocality is not a higher-order correction; rather, the kinetic nonlocality is essential for consistent energetics and dynamics even in the simplest setting. The paper then examines the implications of kinetically nonlocal peridynamics in the context of stationary and propagating discontinuities of the kinematic fields. Get the paper in its entirety as 17-CNA-004.pdf  |