An introduction to SOBOLEV spaces and interpolation spaces

I once heard my advisor, Jacques-Louis LIONS, mention that once the detailed plan of a book is made,
the book is almost written, and as he had already written a few books he was certainly speaking of experience.
He gave me the impression that he could write directly a very reasonable text, which he gave to a secretary
for typing; maybe he gave then chapters to one of his students, as he did with me for one of his books!, and
very few technical details had to be fixed. His philosophy seemed to be that there is no need to spend too
much time polishing the text or finding the best possible statement, as the goal is to take many readers to
the front of research, or to be more precise to one front of research, because in the beginning he seems to
have changed topics every two years. As for myself, I have not yet written a book, and a first reason is that I
am quite unable to write in advance a precise plan of what I am going to talk about; also, I have never been
very good at writing even in my mother tongue, which is French, and again and again I need to read what
I have already written until I find the text acceptable; that notion of acceptability evolves with time, and I
am horrified by my style of twenty years ago; obviously this way of writing is quite inefficient and writing a
book would be prohibitively long.

One solution would be not to write books, and when I go into a library I am already amazed by the
number of books which have been written on so many subjects, and which I have not read of course, because
I never read much. I am even more amazed by the number of books which are not in the library, and
although I have access to a good inter-library loan service, I am concerned with how difficult it is for faraway
students to have access to scientific knowledge (and I do consider Mathematics as part of Science).

In the Spring 1999, I found the right solution for me, which is to give a course and to prepare lecture
notes for the students, trying to write down after each course the two or three pages describing what I had just
taught; for such short texts my problems about writing are not too acute. I could hardly have known at the
beginning of the Semester how much an introduction to Oceanography my course would be, and when after
a short introduction and the description of some classical methods for solving NAVIER-STOKES equations (in
the over-simplified version which mathematicians usually consider), it was time to describe some of the models
considered in Oceanography, I realized that I did not believe too much in the derivation of these models, and
I prefered to finish the course by describing some of the general mathematical tools for studying the nonlinear
partial differential equations of Continuum Mechanics, some of which I have developped myself. The resulting
set of lecture notes is not as good as I would have liked, but an important point was to make this introductory
course available on the web page of the Center for Nonlinear Analysis of the Department of Mathematical
Sciences at CARNEGIE-MELLON University (http://www.math.cmu.edu/cna/publications.html#notes “In-
troduction to Oceanography”).

In the Spring 2000, I taught a course divided in two parts, the first part on SOBOLEV spaces, and for
the second part I chose to teach about Interpolation spaces. I also decided to add some information that
one rarely finds in courses of Mathematics, something about the people.

I had the privilege to study in Paris, to have great teachers like Laurent SCHWARTZ and Jacques-Louis
LIONS, and to have met many famous mathematicians. This has given me a different view of Mathematics
than the one that comes from reading books and articles, which I find too dry, and I have tried to give
a little more life to my story by telling a little about the actors; for those mathematicians whom I have
met, I have used their first names in the text, and I have tried to give some simple biographical data for
all people quoted in the text, in order to situate them, both in time and in space. For mathematicians of
the past, a large part of this information comes from using “The MacTutor History of Mathematics archive”
(http://www-history.mcs.st-and.ac.uk/history)?, but for names which are not (yet) included in this archive,
I did search the web for information, and it is possible that some of my information is incomplete or even
inaccurate. My interest in History is not recent, but my interest in History of Mathematics has increased
recently, in part from finding the above mentioned archive, but also as a result of seeing so many of my

! LIONS J.-L., Quelques méthodes de résolution des problémes auz limites non linéaires, Dunod; Gauthier-
Villars, Paris 1969 xx+-554 pp.

2 T am very thankful to John J. O’CONNOR and Edmund F. ROBERTSON, from the University of St
Andrews in Scotland, for having created such an interesting archive.
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ideas attributed to others, who often do not even understand them well; I have tried to be as accurate as
possible concerning the work of others, and I have tried to learn more about the mathematicians who have
introduced some of the ideas which I was taught when I was a student in Paris in the late 60s. I hope that
I will be given the correct information by anyone who finds one of my mistakes, and that I will be forgiven
for these unintentional errors.

I was born in France from a Syrian father and a French mother and I left my country for political reasons
and I enjoy now the hospitality of an American university, and this may explain my interest in mentioning
that others have worked in a different country than the one where they were born; I am not interested in
the precise citizenship of the people mentioned, but I wanted to convey the idea that the development of
Mathematics is an international endeavour. One might observe that there have been efficient schools in some
areas of Mathematics at some places and at some moments in time, but although the conditions might be
less favourable outside these important centers, I would like to think that a lot of good work can be done
elsewhere, and it reminds me of what an Italian friend told me a few years ago: he went to teach in Somalia,
for six months if I remember well, and a student came one day to explain to him that he should not be upset
when some of the students fell asleep during his lectures, as the reason was not their lack of interest for the
subject, but that sometimes they had eaten nothing for a week. I would like to think that my lecture notes
could arrive freely in such remote places where there are such courageous students who are trying to acquire
some precious knowledge about Mathematics, despite the enormous difficulties that they encounter in their
everyday life.

I hope that my lack of organization skills will not bother too much the readers. I consider teaching
courses like leading groups of newcomers into unknown countries, not unknown to me as I have often wandered
around; some members of a group who have already read about the region or have been in other expeditions
with guides much more organized than me might feel disoriented by my choice of places to visit, and indeed
I may have forgotten to show a few interesting places, but my goal is to familiarize the readers with the
subject and not to write a definitive account.

There are results which are mentioned without proof, and sometimes they are proven later but sometimes
they are not, and as no references are given one should remember that I have been trained as a mathematician,
and the statements without proofs have indeed been proven in a mathematical sense, because if they had
not I would have called them conjectures instead; however, I am also human and my memory is not perfect
and I may have made mistakes. I believe that the right attitude in Mathematics is to be able to explain all
the statements that one makes, but in a course one has to assume that the reader already has some basic
knowledge of Mathematics, and some proofs of a more elementary nature are omitted. Here and there I
mention a result that I have heard of but for which I never read a proof or did not make up my own proof,
and I usually say so. Actually, and I think that my advisor mentioned that to me, it is useful to read only

the statement of a theorem and one should read the proof only if one cannot supply one®.

After hearing about SOBOLEV spaces in seminars by Jacques-Louis LIONS or some of his students at
Ecole Polytechnique in 1966, I learned a little more in his courses at the university in the following years,
and I read his 1962 course* in Montreal, Canada, and a book by Shmuel AGMON?®. I had learned about

3 The MacTutor archive mentions an interesting anecdote in this respect concerning a visit of Antoni
ZYGMUND to the University of Buenos Aires, Argentina, in 1948; Alberto CALDERON was a student there
and he was puzzled by a question that ZYGMUND had asked, and he said that the answer was in ZYGMUND’s
own book “Trigonometric series”, but ZYGMUND disagreed; after discussions the matter became clear, as
CALDERON had read a statement in the book and supplied his own proof, which was more general that the
one that ZYGMUND had written; CALDERON’s proof answered the question that ZYGMUND had just asked,
but CALDERON had not looked at ZYGMUND’s proof and had not known before that his proof was different
from the one in the book.

4 LIONS J.-L., Problémes auz limites dans les équations auz dérivées partielles, Deuxiéme édition, Séminai-
re de Mathématiques Supérieures, No. 1 (Eté, 1962) Les Presses de 1'Université de Montréal, Montreal, Que.
1965, 176 pp.

5 AGMON 8., Lectures on elliptic boundary value problems, William Marsh Rice University, Houston, Tex.
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distributions in Laurent SCHWARTZ’s course at Ecole Polytechnique in 1965/66 and then I read his book®. I
first read about interpolation in a book that Jacques-Louis LIONS wrote with Enrico MAGENES” and then he
gave me his article with Jaak PEETRE to read, and later he asked me to solve some problems in Interpolation
for my thesis in 1971, and around that time I did read a few articles on Interpolation. I also learned in other
courses by Jacques-Louis LIONS, and the usual process went on, learning, forgetting, inventing a new proof
and rediscovering a proof, when asked a question by a fellow researcher or a student, so that for many results
in these lectures I can hardly say if I have read them or filled the gaps in statements that I had heard. For
the purpose of the lectures I consulted the book by J. BERGH and J. LOFSTROM?.

My personal reason for being interested in the subject of these lectures is that these questions appear in
a natural way when one wants to solve partial differential equations from Continuum Mechanics or Physics.
A good way to learn more in this direction is to consult the books of Robert DAUTRAY and Jacques-Louis
LIONS®.

Pittsburgh, August 2000

Luc Charles TARTAR

University Professor of Mathematics
Department of Mathematical Sciences
CARNEGIE-MELLON University
Pittsburgh, PA, 15213-3890, U.S.A.

Summer Institute for Advanced Graduate Students, 1963.

6 SCHWARTZ L., Théorie des distributions, Publications de 1'Institut de Mathématique de 1’Université de
Strasbourg, No. IX-X. Nouvelle édition, entierement corrigée, refondue et augmentée. Hermann, Paris 1966
xiii+420 pp.

7 LIONS J.-L. & MAGENES E., Problémes auz limites non homogénes et applications, Vol. 1. Travaux et
Recherches Mathématiques, No. 17 Dunod, Paris 1968 xx+372 pp.

8 BERGH J. & LOFSTROM J., Interpolation spaces. An introduction, Grundlehren der Mathematischen
Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976. x+207 pp.

9 DAUTRAY R. & LIONS J.-L., Mathematical analysis and numerical methods for science and technology,
Vol. 1. Physical origins and classical methods, With the collaboration of Philippe Bénilan, Michel Cessenat,
André Gervat, Alain Kavenoky and Héléne Lanchon, Translated from the French by Ian N. Sneddon. With
a preface by Jean Teillac. Springer-Verlag, Berlin-New York, 1990. xviii+695 pp., Vol. 2. Functional and
variational methods, With the collaboration of Michel Artola, Marc Authier, Philippe Bénilan, Michel Cesse-
nat, Jean Michel Combes, Hélene Lanchon, Bertrand Mercier, Claude Wild and Claude Zuily. Translated
from the French by Ian N. Sneddon. Springer-Verlag, Berlin-New York, 1988. xvi+561 pp., Vol. 3. Spectral
theory and applications, With the collaboration of Michel Artola and Michel Cessenat. Translated from the
French by John C. Amson. Springer-Verlag, Berlin, 1990. x+515 pp., Vol. 4. Integral equations and numer-
ical methods, With the collaboration of Michel Artola, Philippe Bénilan, Michel Bernadou, Michel Cessenat,
Jean-Claude Nédélec, Jacques Planchard and Bruno Scheurer. Translated from the French by John C. Am-
son. Springer-Verlag, Berlin, 1990. x+465 pp., Vol. 5. Ewolution problems. I, With the collaboration of
Michel Artola, Michel Cessenat and Héléne Lanchon. Translated from the French by Alan Craig. Springer-
Verlag, Berlin, 1992. xiv+709 pp., Vol. 6. Ewvolution problems. II, With the collaboration of Claude Bardos,
Michel Cessenat, Alain Kavenoky, Patrick Lascaux, Bertrand Mercier, Olivier Pironneau, Bruno Scheurer
and Rémi Sentis. Translated from the French by Alan Craig. Springer-Verlag, Berlin, 1993. xii+485 pp.,
Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 7. Evolution: Fourier,
Laplace, Reprint of the 1985 edition. INSTN: Collection Enseignement. Masson, Paris, 1988. xliv+344+xix
pp., Vol. 8. Evolution: semi-groupe, variationnel, Reprint of the 1985 edition. INSTN: Collection Enseigne-
ment. Masson, Paris, 1988. pp. i—=xliv, 345-854 and i—xix, Vol. 9. Evolution: numeérique, transport, Reprint
of the 1985 edition. INSTN: Collection Enseignement. Masson, Paris, 1988. pp. i—xliv and 855-1303.
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21-724. SOBOLEV spaces
Luc TARTAR, WEAN Hall 6212, 268-5734, tartar@andrew.cmu.edu

01. Monday January 17, 2000.

In the mid 30s, Sergei SOBOLEV! introduced some functional spaces which have been very important in
the development of partial differential equations, mostly those related to Continuum Mechanics or Physics.
They are known as SOBOLEV spaces now, but I have heard that others have claimed to have had the same
idea, like FICHERA? and FRIEDRICHS®. A similar idea was used a little after by Jean LERAY* in his study
of weak solutions® of NAVIER-STOKES® equation.

The basic idea for defining a SOBOLEV space, consists in using weak derivatives, as Sergei SOBOLEV
or Jean LERAY did in the mid 30s; it consists in giving a precise meaning to the statement that a function

u belonging to the LEBESGUE’ space LP(£2)® could have all its partial derivatives g—; belonging to L?(Q2),

for a nonempty open set Q in R™. They did not define partial derivatives for every function in LP(f2), but
only said that some of these functions have partial derivatives belonging also to LP(2), and it was Laurent
SCHWARTZ® who defined more general mathematical objects, which he called distributions, which permit to

! Sergei L’vovich SOBOLEV, Russian mathematician, 1908-1989. I first met him when I was a student,
first in Paris in 1969, then at the International Congress of Mathematicians in Nice in 1970, and conversed
with him in French, which he spoke perfectly (most educated Europeans did learn French in the beginning
of this Century, which only ends on December 31, 2000). I only met him once more, when I traveled with
a French group from INRIA in 1976 to Akademgorodok, Novosibirsk, where he worked. There is now a
SOBOLEV Institute of Mathematics of the Siberian branch of the Russian Academy of Sciences, Novosibirsk.

2 Gaetano FICHERA, Italian mathematician, 1922-1996. He worked at University of Rome I (La Sapienza).

3 Kurt Otto FRIEDRICHS, German-born mathematician, 1901-1982; he emigrated to United States in
1937, to join COURANT.

Richard COURANT, German-born mathematician, 1888-1972; he emigrated to United States in 1934,
and worked at New York University. The Department of Mathematics of New York University is now named
the COURANT Institute of Mathematical Sciences.

4 Jean LERAY, French mathematician, 1906-1998. He received the WOLF prize in 1979. He held a chair
(Théorie des équations différentielles et fonctionnelles) at College de France, Paris, 1947-1978; he was also
for some time a member of the Institute for Advanced Study in Princeton, NJ.

Ricardo WOLF, German-born diplomat and philanthropist, 1887-1981; he emigrated to Cuba before
World War I; from 1961 to 1973 he was Cuban Ambassador to Israel, where he stayed afterwards; the WOLF
foundation was established in 1976 with his wife, Francisca SUBIRANA-WOLF, 1900-1981, “to promote science
and art for the benefit of mankind”.

5 Jean LERAY thought that his notion of weak solutions was related to turbulent flows; although nobody
really understands what turbulence is, his ideas were later replaced by those of KOLMOGOROV.

Andrei Nikolaevich KOLMOGOROV, Russian mathematician, 1903-1987; he received the WOLF prize in
1980.

6 Claude Louis Marie Henri NAVIER, French mathematician, 1785-1836; he introduced the equation in
1821.

George Gabriel STOKES, Irish-born mathematician, 1819-1903; he introduced later the linearized version
now known as STOKES’s equation, where inertial effects are neglected. STOKES held the Lucasian chair at
Cambridge, 1849-1903.

Henry LuUcAs, English clergyman, 1610-1663).

7 Henri Léon LEBESGUE, French mathematician, 1875-1941. He held a chair (Mathématiques) at Collége
de France, Paris, 1921-1941.

8 Tt was Frigyes (Frederic) RIESZ, Hungarian mathematician, 1880-1956, who introduced the L?(f2) spaces
for 1 < p < co. He worked in Budapest.

9 Laurent SCHWARTZ, French mathematician, born in 1915. He received the FIELDS medal in 1950. He
works at Ecole Polytechnique, Palaiseau, and I had him as a teacher in 1965/66 (when Ecole Polytechnique
was in Paris).

John Charles FIELDS, Canadian mathematician, 1863-1932.
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define as many derivatives as one may want, for any locally integrable function. Laurent SCHWARTZ went
further than the theory developed by Sergei SOBOLEV, which he did not know about, and he points out that
BOCHNER!? had also obtained some partial results, which he also only learned about later. Russians always
quote GEL’FAND!!, for developing the theory of distributions, but Laurent SCHWARTZ told me that what
GEL’FAND did was mostly to popularize the theory. Someone pointed out to me that Hermann WEYL!?
should be quoted for the theory too, but I have not checked that, and Laurent SCHWARTZ is not aware of
his work.

Once distributions will be defined and their basic properties obtained, one will define the SOBOLEV
spaces W™P(Q2) for a nonnegative integer m, for 1 < p < co and for an open set 2 of RY: it is the space
of all functions v € LP(2) such that D*u € LP(2) for all multi-indices a@ = (ay,...,an) with |a| < m,

9N

where a; > 0 for j = 1,...,N and |o| = a1 + ... + an, and D% = 86::;“11 g U (one also denotes

a! = a;!...an!, and these simplifying notations have been introduced by WHITNEY*?). One must be careful
that other authors like Lars HORMANDER'# use D to denote %8% instead; one should not be surprised
then if two different books contain similar formulas with different constants, and one should check what is
the definition of the symbol D, and also what are the precise constants used in defining the FOURIER!®

transform.

The reason of Sergei SOBOLEV for introducing the space W2(2), which is also denoted H*(f2) (but
should not be confused with the HARDY!® space!”, which will be denoted #!), is that it is a natural space
for solving equations of the form —A u = f with boundary conditions, an equation named after LAPLACE'8
or POISSON'?. It can be considered as related to the DIRICHLET?? principle, which consists in noticing that
if a function u of class C* minimizes the functional J defined by J(v) = [, |grad(v)|* dz — 2 [, f vdz among
all functions having a given boundary value, then u satisfiess —Au = f in Q. The principle was named
after DIRICHLET by RIEMANN?!, as he had heard it from him, but it had been used before by GAUSS?2

10 Salomon BOCHNER, Polish-born mathematician, 1899-1982; he emigrated to United States after 1933,
and he worked at Princeton University, NJ.

11 Tzrail Moiseevich GEL’FAND, Russian mathematician, born in 1913. He received the WOLF prize in
1978. He works at RUTGERS University, New Brunswick, NJ.

Henry RUTGERS, American colonel.

12 Hermann Klaus Hugo WEYL, German-born mathematician, 1885-1955; he emigrated to United States
in 1933 and he worked at the Institute of Advanced Study in Princeton, NJ.

13 Hassler WHITNEY, American mathematician, 1907-1989. He received the WOLF prize in 1982. He
worked at the Institute for Advanced Study in Princeton, NJ.

14 Lars HORMANDER, Swedish mathematician, born in 1931. He received the FIELDS medal in 1962, and
the WOLF prize in 1988. He works at Lund University.

15 Jean-Baptiste Joseph FOURIER, French mathematician, 1768-1830. He was prefect in Grenoble under
NAPOLEON; the Institut FOURIER is the department of Mathematics of University of Grenoble I, itself named
after Joseph FOURIER.

Napoléon BONAPARTE, French general, 1769-1821; he proclaimed himself emperor, under the name
NAPOLEON I, 1804-1814 (and 100 days in 1815).

16 Godfrey Harold HARDY, English mathematician, 1877-1947. He held the Sadleirian chair of Pure Math-
ematics at Cambridge, 1931-1942.

Lady SADLEIR endowed the chair in 1701).

17 The term seems to have been introduced by Marcel RIESZ, Hungarian-born mathematician, 1886-1969
(the younger brother of Frigyes RIESZ). He worked in Lund, Sweden.

18 Pierre-Simon LAPLACE, French mathematician, 1749-1827. He worked in Paris, at the Bureau des
Longitudes and the Paris Observatory. He became count in 1806 and marquis in 1817.

19 Siméon Denis POISSON, French mathematician, 1781-1840. He worked in Paris

20 Johann Peter Gustav LEJEUNE DIRICHLET, German mathematician, 1805-1859. He worked in Berlin,
1828-1855, and then in Gottingen.

21 Georg Friedrich Bernhard RIEMANN, German mathematician, 1826-1866. He worked in Géttingen.

22 Johann Carl Friedrich GAUSS, German mathematician, 1777-1855. He worked in Géttingen.
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and by GREEN?®. WEIERSTRASS?* pointed out later that the functional might not attain its minimum; I
think that the complete solution of the DIRICHLET principle was one in the famous list of problems which
HILBERT?® proposed in 1900 at the International Congress of Mathematicians in Paris; the introduction of
SOBOLEV spaces, which are HILBERT spaces®%, together with some developments in Functional Analysis,
by FRECHET??, F. RIESZ and BANACH?® which had paved the way, partly solved the problem. As the
principle is also named after THOMSON??, it is possible that Sergei SOBOLEV had considered the question
of Electrostatics, a simplification of MAXWELL?® equation.

HADAMARD?! introduced the notion of well posed problems and showed that there are continuous
functions f for which the solution u is not of class C?. One way to solve this difficulty is to work with
the family of spaces C**, where k is a nonnegative integer and 0 < a < 1, named after HOLDER3? or
L1PSCHITZ33; questions like f € C* implies u € C**2%2 for 0 < a < 1 were investigated by SCHAUDER?4,
but the similar statement is false for &« = 1, and the corresponding spaces should be replaced by spaces
introduced by Antoni ZYGMUND?3®. An underlying question is related to singular integrals acting on spaces
C%* for 0 < a < 1, which were extended to LP for 1 < p < oo by Alberto CALDERON>® and Antoni
ZYGMUND, so that for 1 < p < oo, f € LP(Q2) implies u € I/Vlzo’f (2); the question for boundary conditions
was investigated by Shmuel AGMON37, Avron DOUGLIS®*® and Louis NIRENBERG3?, but the case p = 2 was
understood earlier, because one can use FOURIER transform, and there were simpler methods for proving

23 George GREEN, English mathematician, 1793-1841. He was a miller and never held any academic
position.

24 Karl Theodor Wilhelm WEIERSTRASS, German mathematician, 1815-1897. He worked in Berlin.

25 David HILBERT, German mathematician, 1862-1943. He worked in Géttingen.

26 The term was coined by Jénos (John) von NEUMANN, Hungarian-born mathematician, 1903-1957. He
emigrated to United States and he worked at the Institute for Advanced Study in Princeton, NJ.

2T Maurice René FRECHET, French mathematician, 1878-1973. He worked in Paris.

28 Stefan BANACH, Polish mathematician, 1892-1945. He worked in Lvov (now in Ukraine).

29 William THOMSON, Irish-born physicist, 1824-1907; in 1892 he was made baron KELVIN of Largs, and
thereafter known as Lord KELVIN. He worked in Glasgow, Scotland.

30 James CLERK MAXWELL, Scottish physicist, 1831-1879. He held the first CAVENDISH Professorship of
Physics at Cambridge, 1871-1879.

Henry CAVENDISH, English physicist, 1731-1810.

31 Jacques Salomon HADAMARD, French mathematician, 1865-1963. He held a chair (Mécanique analytique
et mécanique céleste) at Collége de France, Paris 1909-1937.

32 Ernst HOLDER, German mathematician; I once saw him at a meeting in Oberwolfach, and I was told
that it was his father who was known for the inequality (and some results in Algebra), Otto Ludwig HOLDER,
German mathematician, 1859-1937. They worked in Leipzig.

33 Rudolf Otto Sigismund LIPSCHITZ, German mathematician, 1832-1903. He worked in Bonn.

34 Juliusz Pawel SCHAUDER, Polish mathematician, 1899-1943. He worked in Lvov (now in Ukraine).

35 Antoni Szczepan ZYGMUND, Polish-born mathematician, 1900-1992. He emigrated to United States in
1940, and he worked at University of Chicago.

36 Alberto P. CALDERON, Argentinian-born mathematician, 1920-1998. He received the WOLF prize in
1989. He worked at University of Chicago, but kept strong ties with Argentina, as can be witnessed from
the large number of mathematicians from Argentina having studied Harmonic Analysis, and often working
now in United States.

37 Shmuel AGMON, Israeli mathematician, born in 1922. He works at Hebrew University, Jerusalem.

38 Avron DOUGLIS, American mathematician, 1918-1995. He worked at University of Maryland, College
Park.

39 Louis NIRENBERG, Canadian-born mathematician, born in 1925. He received the CRAFOORD prize in
1982. He works at the COURANT Institute of Mathematical Sciences, New York University.

Holger CRAFOORD, Swedish businesman, 1908-1982, and his wife Anna-Greta CRAFOORD, 1914-1994,
established the prize in 1980 by a donation to the Royal Swedish Academy “to promote basic scientific
research in Sweden and in other parts of the world in Mathematics and Astronomy, Geosciences, Biosciences
with particular emphasis on ecology, and Rheumatoid arthritis”.
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regularity results in this case, by Louis NIRENBERG, by Jaak PEETRE’. In the late 50s and early 60s,
SOBOLEYV spaces were used in a more systematic way for solving linear partial differential equations from
Continuum Mechanics or Physics, with suitable boundary conditions, the LAX*!-MILGRAM*2? lemma being
the cornerstone for the elliptic cases, but others had obtained the same result, like Mark VISHIK*?; extension
to evolution problems was worked out by Jacques-Louis LIONS**, who with Jaak PEETRE improved the real
methods for interpolation of normed spaces, studying the application to SOBOLEV spaces with noninteger
order with Enrico MAGENES*?; the late 60s saw the extension to nonlinear partial differential equations.

The framework of the theory of distributions of Laurent SCHWARTZ made the use of SOBOLEV spaces
and the study of their properties more easy, and it could itself be considered a natural extension of the
previously developed theory of RADON*® measures, and some of the necessary results of Functional Analysis
had been developped for that purpose; it is certainly much more difficult to think of that extension if one had
only considered the abstract theory and the BOREL*” measures, like probabilists do. Of course nothing could
have been done without the developments of LEBESGUE, and although integration is more easy to understand
than differentiation if one considers that Archimedes*® had computed the area below a parabola, without
even having at his disposal a Cartesian equation of the parabola as Analytical Geometry was only invented by
DESCARTES*?, and one had to wait almost two thousand years to see the invention of Differential Calculus
by NEWTON®? and LEIBNIZ%'. Although we usually teach first the RIEMANN integral, with DARBOUX52
sums, there are not enough RIEMANN-integrable functions in order to make some natural spaces complete,
and this can be done by using the LEBESGUE integral. Although the space L!(R) of LEBESGUE-integrable
functions®® of a real variable is complete, it is not a dual but one can consider L'(R) as a subset of the dual
of C.(R), the space of continuous functions with compact support®*, and therefore bounded sequences in
L'(R) may approach a RADON measure (in the weak * topology); for example the sequence u,, defined by

40 Jaak PEETRE, Estonian-born mathematician, born in 1935. He works at Lund University, Sweden.

4l Peter D. LAX, Hungarian-born mathematician, born in 1925. He received the WOLF prize in 1987.
He emigrated to United States before World War II; he works at the COURANT Institute of Mathematical
Sciences, New York University.

42 Arthur Norton MILGRAM, American mathematician, born in 1912.

43 Mark Iosifovich VISHIK, Russian mathematician, born in 1921. He works at the Russian Academy of
Sciences, Moscow.

44 Jacques-Louis LIONS, French mathematician, born in 1928. He received the Japan prize in 1991. He
works at College de France, Paris, where he held a chair (Analyse mathématique des systémes et de leur
contréle) 1973-1998. I first had him as a teacher at Ecole Polytechnique in 1966/67, and I did research under
his direction, until my thesis in 1971.

45 Enrico MAGENES, Italian mathematician, born in 1923. He works in Pavia.

46 Johann RADON, Czech-born mathematician, 1887-1956. He worked in Vienna, Austria.

47 Pélix Edouard Justin Emile BOREL, French mathematician, 1871-1956. He worked in Paris.

48 Archimedes, 287 BCE - 212 BCE, worked in Syracuse, then a Greek colony.

BCE = Before Common Era, a replacement for BC (which could also be taken as meaning Before
Christian Era for those who insist in linking questions of datation with questions of religion).

49 René DESCARTES, French mathematician, 1596-1650.

50 Gir Isaac NEWTON, English mathematician, 1643-1727. He held the Lucasian chair at Cambridge,
1669-1702.

51 Gottfried Wilhelm von LEIBNIZ, German mathematician, 1646-1716.

52 Jean Gaston DARBOUX, French mathematician, 1842-1917. He worked in Paris.

53 They are actually equivalence classes, as one identifies two functions which only differ on a subset of
measure 0, i.e. a subset which for every € > 0 can be covered by intervals whose sums of lengths is less than
E.

54 For a continuous function f defined on a topological space and taking values in a vector space, the
support is the closure of the set of  such that f(z) # 0.
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un(z) = n on (0,1/n) and u,(z) = 0 elsewhere converges to the DIRAC® mass¢ at 0, and as one checks
that for every ¢ € C.(R) one has [, un(z)p(z)dx — ¢(0), the DIRAC mass at 0 corresponds to the linear
functional ¢ +— ¢(0). More generally a RADON measure y on an open subset Q of RY is a linear form
on C.(f2), the space of continuous functions with compact support in Q, ¢ — (u, ), such that for every
compact K C €, there exists a constant C(K) such that |{g, p)| < C(K)maxzecxk |¢(z)| for all ¢ € C.()
having their support in K.

55 Paul Adrien Maurice DIRAC, English physicist, 1902-1984. He received the NOBEL prize in Physics in
1933. He held the Lucasian chair at Cambridge, 1932-1969.

Alfred NOBEL, Swedish industrialist and philanthropist, 1833-1896. He created a fund to be used as
awards for people whose work most benefited humanity.

56 The intuition of a point mass (or charge) is obvious for anyone interested in Physics, but DIRAC went
much further than dealing with these objects, as he was not afraid of taking derivatives of his strangely defined
“function”, a quite bold move which was given a precise mathematical meaning by Laurent SCHWARTZ in
his theory of distributions.



21-724. SOBOLEV spaces
Luc TARTAR, WEAN Hall 6212, 268-5734, tartar@andrew.cmu.edu

02. Wednesday January 19, 2000.

The LEBESGUE measure on RY is invariant by translation and by rotation, i.e. by rigid displacements
(and also by mirror symmetry): let a € RN and M € SO(N), the special (i.e. having determinant +1)
orthogonal group acting on R, then if A is LEBESGUE measurable and B is the image of A by the rigid
displacement  — a + M z, then B is LEBESGUE measurable and has the same measure than A. One can
“construct” non measurable sets by using the axiom of choice, the classical example being to start with the
unit circle S!, and to define equivalence classes, so that two points are equivalent if one can be obtained
from the other by applying a rotation of an integer angle n € Z; then one uses the axiom of choice in order
to assert that there exists a subset A which contains exactly one element in each equivalence class, and
denoting A,, = n + A the subset obtaining from A by a rotation of n, one finds that S* is partitioned into
the A,,n € Z, so that if A was LEBESGUE measurable, all the A,, would have the same measure and this
measure could not be > 0 because the measure of S! is 27, but if the measure was 0, S* would be a countable
union of subsets of measure 0 and would have measure 0, and as A can have neither a positive measure nor
a zero measure it only remains the possibility that it has no measure at all.

A more subtle construction was carried out in R?> by HAUSDORFF!, and simplified by BANACH and
TARSKI?, giving the HAUSDORFF-BANACH-TARSKI paradox: if A and B are two closed bounded sets of R™
with nonempty interior (and N > 3), then there exists a positive integer m, a partition of A into (disjoint)
subsets Ay, ..., A, a partition of B into (disjoint) subsets By, ..., By, such that for ¢ = 1,..., m the subset
B; is the image of A; by a rigid displacement; of course some of the subsets are not measurable if A and B
have different measure [I have read the statement (but not seen the proof) that for N = 2 there does exist a
finitely additive measure defined for all subsets and invariant by translation and rotation, so such a paradox
does not hold in R?].

Up to a multiplication by a constant the LEBESGUE measure is the only nonzero RADON measure which
is invariant by translation, and therefore it is uniquely defined if we add the requirement that the volume of
the unit cube be 1. For any locally compact® commutative? group there exists a nonzero RADON measure
which is invariant by translation, unique up to multiplication by a constant, a HAAR® measure of the group.
For the group Z, a HAAR measure is the counting measure; for the group R, a HAAR measure is the
LEBESGUE measure; for the multiplicative group (0, 00), a HAAR measure is dt/t.

Although the convolution product can be defined for any locally compact group for which one has chosen
a HAAR measure, we shall use it mostly for RY. For f,g € C.(R"), the convolution product h = f x g
is defined by h(z) = [pn f(¥)9(z — y)dy = [p~ F(@ — y)9(y) dy, showing that the convolution product is
commutative. One has f xg € C.(RY) and support(f x g) C support(f) + support(g). The convolution
product is associative, i.e. for a,b,c € C.(RY) one has (axb) xc = a* (bxc).

Convolution of continuous functions with compact support satisfies YOUNG® inequality which asserts

thatif 1 < p,q,rand ; = 1411, then for f,g € C.(R") one has || fxg||» < ||f|lpl|gll¢> where for 1 < s < oo,

! Felix HAUSDORFF, German mathematician, 1869-1942. He worked in Bonn.

2 Alfred TARSKI, Polish-born mathematician, 1902-1983. He emigrated to United States and he worked
at University on California, Berkeley.

3 T have heard Laurent SCHWARTZ say that the result is not true for all noncompact groups.

4 In the noncommutative case one distinguishes between invariance by translation on the left and invari-
ance by translation on the right.

5 Alfréd HAAR, Hungarian mathematician, 1885-1933. He worked at Szeged.

6 William Henry YOUNG, English mathematician, 1863-1942. He worked in Lausanne, Switzerland. He is
said to have discovered LEBESGUE integration two years before LEBESGUE. With his wife Grace CHISHOLM-
YOUNG, English mathematician, 1868-1944, they worked on so many problems together, so that it is difficult
to know if any result attributed to him is a joint work with his wife or not. Their son, Laurence Chisholm
YOUNG, born in 1905 is known for his own mathematical results, and among them the introduction of
YOUNG measures in the Calculus of Variations; I pioneered their use in partial differential equations in the
late 70s, not knowing at the time that he had introduced them (although I had first met him in 1971 at
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||h||s means ||h||zs(rn). If p or g or r is 1, it is just an application of HOLDER inequality and it is optimal,
while for other cases one may prove it by applying a few times HOLDER inequality, or JENSEN’ inequality,
but the constant is not optimal and the best constant C(p, ¢) for which one has ||f xg||. < C(p, 9)||fllpll9]lq
has been found independently by William BECKNER® who used probabilistic methods, and by Elliot LIEB®
and BRASCAMP!? who used nonprobabilistic methods (equality holds for some particular Gaussians). Of
course, under the preceding relation between p, g, 7, the convolution products extends from LP(RN) x LI(RN)
into L"(RY) with the same inequalities, and this can be proven either directly of by using the density of
C.(RYN) in LP(RN) for 1 < p < 00, and the weak * density if p = cc.

Note: I admit that this density has been proven when constructing the LEBESGUE measure, and although
we shall study later an explicit way of approaching functions in LP(RY) by functions in C2°(RY), the proof
will use the fact that C.(R") is known to be dense, and will not be an independent proof of that result.

Proposition 1: (i) If 1 < p < oo, f € L?(RY) and g € L? (RYN), then f x g € Co(RY), the space of
continuous (bounded) functions converging to 0 at infinity.

(ii) If f € L'(R"N) and g € L®(R"), then fxg € BUC(R"), the space of bounded uniformly continuous

functions.
Proof. YOUNG’s inequality in that case follows from |(f x g)(z)| = | [en F(¥)9(z — y) dy| < || flI||gllq for all
z by HOLDER inequality. There exists a sequence f,, € C.(RY) converging to f in LP(R™) strong, and a
sequence g, € Co(RN) converging to g in L?' (R") strong, and as fxg— faxgn = f*x(g—gn) + (f — fn) *Gn,
one deduces that ||f x g — fn * gnlleo < [|fllpll9 — gnllpr + [|f = frllpllgnllpr — 0, and therefore f x g is the
uniform limit of the sequence f,, x g, € C.(RY), and therefore belongs to the closure of C.(RY) in L*(RY),
which is Co(RN).

Using a sequence f,, € C.(R") converging to f in L'(RY), one has ||f*g — fn*g|loo < ||f = fall1]|9]]00,
and therefore f x g is the uniform limit of the sequence f,, x g, and it is enough to show that each f, x g is
bounded uniformly continuous, as a uniform limit of such functions also belongs to the same space BUC(RY).
As the function f, belongs to C.(RY) it is uniformly continuous, so that |f,(a) — f»(b)| < en(ja — b|)
with lim; ,0€,(t) = 0. Onme has (fn % g)(2) — (fa * 9)(«') = [p~(fa(z — y) — fn(z' — y))9(y) dy, but
the integral may be restricted to the set of y such that |y — z| < R, and |y — z'| < R, if the support
of f, is included in the closed ball centered at 0 with radius R,; therefore |(f, * g)(z) — (fr *x 9)(2')| <
fly—zliley—w’ISRn |fn(z —y) — fn(z’ — y)| l9(v)| dy < &(|z — '))||g||ccmeas(B(0, Ry)), showing that f, x g
is uniformly continuous.®

Of course, the property of commutativity of the convolution product extends to the case where it is
defined on LP(RY) x LY(RN) (i.e. if p,¢ > 1 and ;% + % > 1), and similarly the property of associativity
of the convolution product extends to the case where the functions belong to L2(RY), L®(RN), L¢(RYN) (i.e.
a,bc>1,1+3>12+1>1and 1+ ;+1>2), and can be proved directly using FUBINI'"’s theorem.

However, one must be careful that there are other cases where the convolution products fi % f2, fa *x fs,
(f1 % f2) x f3 and f1 * (f2 * f3) may all be defined, for example if in each convolution product considered at
least one of the functions has compact support, but with (f1 x fa) *x f3 # fix(fax f3): let f1 =1, fo € C.(R)
with [ fa(z)dz =0, and let f3 be the HEAVISIDE'? function, defined by f3(z) = 0 for # < 0 and f3(z) =1
for £ > 0; one sees immediately that f; xfo = 0 and f; = fox f3 € C.(R), and one has to check that f; can be
chosen in such a way that [, fi(z)dz # 0; if one chooses f, with support in [—1,+1], with fjll fa(y)dy =0

University of Wisconsin, Madison, where he worked), as I had heard about them as parametrized measures
in seminars on control theory.

7 Johan Ludwig William Valdemar JENSEN, Danish mathematician, 1859-1925. He never held any aca-
demic position, and worked for a telephone company.

8 William BECKNER, American mathematician. He works at University of Texas, Austin.

9 Elliott H. LIEB, American mathematician. He works at Princeton University, NJ.

10 Herm Jan BRASCAMP, mathematical physicist.

11 Guido FUBINI, Italian-born mathematician, 1879-1943. He emigrated to United States in 1939, and he
worked in New York.

12 Oliver HEAVISIDE, English engineer, 1850-1925. He developed an operational calculus, which was given
a precise mathematical explanation by Laurent SCHWARTZ.
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and f+1 1—y)f2(y) dy # 0, then one has fs(z) = [*, f2(y) dy, and [} fa(z) dx = f+1 1—1y)f2(y)dy # 0.

If one uses only functions in Lj, (R) (1 e. mtegrable on every bounded interval), which vanish on
(—00,0), then the convolution product is well defined as f x g vanishes on (—o0,0) and satisfies (f x g)(z) =
Iy f(W)g(z — y)dy for = > 0, showing that f xg € Li,.(R). A theorem of TITCHMARSH'® asserts that if
the support of f starts at a and the support of g starts at b, then the support of f x g starts at a + b, and
Jacques-Louis LIONS has generalized this result to RN, proving that the closed convex hull of the support
of f % g is equal to the (vector) sum of the closed convex hull of the support of f and the closed convex hull
of the support of g.

An important property of convolution is that it commutes with translation; this is of course related to
the fact that the LEBESGUE measure is invariant by translation.

Notation: For a vector a € RN, and f € L}, (R"), 7,f denotes the function defined by (7,f)(z) = f(z — a)
for almost every z € RN (the graph of 7, f is obtained from that of f by a translation of vector (a,0)). Of
course, one has 74(7,f) = 7445 f for all a,b € RYN.

Proposition 2: (1) If the convolution product of f and g is defined, then 7,(f x g) = (7af) xg = f * (7a9)
for every a € RN

(ii) If & > 0, f € C*(RY), the space of functions of class C* with compact support and g € L, (R",
then fxg € C”“(RN) and D"(f xg) = (D*f) % g for all derivatives of length < k.
Proof: One has ((1of) * g)(z) fRN 7af)W)g(x — y)dy = [pn f(y — a)g(z — y) dy, which by a change
of variable in the integral is [pn f(¥)9(z — a — y)dy = (f x g)(z — a) = (7a(f * 9))(x), showing that
(Taf)*xg= Ta( f*g), and that it is also f % (7,9) follows by commutativity of the convolutlon product.

If eq,...,ex is the canonical basis of R, then a function h has a partial derivative -2 6 = at z if and only

if L(h— 1., h) has a hmlt at  when ¢ tends to 0 (with € # 0, of course). If f € C1(RYN), then L(f—Tee, f)
(RY),
one finds that 1(f — 7., f) * g converges uniformly on compact sets to an,- * g; if one denotes h = f * g,

of
oz; * 9

A reiteration of this argument (at most k times if f € CF_(R")) gives then D%(f x g) = (D*f) x g for all
derivatives of order |a| < k.®

If f € C°(RYN) (which in the notations of Laurent SCHWARTZ is denoted by D(RY)), then f*g belongs
to C*¥(RN) for all k, i.e. f*g € C°(RY) (which in the notations of Laurent SCHWARTZ is denoted by
E(RN)). As will be shown later, there are enough functions in C>°(RY) for approaching any function in
LP(RN) for 1 < p < oo, but just one particular function in C®°(RY) has to be constructed explicitly, and
the properties of convolution will help for the rest of the argument.

converges uniformly to 3 £ and therefore if one takes the convolution product with a function g € L.

one has 1(f — 7.¢;f) xg = 1(h — Te¢,;h), and therefore the limit must be BBTJ- and it is equal to

Lemma: The function p defined on RN by p(z) = exp(ﬁ) if |z| < 1 and p(z) = 0 if |z| > 1 belongs to
C=(RN).

Proof: 1t is nonnegative, and continuous because if |z| — 1 with |z| < 1, then ﬁ — —o0 and p(z) — 0;
obviously p has for support the closed unit ball. One has 367" = %p, and by induction D%p =
mp for a polynomial P,, and therefore when |z| — 1 with |z| < 1, the exponential wins over the
term W and therefore D*p — 0, showing that all derivatives of p are continuous and therefore
p€CX(RN)m

13 Edward Charles TITCHMARSH, English mathematician, 1899-1963. He held the Savilian chair of Geom-
etry at Oxford, that HARDY had occupied before leaving for Cambridge.
Sir Henry SAVILE, English mathematician, 1549-1622.
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Once one has constructed one nonzero function in C*°(RY), convolution will help creating automatically
a lot of such functions, enough for approaching all functions in LP(RY) for 1 < p < co. For doing this, the
concept of a smoothing sequence is useful.

Definition: A smoothing sequence is a sequence p, € C°(R") such that support(pn) — {0}, [pn |on(z)| dz
is bounded and [y pn(z)dz — 1. A special smoothing sequence is defined by p,(z) = n™pi(nz) where
p1 € C(RY) is nonnegative, has integral 1 and has its support in the closed unit ball centered at 0.m

Starting from an arbitrary nonzero function ¢ € C>°(RY), one may assume that it is nonnegative by
replacing it eventually by @2, that it has its support in the closed unit ball centered at 0 by replacing it
eventually by ¢(kz) for k large enough, and that it has integral 1 by multiplying it by a suitable constant.
This gives a function p;, which is then rescaled by p,(z) = n™ p;(nz), so that the integral of p, is 1, and
its support is in the closed ball centered at 0 with radius %

Proposition: (i) If 1 <p < oo, f € LP(RY) and p, is a smoothing sequence, then f x p, — f in LP(RYN)
strong.

(ii) If f € L*(R"N) and p, is a smoothing sequence, then f x p, — f in L®(RY) weak x, and in

L} (RN) strong for 1 < g < oo, i.e. for every compact K one has [} |f * pp — f|?dz — 0.
Proof: There exists a sequence f,, € C.(RY) which converges to f in LP(RY) strong. One writes f*p, — f =
(f = fm) * pn + (fm * pn — fm) + (fm — f), so that if one chooses m such that ||f — fm||, < €, and if C
is a bound for all the L'(RN) norms of p,, one has ||(f — fm) * pullp < ||f = fmllpllonlli < Ce, and
therefore ||f x pn — fllp < Ce + ||fm * pn — fml|p + €, and it remains to show that for m fixed fm, * prn
converges to fn,, in LP(R") strong as n tends to infinity. If [ g~ Pn(T) dT = Kp, One writes f, x pn — fm =
(fm * Pn — Knfm) + (Kn — 1) fm, and because k, — 1 the second part tends to 0 in LP(R™) strong, and
because of the uniform continuity of f,,, the first part tends to 0 uniformly, and therefore in LP(R™) strong
because its support stays bounded as it is included in support(f,,) + support(py); indeed, if support(p,) is
included in the ball centered at 0 with radius €,, and 7, is the modulus of uniform continuity of f,,, one
has | [pn (fm(2 = y) = fm(2)) P () dy| < [pn |Pa(y)| dymaxyyi<c,, |fm(z = y) = frn(@)] < Cm(en)-

For f € L®(RY), one wants to show that f x p, converges to f in L>(RY) weak x, and this means
that for every g € L'(RN) one has [pn (f *pn)(2)g(z) dx — [pn f(x)g(x)dz. One notices that, by FUBINI’s
theorem, one has [ (f * pn)(2)9(2) dz = [ v F(Y)Pn(z — y)9(z) dz dy = [on f(y)(9 % pu)(y) dy, where
6n(y) = pn(—y), so that g, is a smoothing sequence and by the first part g x p,, converges to g in L'(RY)
strong and therefore [n f(y)(g*pn(y) dy = [r~ F(¥)9(y) dy. In order to show that [, |fxpn — f|9dz — 0
for a compact K and 1 < ¢ < oo, one notices that the integral only uses values of f in a ball centered at 0
with radius Ry large enough (so that the ball contains K and K + support(g,)), and therefore if f coincides
with f inside the ball centered at 0 with radius Ry and is 0 outside it, then the integral is [ K |f* Pn — ﬂq dzx,
which does converge to 0 because ]7* pn,_converges to fin LI(RY), as a consequence of the first part and of
the fact that f belongs to LI(RN).m

Of course, f % p, belongs to C*®°(RY) and D*(f x p,) = f * (D%*py,) for all multi-indices , but the
support of f % p, is not compact in general.

Corollary: For 1 < p < oo, the space C®°(RY) is dense in LP(RN). C=(RY) is weak * dense in L>°(RN).
Proof: If 1 < p < o0, fm * pn € C®(RYN) because f,, has compact support. Because f — fm, *x pp =
(f = fm) + (fm — fm * pn), the argument used in the first part of the Proposition shows that there are
sequences my and ny such that f,,, * pn, converges to f in LP(RY) strong as k — co.

In the case f € L®(RY), one defines g,, by gm(z) = f(z) if |z| < m and g,(z) = 0 if |z| > m, and
as m — 00 g, converges to f in L®(R"N) weak x and L} (R") strong for 1 < g < oo; one concludes by

noticing that for m fixed g,, * p, converges to g, in L°(RN) weak x and L (R") strong for 1 < ¢ < oo
(and this argument uses the fact that on bounded sets of L>°(RY) the weak x topology is metrizable).m
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For reasons which will become more obvious later, it is useful to define in a more general setting the
truncation step used previously.

Definition: A truncating sequence is a sequence 6,, € C>°(RY) such that 8,(z) — 1 for almost every z, 6,
is bounded in L*®(RY), and for each multi-index o with |a| > 1 the sequence D?6,, tends to 0 in L>(RYN)
strong. A special truncating sequence is defined by 6,(z) = 61 (%) where 6; € C°(RN), 0 < 61(z) < 1 for
all z, and 0;(z) =1 for |z| < 1.m

That such a 0 exists follows easily from the regularization by convolution, and more precisely one has
the following result.

Lemma: Let 0 < a < b < ¢, then there exists § € C>°(RY) with 0 < 6(z) < 1 for all z, with 6(z) = 1 if
lz| < a, 8(z) = 0if || > ¢, and [ O(z)dz = f|$|<b dz.

Proof. Let f be the characteristic function of the ball centered at 0 with radius b; let € satisfy 0 < & <
min{b — a,c — b}, and let p. € CZ(R") be nonnegative, with [~ pc(z)dz = 1 and support in the ball
centered at 0 with radius €. Then 8 = f x p. satisfies all the desired properties, the last one coming from the
fact that for two functions f,g € L*(RY), one has [ (f * 9)(z) dz = ([pn f(z) dz) ([~ 9(z) do).m

Of course, if h € LP(RY) and 6, is a truncating sequence, h 8, converges almost everywhere to h and
is bounded by C|h|, and therefore by LEBESGUE’s dominated convergence theorem, hf, — h in LP(RYN)
strong if 1 < p < oo, and in L (RYN) weak x and L] _(RY) strong for 1 < g < o in the case p = co.

loc

After these preliminaries, one defines RADON measures and distributions on an open set  of RV in the
following way.

Definition: i) A RADON measure y in €2 is a linear form defined on C,(€2) (the space of continuous functions
with compact support in ), ¢ — (i, ¢), such that for every compact K C  there exists a constant C(K)
with [{, )| < C(K)||¢||eo for all ¢ € C.(Q) with support(p) C K. One writes u € M(Q2), and the elements
of C.(Q) are called test functions.

ii) A distribution S in Q is a linear form defined on CS°(Q2) (the space of C* functions with compact
support in Q), ¢ — (S, ), such that for every compact K C (2 there exists a constant C(K) and a nonnegative
integer m(K) with |[(S, p)| < C(K) max|qj<mk) ||D*¢|| for all ¢ € C°(Q) with support(¢) C K. One
writes T' € D'(Q2), and the elements of C°(Q2) are called test functions.

iii) If one can take m(K) = mg for all compact K C 2, then the distribution is said to have order
<my |

RADON measures are distributions; they are exactly the distributions of order < 0.

L;,.(Q) denotes the space of locally integrable functions in €2, i.e. the (equivalence classes of) LEBESGUE
measurable functions which are integrable on every compact K C €Q; it is not a BANACH space but it is
a FRECHET space! (i.e. it is locally convex, metrizable and complete), and a sequence f,, converges to 0
in L}OC(Q) if and only if for every compact K C € one has [, |fn(z)|dz — 0. One identifies any function
f € Lj,.(9) with a RADON measure (and therefore with a distribution), which one usually also writes f,
defined by the formula (f,¢) = [, f(z)p(z) dz for all ¢ € Cc(Q). It is not really such a good notation,
because it relies upon having selected the LEBESGUE measure dz and it would be better to call this measure
(or distribution) f dz; this abuse of notation is of no consequence for open sets of RY, and corresponds to
the usual identification of L%(Q) with its dual, but when one deals with a differentiable manifold one should

remember that there is no prefered volume form like dz.

If a € Q, the DIRAC mass at a, which is denoted J,, is defined by (d4, ¢) = ¢(a) for all ¢ € C.(Q2), and
it is a RADON measure and therefore a distribution. If a sequence a, € € converges to the boundary 90

! The term BANACH space was introduced by FRECHET; I do not know who introduced the term FRECHET
space.
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of Q and ¢, is an arbitrary sequence, then ;1 =" cndq4, is a RADON measure in (2 because in the formula
(1, ) =, cnp(an), only a finite number of a,, belong to the compact support K of ¢.

Physicists use the notation §(z — a) instead of §,, and they define §(z) as the “function” which is 0 for
z # 0 and has integral 1; of course there is no such function and it is actually a measure, but after studying
about measures and distributions one learns which formulas are right and which ones are wrong and one can
then decide quickly if a formula used by physicists can be proved easily, or if it is a questionable one, either
by showing that it is false or by noticing that mathematicians do not know yet how to make sense out of the
formal computations used by physicists in that particular case.

One can create a lot of distributions by taking derivatives, and it is one of the important properties
of distributions that they have as many derivatives as one wants, and as locally integrable functions are
(measures and therefore) distributions, one has then a way to define their derivatives.

Definition: If a = (aa,...,an) is a multi-index with a; > 0 for j = 1,..., N, then for any distribution
T € D'(Q) one defines the distribution D*T by the formula (DT, ) = (—1)I*(T, D) for all p € C ()W

One must first check that D*T defined in this way is a distribution, i.e. for any compact K C
one must bound [(D?T,¢)| for ¢ € C°(Q) with support(y) C K, and the bound should only involve
the sup norm of a fixed finite number of derivatives of ¢. Indeed |(D°T,¢)| = |(—1)*(T,D%p)| <
C(K) max g <m(x) ||D?(D*¢)||s0, and as D**P is a derivation of order < m(K) + |a, this is bounded
by C(K) max|y|<m(k)+|a| |DY¢||cc, 50 DT is a distribution. One deduces that if 7" is a distribution of
order < mg then DT is a distribution of order < mg + |a|.

One must then check that the formula is compatible with the notion of derivative for smooth functions,
ie. if f € CY(Q), then g—zfj € C°(Q), and as both f and ;’Tfj are locally integrable they are distributions
and one must check that the derivative of the distribution associated to f (which should have been denoted
f dz) is the distribution associated to g;zfj, and this means that one should check that for every ¢ € C°(Q2)

one has fﬂ(a%%go + f %‘%) dx = 0, but this is fQ 859{5 ;P) dx, and because f ¢ has compact support, one can
invoke FUBINI’s theorem and one may start by integrating in z;, and then in the other variables; one has
to integrate on an open set O of R a function with compact support, and O could be made of a countably
infinite number of open intervals, but only a finite number of intervals have to be taken into account, and for
each of these intervals one integrates the derivative of a C'! function vanishing near the ends of the interval
and the integral is then 0.

The derivative of the HEAVISIDE function (which 1 for > 0 and 0 for z < 0) is §p, the DIRAC mass at
0. Indeed, if D denotes -Z, one has (D H,¢) = —(H,D p) = — Js° D pdz = ¢(0) for all ¢ € C°(R).

Let u = —1 4+ 2H, which is the sign function, so that D u = 28y; noticing that u® = u and u? = 1, one
discovers the following “paradox”, that D(u®) = 26y but 3u?Du = 6dy. Of course one would have been in
trouble with checking if D(u?), which is 0, coincides with 2u D u, because the multiplication of u by Jy is not
defined; one can actually multiply any RADON measure by a continuous function, but u is not continuous.

At this point one should remember that products are not always defined, and this will be our next topic.
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With the notion of distributions, it is now easy to give the definition of what SOBOLEV spaces are.

Definition: For a nonnegative integer m, for 1 < p < co and for an open set  C R, the SOBOLEV
space WP () is the space of (equivalence classes of) functions u € LP(Q) such that D*u € L?(Q) for all
derivations D of length |a| < m. It is a normed space equipped with the norm [|u|| = } ;< [|D%ullp, or

the equivalent norm |[ul| ., = ([, (E|a|<m |D*ulP) dx) VP for 1 < p < 0o and ||u|m,00 = MaX|q|<m |[DU|co
for p = oco.m -

Proposition: i) For 1 < p < oo and m > 0 the SOBOLEV space W™ ?(2) is a BANACH space.

ii) For p = 2, W™?() is a HILBERT space, for the scalar product ((u,v)) = [ (3 |aj<m D*u D% dz).

The space W™2() is often denoted H™({2), a notation also used for HARDY spaces, for which the notation
H? will be used (for 0 < g < 00).
Proof. Let u, be a CAUCHY! sequence in W™P((Q2), i.e. for every ¢ > 0 there exists n(e) such that for
n,n’ > n(e) one has ||u, — u,|| < e. This implies that for eachg multi-index o with |a| < m one has
|| D%up, — D%upr||p < €, i.e. D%u,, is a CAUCHY sequence in LP((2), and as LP(f2) is complete (because one
uses the LEBESGUE measure, for which the RIESZ-FISCHER? theorem applies), one deduces that D%u,, — f,
in LP(2) strong. One must then proved that f, = D*fy and that w, tends to fo in W™P(Q). For
this one uses the derivative in the sense of distributions, and one has (D%fy,¢) = (—1)l%l(fy, D%p) =
(=)l limy, o0 (fr, D¥@) = limy, 00 (D fn, @) for all p € C®(Q) and all multi-indices o, but when |a| < m
the last limit is (fy, ), showing that D*fy = f,, so that fo € W™P(Q) and D%*u,, — D*fy in LP?(Q) for
|a| < m, so that by taking the limit n’ — oo, and one finds that ||u, — fo|| < ¢, i.e. up — fo in W™P(Q).

The proposed formula for the scalar product is indeed linear in u and antilinear in v, and for v = u it
gives the square of the norm.®

In the proof, one has shown some kind of continuity for the derivations on D’(€2). Indeed there exists
a topology on C°(Q?) for which the dual is D'(Q2) and one uses on D’'(Q2) the weak topology, which is not
metrizable, but it is rarely necessary to know what this topology is; nevertheless it is useful to know that a
sequence T, converges to T,, in that topology if and only if (T, p) = (Te, @) for all ¢ € C(Q) (as the
topology is not metrizable, the knowledge of converging sequences does not characterize what the topology
is). Any derivation D is linear continuous from D'(2) into itself, but the argument in the preceding proof
only shows that it is sequentially continuous. Although it is rarely necessary to use the precise topology on
C () or on D'(Q), it is useful to check that all the operations which one defines are sequentially continuous;
a sequence ¢, converges to @Yo, in C°(Q) if and only if all the ¢, have their supports in a compact set
K C Q, and if D®yp,, converges uniformly to D%y, for all multi-indices c.

The next thing to define for distributions is multiplication by smooth functions.

Laurent SCHWARTZ has shown that it is not possible to define product of distributions in an associative
way, and more precisely one has (pviz)dy = 18o = o, while pv2(zdp) = pvi0 = 0. However, some
physicists write formulas like §(z) §(z) — 1 L = & but it is not clear what such a formula means.

Already we know that 6(z) should be written §p and is a RADON measure but not a function, and
as % and z% are not locally integrable functions because of the singularities at 0, making distributions out
of them requires some care. CAUCHY had already defined the notion of principal value, and by analogy

Laurent SCHWARTZ defined a distribution denoted by pvl and called the principal value of X, by (pvi, ) =
lim,, o flzl>l (@) gr: this does define a distribution of order < 1, because if support(¢) C [—a,+al,

then | 2@) gy = Md:l) — f|m|<a M dz, which exists because |p(z) — ¢(0)] <

ezt o 4T = [ic<a

1 Augustin Louis CAUCHY, French mathematician, 1789-1857. He worked in Paris. The concept of a
CAUCHY sequence was first introduced a few years before him by BOLZANO.

Bernhard Placidus Johann Nepomuk BOLZANO, Czech mathematician, 1781-1848. He worked in Prague.

2 Ernst Sigismund FISCHER, Austrian-born mathematician, 1875-1954. He worked in Cologne, Germany.
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|z| || D ¢||oo; that this distribution is not a RADON measure can be seen by either constructing a continuous
function for which the definition gives +oco, or by constructing a sequence of functions ¢, € C®(RYN)
which stay uniformly bounded, keep their support in a fixed compact set and for which (pvl, Or) — +oo,

kda:

taking ) nonnegative with support in [0, 1] and ¢i(z) =1 for 1 <z < 1— 1, one has (pvi, ) > f

HADAMARD defined more general finite parts of zik, and Laurent SCHWARTYZ defined by analogy a dlstrlbutlon
which can be considered the finite part of zlk

One defines the product of a distribution by a C* function, or more generally of a distribution of
order < m by a C™ function as follows. As a consequence, one has z pv% =1 and zdp = 0, so that
z(pvl + Cdp) =1 for all C, but pvi can be shown to be the only solution T of T = 0 which is odd.

Definition: If T € D'(Q2) and ¢ € C*°(Q), then ¢ T (or T 1) is the distribution defined by (¢ T', o) = (T, ¢ ¢)
for all ¢ € C(Q2) W

Of course, one must check first that 1 T is a distribution, and this follows from LEIBNIZ’s formula.
LEIBNIZ’s formula in one dimension states that (f g)(™) = Z; ™ f (m)g(n=m) where h(¥) denotes the

derivative of order k of h, and the binomial coefficient (Z) is it is easily proved by induction, starting

ml(n—m)!?
from (fg)' = f'g+f ¢g'. Writing an extension of LEIBNIZ’s forr(nula )to the N —dlmensmnal case is simplified by
using a notation for multi-indices; o! means a1!...an!, (§) means (3) ... (3~) = aita—py and B < o means
B;j < aj for j =1,..., N; then LEIBNIZ's formula has the same form D*(fg) = > 5., ( )Dﬂf D(@8g and
it is easily proved by induction on V.

If support(¢) C K C Q, one has || D*(¢ ¢)[|oo < dp<4 (g)||Dﬂ’l/)||Loo(K)||Da7'g(p||oo, so that one has
max|q|<m |[D*(% ¢)l|eo < C(K)max|q|<m ||[D¥¢||co; one also deduces that if 7' is a distribution of order
< m, then ¥ T is also a distribution of order < m.

One must also check that the notation is compatible with the classical multiplication, i.e. if f € L] ()
and T is the corresponding distribution (which should be written f dz), then the distribution S associated
to ¢ f is indeed ¥ T as was just defined. This follows from the definition, as (S,¢) = [,(¢ f)edz =
JofWe)dz =(T,9p) = (YT, ) for all p € C(Q).

The mapping (¢, T) — ¢ T from C*® x D'(Q) into D’'() is sequentially continuous. The space C* ()
is a FRECHET space and 9, — 9 in C*° () means that for every compact K C Q and for every multi-
index a, D*%,, — D% uniformly on K. The topology of D’() is more technical to describe but a
sequence T, converges to T, in D'(Q) if and only if (T,,¢) — (Ts,p). Because the space CF () of
the functions in CS°(Q) which have their support in K is a FRECHET space, it has BAIRE®’s property,
from which BANACH-STEINHAUS* theorem follows and therefore if T, — T, then there exists a constant
C(K) and an integer m(K) independent of n such that [(Ty,x)| < C(K)max|aj<m(k)||P*X||e for all
X € C¥(Q). Therefore (YnTn — YoToo)s ¥) = ((¥n — Yoo)Tnys @) + (Yoo(Tn — Teo), ), so that one has
K(WnTh — YooToo)s )| < {Tn, (¥n — Yoo )@)| + |{Tn — Too, Yoo )|, and the first term tends to 0 because for
each multi-index o, D*((¢n — %0 )¢) converges uniformly to 0 by using LEIBNIZ’s theorem, and the second
term tends to 0 by definition.

Proposition: For ¢ € C*(Q),T € D'(2) and any a, one has D*(y T) = Y45, (5) (D°4)(D*~°T).

Proof: One proves that (’/’ T) = %‘% T+ {‘;977; for j =1,..., N, and then the formula follows by induction.
For showing this, one notlces that for every ¢ € C°(Q2) one has ("’W;T) yp) = —(T, az,> —(T,y aﬁ)
(1, =252 + o 08) = (GE b o) + (LT, p) = (FL T +9 5 0)m

It € (@) and a € 9, then 5, = P(a)dn, 35 (1 50r) = Gorth ) = (B9)(@) = $(@)(3or) T al
@ € C(Q). In particular z;60 =0 for j =1,...,N.

One has zpvl = 1, because (zpvi,¢) = (pvi,z ) = lim, o flle% %(m)dz = [po(z)de = (1,9)
for all ¢ € C°(R).

3 René-Louis BAIRE, French mathematician, 1874-1932. He worked in Dijon, France.
4 Hugo Dyonizy STEINHAUS, Polish mathematician, 1887-1972. He worked in Lvov (now in Ukraine) until
1941, and in Wroclaw after 1945.
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Having enlarged the class of functions by introducing distributions, some partial differential equations
that had been studied before may have gained new solutions which could not be considered before, and some
other partial differential equations do not get new solutions. For example, the equation z f = 0 a.e. in R
for f € L}, (R) only has 0 as a solution, but for distributions f € D'(R), f = cdo is a RADON measure
which is a solution (and physicists do call it a DIRAC function), but it is useful to know if there are other
distributions T € D’(R) solutions of z T' = 0.

Lemma: If T € D'(R) and T = 0, then there exists C € R such that T = C 4.

Proof: If p € C°(R) satisfies ¢(0) = 0, then ¢(z) = z(z) and 9 € C°(R); indeed the TAYLOR! expansion
of p near 0is p(z) = ¢'(0)z+...+ &~ 2 )(0) z™+o(z™), and therefore 1 (z) = ¢'(0)+...+ %m”‘l +o(z™ 1),
shows that one must take ¥(0) = ¢ (0), and more generally (1) (0) = % for n > 1, and as LEIBNIZ’s
formula gives (™ (z) = £ 9™ (z) + n ("~ (z), the derivatives of ¢ are continuous at 0. One deduces that
(T,p) = (T z¢) = (& T,¢¥) = 0. Let § € CX(R) with 8(0) = 1, then every function ¢ € C(R) may be
written in the form ¢(z) = ¢(0)6(z) + z ¢ (z) for a function ¢ € C°(R), because ¢ — p(0)f vanishes at 0,
and therefore (T, @) = (T, ¢(0)0 + z ) = ©(0)(T, ), so that T = C §p with C = (T, 6).m

On the other hand if Q is a connected open set of RN the only distributions 7' € D’(2) which satisfy
3—33. =0 for j =1,...,N are the constants.

Definition: The tensor product fi; ® f2 of a real (or complex) function f; defined on a set X; and a real
(or complex) function f2 defined on a set X7 is the real (or complex) function defined on X; x X, by the
formula (fl ® fz)(.’l,'l,aZz) = fl(wl)fz(wz) for all (161,162) eEX; x X, 1

Proposition: Let (2 be a connected open set of RY. If T € D'(f) satisfies % =0forj=1,...,N, then
J

T is a constant, i.e. there exists C such that (T, ) = C [, ¢(z)dz for all p € CZ(RQ).
Proof. By a connectedness argument it is enough to show the result with € replaced by any open cube
Qg C Q.

The proof is obtained by induction on the dimension N, and one starts with the case N = 1,
being an interval (a,b). One notices that if ¢ € C°(a,b) satisfies fb ¢(z)dz = 0, then ¢ = % for a
function ¢ € C%(a,b), and 9 is given explicitly by ¥(z) = f ©(t)dt. One chooses n € C(a,b) such
that f n(z)dz = 1, and then every ¢ € C® (a b) can be written as ¢ = f o(t)dt)n + 5 d”b for a function
¥ € C(a,b), because the 1ntegral of go (fa ¢(t)dt)n is 0. Therefore (T,¢) = (T ,(fa go(t) dtyn + &) =

b b 0o .
(J2 o(8) de)(Tym) + (T, %) = O(J2 p(t)dt) - (4Z,4) = C([” p(t)de) for all p € C=(a,b) with C = (T,m),
and that means 7'= C.

Writing Q9 = w x (a,b) where w is a cube in RN~1, then for ¢ € C°(w) one defines T, € D'(a,b) by
(T, ¥) = (T, @ ¢) for ¥ € C(a,b), and one checks immediately that this indeed defines a distribution
T, on (a,b) because the bounds on derivatives of ¢ ® ¥ only involve a finite number of derivatives of ¢ and
the support of ¢ @ 9 is the product of the supports of ¢ and of 1) and therefore stays in a fixed compact
set when the support of 1) stays in a fixed compact set, ¢ being kept fixed. Then <Z;"}{; ) = — (T, %) =

—(T, <p®dzN) = (T, %%y <azN’§"®¢> =0, so that T}, is a constant C,,, i.e. (T,p®v)=C, f:¢(t) dt

3mN

for every ¢ € C®(w) and ¥ € C(a,b). One uses then this formula to show that ¢ — C, defines a
distribution S on w, as it is obviously linear and in order to obtain the desired bounds one chooses a function
Y € C(a,b) with [ b 1/) t) dt # 0 and the bounds for S follow easily from the bounds for 7', and therefore one

can write (T, p ® ¢¥) = (S, ¢ f P(t dtforallgaEC’°°(w) andallz/)EC"”(a b). Thenforj—l ,N—1

one has 0 = (§Z ,<p®¢> —(T,2680) = (1, 52 @ g) = —(S, 22) [y w(t)dt = (8,¢) [ ¢ t)dt and
therefore g_mj = 0, so that by the induction hypothesis S is a constant C,, so that one has shown that

! Brook TAYLOR, English mathematician, 1685-1731.
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(T, @) = Cu([f, o(y) dy)(f: P(t)dt) = Cs [, (¢ ® ¥)(z) dz, and this shows that T = C. if one uses the
result that finite combinations of tensor products are dense (in the adequate topology).m

Once multiplication has been defined, and LEIBNIZ’s formula has been extended, one can prove density
results.

Proposition: For 1 < p < o0, and any integer m > 0, the space C°(RY) is dense in W™P?(RN).

Proof. Let 0, be a special truncating sequence, i.e. 6,(z) = 61(Z), with 6; € C(RN), 0 < f(z) <1 on
RY and 6(z) =1 for |z| < 1. For u € W™P(RY), one defines u,, = 6,u, and one notices that u, — u in
WmP(RN) strong. Indeed one has |u, ()| < |u(z)| almost everywhere, and u,,(z) — u(z) as n — oo, and by
LEBESGUE'’s dominated convergence theorem one deduces that u, — u in LP(RY) strong. Then for |a| < m
one has D%u,, = Z,@ga (g) DP9, D*Bu, and the term for 3 = 0 converges to D*u again by an application
of LEBESGUE’s dominated convergence theorem, while the terms for |3| > 0 contains derivatives of 6,, which
converge uniformly to 0, so that one has D*u,, — D*u in LP(R") strong.

Then one approaches u, by functions in C>°(R™) by convolution by a smoothing sequence p. for a
sequence of € converging to 0, and using a diagonal argument there is a sequence u, x pe(n) € C2° (RN) which
converges to u in W™P(RN) strong. The crucial point is to notice that for |a| < m one has D%(p, * u,) =
pe * D%u,,, which converges then to D%u,, in LP(RY) strong. Indeed for any test function ¢ € C*°(RY),
one has (D*(pe % un), ¢) = (=1)1*N(pe x un, D*¢) = (=1)|*|(up, g % D*p) = (=1)1*/(up, D*(pc * ¢)) =
<Dauna Pe * <P> = <p6 * D%up, 90>a where f is defined by f("l") = f(—.’L')..

For p = 0o, the same method shows that one can approach any v € W™ (RY) by a sequence v,, €

C>(RM) such that for every |a| < m, D%, converges to D®u in L*°(R") weak x and L _(R") strong for
every finite g.

If Q is an open set of R, it is not true in general that C>°(RY) is dense in W™P(2), and one is led to
the following definition.

Definition: W;"*(Q) is the closure of C°(Q2) in W™?((2).m
If the boundary 9 is smooth enough, then the functions of Wy (Q2) are 0 on the boundary, as will be
seen later. If Q is too small, then it may happen that Wy (2) = W™P(£); this is related to the fact that

the functions in W™ P?(2) are not necessarily continuous, as stated by the imbedding theorem of SOBOLEV,
stated now and proved later.

Theorem: i) If 1 < p < &¥ then W™P(RN) c L"(RN) with 1 =
of L*(RN) for s > r.

ii) If p = ¥ then W™P(RN) C LY(RN) for every q € [p,00), but W™ (R™N) is not a subspace of
L>°(RY) if p > 1; however WN1(RN) C Cy(RN).

iii) If & < p < oo then W™P(RN) C Co(RY), the space of continuous functions tending to 0 at co. If
% <p< kNTl for an integer k, then W*P(RN) c C%7(RN), the space of HOLDER continuous functions of
order vy, with vy =k — %.l

> — % but W™P(RY) is not a subspace

For example if @ = RN \ F, where F is a finite number of points and p < &, then Wg™?(Q) = W™?(1Q)
and coincides with W™P(RY), as will be shown later.

It is useful to know that any closed set C' of R can be the zero set of a O™ function, because R \ C
can be written as the countable union of open balls B(z,,r,), and if ¢ € C°(RY) has its support equal to
the closed unit ball and is positive in the open unit ball, then one considers the series ), cnga(m;f") and
one can choose the sequence c, such that the series converges uniformly, as well as any of its derivatives.
Therefore the zero set of a smooth function can be as irregular as one may wish (among closed sets, of
course).

It is useful to know that there are open sets with thick boundary, for example if one has a numerotation of
the points with rational coordinates of RN, z1,..., zn, ..., and for € > 0 one considers A, = U, B(zn,e277"),
then A, is open, has LEBESGUE measure < ¢ and its boundary is its complement R" \ A, which has infinite
LEBESGUE measure and an empty interior as it contains no point with rational coordinates.
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For a continuous function u from a topological space X into a vector space, the support is the closure
of the set of points x € X such that u(z) # 0. One cannot define the support of a RADON measure or a
distribution in this way, and one uses a characterization of the complement of the support: it is the largest
open set on which u is 0, and this leads to the following definition.

Definition: A RADON measure g € M() is said to be 0 on an open subset w C Q if (u,p) = 0 for
all ¢ € C.(w). A distribution T' € D'(Q) is said to be 0 on an open subset w C Q if (T, ¢) = 0 for all
peCP(w)m

In order to define the support of a RADON measure or a distribution, one must deduce that being 0 on
a family of open sets implies being 0 on its union, and this is done by using a partition of unity.

Proposition: Let F be a closed set of RN and let U;, i € I, be an open covering of F. Then for each i € T
there exists 6; € C>°(R"N) with support(6;) C U;, 0 < 6; <1and >, ;6; = 1 on an open set V containing
F, the sum being locally finite, i.e. for each z € |J;; U; there exists an open set W, containing z such that
only a finite number of §; are not identically 0 on W.
Proof: Let py € C(RY), with support(p1) C B(0,1), p1 > 0 and [y p1(z)dz = 1, and for ¢ > 0 let
pe(z) = e Npi(2). For each © € F there exists i(x) € I such that ¢ € Uj,) and 0 < r(z) < 1 such
that B(z,4r(z)) C Uiz). Forn > 1,1let F, = {zx € F : n— 1 < |z| < n}, and as F, is compact and
covered by the open balls B(w,r(m)) for z € F,,, it is covered by a finite number of them, with centers
y € Gn, Gy, being a finite subset of F,,. One chooses &, < minyeq, 7(y), and for y € G,, one denotes ¥
the characteristic function of B(y,2r(y)) and 8Y = p., * a¥, so that 8% € C°(B(y,3r(y))) C C(Uiry))
and Y% = 1 on B(y,7(y)), and therefore 7, = > yeg, By > 1 on the open set V,, = U,cq, B(y,7(y)) (and
~Yn > 0 elsewhere), which contains F,.

For j € I, let n; be the sum of all 8Y for which i(y) = j; there might be an infinite number of such
y, but because n — 1 < |y| < n and BY is 0 outside B(y,4), the sum is locally finite and n; € C*°(U;) (if
F is compact, there are only a finite number of terms and therefore n; € C°(Uj) in this case). Similarly,
let { = > ,c;mj, the sum being also locally finite and equal to . 5, and therefore { > 1 on V = {J,, Va..
Choose ¢ € C*°(R") such that ¢ = 0 on V and ¢ > 0 on R¥ \ V. For j € I, let ; = 7, which is C*
because ¢ + ¢ does not vanish (as ¢ > 1 and ¢y = 0 on V and ¥ > 0 and ¢ > 0 outside V), and therefore
support(6;) C support(n;) C U;. One has } >, 6; = ﬁ, whichislonVasy=0onV.H

Corollary: If a RADON measure u € M(Q) or a distribution T' € D'(2) is 0 on w; C Q for ¢ € I, then it is
0 on J;cr wi-

Proof: Let w = J;c;wi and ¢ € Cg°(w) with support K. There is a finite number of functions §; € C2°(w;)
with ) }; 6; = 1 on K and therefore ¢ = >, _; 0;¢, and as 0;¢ € C2°(w;) one has (T, 6;¢) = 0 and by summing
in ¢ one deduces that (T, p) = 0. If ¢y € C.(w), then for a smoothing sequence p,, one defines @,, = ¥ % @,,
and for n large enough the support of all the ¢,, stays in a fixed compact set K’ of ; considering u as a
distribution, the preceding result shows that {(u,p,) = 0 for n large enough, but as ¢,, — % uniformly on
K' one has (u, ) = limy,_ o0 (14, 0r,) = 0.0

Partitions of unity will be useful for studying how functions in SOBOLEV spaces behave near the bound-
ary of an open set.

There are properties of SOBOLEV spaces which do depend upon the smoothness of the boundary 92,
but for some other properties the boundary plays no role, and these properties are said to be local, and they
may be expressed for larger spaces.

Definition: For an open set & C RY, an integer m > 0 and 1 < p < oo, the space W[.¥(Q) is the space of
distributions T € D'(£2) such that for every ¢ € C°(Q2) one has ¢ T € W™P(Q2).m

One checks immediately that the space Lj,_(£2), which was described previously as the set of (equivalence

clases of) LEBESGUE measurable functions 7" such that for any compact K C € one has xx7T € L!(w), where
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Xk is the characteristic function of K, is indeed identical with the space described in the preceding definition,
which is the space of distributions 7" such that ¢ T € L*(f) for every ¢ € C°(Q).
Of course, W,»?(Q2) is not a BANACH space, but a FRECHET space.

Once one will have proved that for 1 < p < N one has W'?(RN) c L*"(RN) with - = =

then one will automatically deduce that for any open set & C RY one has W1P(Q2) C Lloc( ). Indeed for
¢ € C*(Q) and u € WHP(Q), the function ¢ u also belongs to WP(Q) and is 0 outside the support of ¢,
and by extending it by being 0 outside €, one finds a function gu € W?(RN) c LP"(RYN), showing that
one has pu € LP" ().

Proposition: (i) If 1 < p,¢,r < oo and ; = > + ¢, then for u € W'?(Q) and v € W"9(Q) one has
uv € WH(Q) (and [[uv]ls, < C||u||1,p||v||1,q)

(i) If1 < p,g,s < Nand 2 =2 +1_ L then for u € WH?(Q) and v € W4(Q) one has uv € W, S( )-

p q loc
B(u v)

Proof. The first part is a consequence of applymg HOLDER inequality to the formula = Bcc vtu 31:

For proving the formula, one must show that — [, uv 31: Cdr = [((Zvt+ule )<pdz for every ¢ € C°(Q )

One chooses 0 € C2°(Q2) with 6 = 1 on the support K of @, and the formula to be proved does not change if
one replaces u by 6 u (as the derivative of  vanishes on the support of ¢), but as 8 u extended by 0 outside
Q is a function of W1P(R"), one may approach it by a sequence w, € C°(R"), and as the formula is true
for u replaced by w,, one just let n tend to co and each term converges to the right quantity.

The second part is similar and consists in using the fact that on the support K of ¢ one has u € L?" (K)
and v € L7 (K)m

A property which is true in R but not in every open set 2 is the fact that 1> coincides with the
space of LIPSCHITZ functions.

Proposition: W1 (RN) = Lip(RN). If Q is an open subset of RV, then Lip(Q) C W1>(Q), and
Whe(Q) c L*®(R) N Lip1oc(Q), where Lip;,.(Q) is the (FRECHET) space of locally LIPSCHITZ functions;
if u € WH*°(Q) and ||grad(u)||e < K, then one has |u(z) — u(y)| < K da(z,y), where dg is the geodesic
distance from & to y in (2, the shortest length of a smooth path connecting x to y in (.

Proof: Ifu € W1*°°(RN) and p, is a special smoothing sequence, then u,, = p, xu € C®(RN), ||un||oo <

||lul|co and for j =1,..., N one has || 3% Qun ||oo < ||3“ || < ||grad(u)||oo, and as this inequality applies to any

direction it implies that |grad(u,)| < ||grad(u)||oo in RY, and therefore |uy, () —un(¥)| < |z—y|||grad(w)||so
for all z,y € R™; as a subsequence of u,, converges almost everywhere to u, one deduces that |u(z) —u(y)| <
|z — y| ||grad(u)||c for almost every z,y € RN, i.e. u is LIPSCHITZ continuous with LIPSCHITZ constant
llgrad(u)||co. Conversely if u € Lip(RM) and u, = u % p, € C®(RYN), then for any h € RY one has
Up — TshUn = (U — TspU) * Py, then one deduces ||un, — TshUn|loo < ||t — TshUl|o < K s |h|, where K is the
LIPSCHITZ constant of u, and therefore after dividing by s and letting s tend to 0 one deduces that at every
point the derivative of w, in a direction h is bounded by K |h|, i.e. ||grad(u,)||cc < K and then letting n
tend to oo gives ||grad(u)||eo < K.

The preceding argument is valid if u € Lip(2), as u x p,, is well defined at a short distance from the
boundary. The passage from a bound on ||grad(u)||« to a bound on |u(z) — u(y)| for u € C>(R) relies on
the fact that the segment [zy] is included in 2, and it can be replaced by the sum of the lengths of segments
for a polygonal path joining = to y and staying inside (2, and the infimum of these quantities is the geodesic
distance dg(z,y).m

If Q is the open subset of R? defined in polar coordinates by —m < § < w and r > 1, then the function
= 0 satisfies $* = —% and 6; = %, so that u € WH*(Q), but for ¢ > 0 small the points with
Cartesian coordinates (—2, —¢) and (—2,+¢) are at Euclidean distance 2¢ while the difference in values of 6

is converging to 27 as ¢ — 0 (the geodesic distance tends to 2/3 + %’r)
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SOBOLEV’s imbedding theorem requires some regularity of the boundary 0€). For example, one has
H'(R?) = WY2(R?) C LP(R?) for every p € [2,00), but the similar property does not hold for the particular
open set O = {(z,y) : 0 < z < 1,0 < y < z?}. For proving this remark, one checks for which value o € R the
function u(z) = z* belongs to LP(f2) and as one needs fol P2 dg = [, 2P dz dy < oo, one finds that the
condition is ap+2 > —1; therefore u € H'(R) if and only if 2(a —1)+2 > —1,ie. a > —1, and u € LP()
if and only if a £ > —1, i.e. H'() is not a subset of LP(Q) for p > 6. One checks easily the limitations for
other cusps on the boundary, like for @ = {(z,y): 0 <z < 1,0 < y < 27}, with y > 1.

A part of SOBOLEV’s imbedding theorem asserts that for 1 < p < N one has W'?(RN) c L* (RV)
with 1% = % — &, 0rp* = Zf,v—_’;, and one deduces then that W1P(RY) c LI(RYN) for every q € [p,p*] by the
following application of HOLDER. inequality.

Lemma: If 1 < py < pg < p1 < oo and 6 € (0,1) is defined by pis =194 p%, then one has ||ul|p, <

Po
[lwl[2, 8 |ul§, for all u € LPe () N LP ().
Proof: Onme applies HOLDER inequality ||fg|l1 < ||fllqllgllys With f = |u|*=9P¢ and g = |u|®P¢, with
q= (1_”% and ¢ = 9’%, which are conjugate exponents.®

The preceding result is not restricted to the LEBESGUE measure, and the restriction that py > 1 is not
necessary (although the notation ||v||, is not a norm for 0 < r < 1).

SOBOLEV’s imbedding theorem is natural if one considers the question of scaling.

Proposition: If 1 <g <por1l<p< N and g > p*, there is no finite constant C such that ||u||, < C||u||1,p
for all u € C°(RN).

Proof: For A > 0, one applies the inequality |ju|lq < C||u|lp + C|lgrad(u)||, to the function v defined
by v(z) = u(§) for z € RN. One notices that for 1 < r < oo one has [[vl, = (fp~|u(3)]" d:c)l/r =
(frw lu(y) " AN dy) yr AN/ |ull,., and ||grad(v)||, = A~ +N/"||grad(u)||,. Therefore if the inequality was
true one would deduce that AN/||ul|, < C AN/?||ul|, + C A"+ N/P||grad(u)||p, i-e. an inequality of the form
l[ullg < CA%||ullp + C NP||grad(u)||, for all A > 0. If one had o > 0 and 8 > 0, then by letting A tend to
0 one would deduce the contradiction ||u||; = 0 for all u € C°(RY); this corresponds to the case ¢ < p.
Similarly if one had @ < 0 and 8 < 0 one would deduce the contradiction by letting A tend to oo; this
corresponds to the case ¢ > p*.|®

If the inequality is true for ¢ = p*, then the same argument shows that one has ||ul|,» < C'||grad(u)||p
for all u € C®(RY). However, this is not a proof that the inequality is true, as for example the inequality
llulloo < C'||grad(u)||n implies no contradiction by the preceding scaling argument, but it is not true for
N > 1.

One reason why one cannot deduce by a scaling argument that the limiting case of the SOBOLEV
imbedding theorem does not hold for p = N, is that in the larger context of the LORENTZ! spaces all the
spaces LP9(R™N) scale in the same way for different values of g € [1, 00]. If all the partial derivatives of u are
estimated in L''(RY) it provides a bound for the sup norm of u, while for any g > 1 there exist unbounded
functions v with all partial derivatives in LV¢(RY).

The method of SOBOLEV for proving the imbedding theorem for W1?(RY) in the case 1 < p < N was
based on the use of an elementary solution of the Laplacian A.

Definition: If P(¢) = Y, ax{® is a polynomial in ¢ € RV (with constant coefficients), and P(D) denotes
the differential operator P(D) = ) aoD®, an elementary solution of P(D) is a distribution E such that
P(D)E =§om

! George Gunther LORENTZ, Russian-born mathematician, born in 1910. He emigrated to United States
in 1953, and he works at University of Texas, Austin.
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Elementary solutions are not unique, but a particular elementary solution may often be selected by using
2
symmetry arguments, and in the case of A = Zfil %, one finds radial solutions of the form E = Cnr2—N

for N >3, E = Cslogr for N =2 and E = |z| for N = 1. Anticipating on the properties of convolution

with distributions, one has u = ux A B = ;| 2 « 28

inequality if one had 92 € LN (RM), but as these derivatives are of the order of 7'~ this fails to be the
case (as N > 2), but SOBOLEV proved that YOUNG’s inequality still holds if instead of a function in LI(RY)
one uses the function »~"V/4. This line of argument by SOBOLEV was improved later by Jaak PEETRE, using
the theory of interpolation which he had developed in parallel with Jacques-Louis LIONS, but the particular
result of interpolation in LORENTZ spaces had been obtained by O’NEIL2, who was extending a result about
nonincreasing rearrangements of HARDY and LITTLEWOODS.

* 5=, and the result would be a consequence of YOUNG’s

A second method for proving SOBOLEV’s imbedding theorem was developped independently by Emilio
GAGLIARDO* and by Louis NTIRENBERG, but the same idea has also been used by Olga LADYZHENSKAYA®.
One first proves inequalities for smooth functions with compact support, and then one extends them to
SOBOLEYV spaces by density.

Lemma: For f G CX(R) (and by density for f € WL1(R)), one has 2|f(z)| < fR| |dav for all z € R.

Proof: From f(z) = [*. %(y)dy = — [° % (y)dy, one deduces that |f(z)| < f |4 | dy and |f(z)| <
°°| 4 | dy, and addmg these two inequalities glves the result. As C°(R) is dense in W1 1(R) it shows that

Wi(R) C Co(R)m

Lemma: For N > 2, and i = 1,...,N, let f; be a measurable function independent of z;, and assume

that f; € LN~! (when one restricts to ; = 0 for example), then F = [[\, /i belongs to L!(R") and

N
I1Flly < ITi=y |1 fil v -1

Proof: The case N = 2 is obvious as F(zl,wg) = fi(z2)f2(z1) and ||F||1 = ||fill1]|f2||]1. For N > 2 one
uses an induction on N. For i = 1,. —1,let g; = (J|filN tdz )1/(N_2), so that g; is independent of

|(N 1/(N=2) , and by the induction

z; and zy and g; € LV 2 in 1ts N — 2 arguments, with ||g;||n—2 < || i

hypothesis one has G = H - g1 € L' in the arguments T1,...,TN—1- By mtegrating first in zxy and

using HOLDER inequality, one has [, |F| dey < H (N 2/(N=- 1)f GWN=-2)/(N-1) £, and therefore,

as the conjugate exponent of N — 1 is =1, one has fRN |F| dz < [pn-s |G|(N=2/(N=1) | fx|dey ... dey_1 <
N-2)/(N—1

(Jaw-s 1G] das ... den-a) ™ Pl |y < TIY, fillv-a

Proposition: For a > 1 and 1 < p < 0o, one has

(LN|“|Na/(N_1)dz)(N1)/N g(HHa% ) (/RN|u|(a_1)pldw)1/p,
1

for all w € C2°(RN). For p = 1 one has |[ull1- < F([TY,|[22],)"" for all w € C°(RN).

Proof: Applying the first lemma with f = |u|® for u € C°(RY) (because |u|“ is of class C! and the first lemma
only requires the function to belong to W' (R)), one obtains |u(x)|* < § [ [u|*~!| 2% | dx;, so if one denotes

= (§ S lul""!|Fat | dz
||Hi=1 fi||1 < Hi:l

) ! one may apply the second lemma and one deduces [p, |u(z)|V /(N1 dz <
N/(N-1) ae 1/(N-1)
fillv—1 = (%) T (S lul®= Y| 22 | d)

, which by HOLDER inequality

2 Richard C. O’NEIL, American mathematician. He works at State University of New York, Albany.
3 John Edensor LITTLEWOOD, English mathematician, 1885-1977. He held the newly founded Rouse
BALL Professorship at Cambridge, 1928-1950.
Walter William Rouse BALL, English mathematician, 1850-1925.
4 Emilio GAGLIARDO, Italian mathematician. He works in Pavia.
5 Qlga Aleksandrovna LADYZHENSKAYA, Russian mathematician, born in 1925. She works at Russian
Academy of Sciences, St. Petersburg.
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is < (%)N/(N_l) Hf\ingT" ;/(N_l)(fRN |u|(a=D)p’ da:)N/(N_l)pl, and taking the power (N — 1)/N gives the

result. For p = 1, one takes a = 1 and one stops before applying HOLDER inequality.®

SOBOLEV’s imbedding theorem W?(RN) C L?" (RYN) follows in the case 1 < p < N by choosing a such

that Iy_al = (a — 1)p’, and this common value appears to be p*.
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If one denotes A = (J;_ 1||6z, )I/N, and one defines ® by ®(a) = [~ [u|N */(V-1) dz, then the case
p = N of the preceding inequality is ®(a) < (%)N/ (N_I)Q(a —1) for all @ > 1. One deduces that a bound

on ||u||1,~, which gives a bound on ®(N — 1) = ||u||¥ and a bound on A, implies a bound for ||ul|, for all
g > N. More precisely, for any integer a > N, one has $(a) < ((Na!l),)N/(N Y € )(a+1 MN/IN-Dg (N —1).
After taking the logarithm one finds limsup,_, E(@(a))(N D/ < A 26> or limsup,_, ”leq < %,

as a consequence of STIRLING’s formula!, a! ~ (%)a\/ 27 a.
Another property of the case p = N is that for u € WY (R¥M) and ¢ positive and small enough (but how
small depends upon ), €%l is locally integrable. Indeed once one knows that ||u||, < K g for ¢ > g, and

q. large enough (and K > (A;ngA) one has [p~x > 07 (e Ju)? |u|)q dz =32 [~ (eluD? |u|) dz < Y20 (EI;,q)q
which is < 00 if e K e < 1. The same result was also obtalned in a different way by Louis NIRENBERG and
Fritz JOHN? as a property of the space BMO (Bounded Mean Oscillation®), which they had introduced in

part for studying the limiting case p = N of SOBOLEV’s imbedding theorem.

For the case p > N, one notices that when (a — 1)p’ and 1{,\7_"1 are equal they take the negative value
—Iﬁ—ﬁ,, and therefore if one denotes g = —pjz—% + a Bk with 8 = ﬁg@:g > 1, then the choice of a giving

2
(a —1)p' = g gives % = @k+1; one chooses a = pf—N so that go = p. Using a < ‘11,—’7 < 1%,3’“, one finds that

/RN |7+ dg < (a;\plﬂk)N/(N—l) (/RN e dw)ﬂ.

This gives an estimate of ||u||q, for all k in terms of ||u||1, (which gives a bound on ||u||, and on A) and
k; as ||ulloc = lim,_, ||u||r one must show that ||u||g, is bounded independently of k. By homogeneity
of the formula, one has qx,; = % + g8 and therefore if one puts |u| = g‘—zf}|v|, the formula becomes
Sn [0]8851 dz < BEN/(N-D) ([ [p|ae dw)ﬂ. Denoting f(k) = log( [ |v|% dz), one deduces f(k+1) < Ak+
B f(k) with A = M58 "and by induction this gives f(k) < A((k—1)+(k—2)8+...+28%3+3*=2) + 35 £(0)
for k > 2, and as g = —pli—z’;, + a(B* one finds that % - 1(f(0) + ﬁ), giving a bound for ||u||s in
terms of ||ul|1,p-

A different way to obtain a bound in L>(RY), following SOBOLEV’s method is to replace the elementary
solution F of A by a parametrix?, which instead of solving A E = §; satisfies A F = §o+1 with ¢ € C°(RY);
one takes F' = 6 E with § € C2°(R™N) equal to 1 in a small ball around 0, and although the derivatives 2£
are O(rl1 ™) near 0 as for the partial derivatives of E, F has compact support and therefore F € LI(RYN)
for1<qg< NNl’ in particular for ¢ _p’ ifp>N. Usingu=ux(AF —¢) = Ef\;l gzui * g—f; — u % one

deduces that ||ul|e < > 1 1|| » 1 |ul|p|[¥]]p-

Whatever the way one has obtained a bound ||u|| < A||u||p + B ||grad(u)||, when p > N, the scaling
argument implies that one has ||u||eo < C||u||'~?||grad(u)||S with § = %. Indeed applying the inequality to

oz; | | oz,

1 James STIRLING, Scottish mathematician, 1692-1770, only improved a formula was had been obtained
by DE MOIVRE.
Abraham DE MOIVRE, French mathematician, 1667-1754.
2 Fritz JOHN, German-born mathematician, 1910-1994. He emigrated to United States in 1935 and after
1946 he worked at the COURANT Institute for Mathematical Sciences, New York University.
3 BMO is the space of locally integrable function for which there exists C' such that fQ lu —ug|dz <

C meas(Q) for every cube @, denoting by ug the average of u on @, i.e. meas(Q)ug = fQ z)dz.
4 The word has been coined by HADAMARD.

24



v(z) = u(%) gives |[ulloo < AANP||ullp + B|A|72*V/?||grad(u)||p, and choosing the best A > 0 gives the
desired bound.
One deduces then that for p > N one has u € C%Y with vy =1 — % by applying the preceding inequality

to Thu — u. Integrating £u(z — th) from 0 to 1 one obtains |u(z — k) — u(z)| < |A] fol |grad(u)|(z + t k) dt,
and taking the norm in LP(R™) of both sides (and using JENSEN’s inequality) one obtains ||7pu — ull, <
|| ||grad(w)||p, and as ||grad(Thu — u)||, < 2||grad(u)||, one obtains ||Thu — u||ee < C" |h|*~N/P||grad(u)||p-

That SOBOLEV’s imbedding theorem cannot be improved can also be seen by constructing counter-
examples. For instance, if ¢ € C°(RY) is equal to 1 in a small ball around 0, then r*¢ € LP(RY) is
equivalent to pa+ N — 1 > —1, ie. a > —% and r%p € WLP(RYN) is equivalent to o — 1 > —%; if
1 <p < N and q > p* one can choose a such that o — 1 > —% but a < —%, giving a function in W1?(RN)
which does not belong to LI(RY).

For the case p = NV, one considers functions |log 7|°¢, and one finds that |log r[#p € WV (RY) if and
only if |log r|?~1r~1p € LN(RY), i.e. if and only if N(3 — 1) > —1, and there exists 8 > 0 satisfying this
inequality if N > 1 (for N = 1, a preceding lemma has shown that W!(R) C Cy(R)).

As mentioned before, SOBOLEV’s imbedding theorem can be made more precise by using LORENTZ
spaces, LP?, which increase with ¢, with LP? = LP and LP»* a space introduced by MARCINKIEWICZ®,
which is the space of (equivalence classes of) measurable function satisfying [ |f|dz < Cmeas(w)'/ ?" for
every measurable set w. Jaak PEETRE showed that for 1 < p < N one has W%?(RN) c L»?" (RN. For
p = N, the result of Fritz JOHN and Louis NIRENBEG using BMO was improved by Neil TRUDINGERS,
who showed that if u € WHN(RN), then for every C' > 0 one has e® R L, (RN). The result was
extended by Haim BREZIS” and Stephen WAINGER® who showed that if u has all its partial derivatives in
the space LY:4(RY), then e“ ul” ¢ L} (RM).

Questions about the best constants in SOBOLEV imbedding theorems have been investigated, in par-
ticular by Thierry AUBIN® and by Giorgio TALENTI'®; a good class of functions for finding the optimal
constants are those of the form m

The preceding results can be extended to functions having derivatives g—;‘j € LPi (RN ), not all p; being
equal (it occurs naturally if one coordinate denotes time and the others denote space, for example). In 1978,
I visited Trento and heard a talk on this subject by Alois KUFNER!!, who followed the natural approach of
Emilio GAGLIARDO'? or Louis NIRENBERG, as the method of SOBOLEV cannot be used in this case (at least,
I do not see how one could use it), but I learned afterwards that it had been obtained earlier by TROISI'3. I
have obtained an extension of all these methods for the case where the partial derivatives belong to different

5 Jézef MARCINKIEWICZ, Polish mathematician, 1910-1940. He died during World War II, presumably
executed by the Soviets with thousands of other Polish officers.

6 Neil S. TRUDINGER, Australian mathematician, born in 1942. He works at Australian National Univer-
sity, Canberra.

7 Haim BREZIS, French mathematician, born in 1944. He works at University Paris VI (Pierre et Marie
CURIE), Paris (and it seems at RUTGERS University, New Brunswick, NJ.).

Pierre CURIE, French physicist, 1859-1906, and his wife Marie SLODOWSKA CURIE, Polish-born physi-
cist, 1867-1934, jointly received the NOBEL prize in Physics in 1903, and she also received the NOBEL prize
in Chemistry in 1911.

8 Stephen WAINGER, American mathematician, born in 1936. He works at University of Wisconsin,
Madison.
9 Thierry AUBIN, French mathematician. He works at University Paris VI (Pierre et Marie CURIE), Paris.

10 Giorgio G. TALENTI, Italian mathematician. He works in Florence.

11 Alois KUFNER, Czech mathematician. He works at Czech Academy of Sciences, Prague.

12 Just after the talk, I met Emilio GAGLIARDO, whom I had first met the week before in Pavia, and learned
that he was also teaching in Trento; he was not the least interested by the ideas that he had introduced in
the past, and he continued the discussion that we had a few days before on his favorite subject, applying
Mathematics to Music.

13 Mario TROISI, Italian mathematician. He works in Salerno.
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LORENTZ spaces, by a different method (the methods that have been described do not seem to be sufficient
for proving such a general result).
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For 1 < p < 0o, one takes the norm of the space W'?(R") to be ([ |ulP|dz + [~ [grad(v)|? dz) l/p,

and it is useful to notice that adding [, |u[? dz and [, |grad(u)[P dz is a strange practice, which mathe-
maticians follow almost all the time, and which makes physicists wonder if mathematicians know what they
are talking about.

The key point is a question of units. In real problems = usually denotes the space variables, which are
measured in units of length (noted L), while ¢ denotes the time variable, measured in units of time (noted
T), and if one considers the wave equation ‘g%‘ —c? Ejvzl giz? =
units L T, and the equation is consistent as each of the terms of the equation is measured in units U T2,
whatever the unit U for u is (u could be a vertical displacement if one looks at small waves on the surface
of a lake or a swimming pool and NV = 2 in that case, or a pressure if one looks at propagation of sound in
the atmosphere, or in the ocean, or in the ground, and N = 3 in that case). For non linear equations, like
the BURGERS!’s equation g—’; +u g—g = 0, the dimension of u must be that of a velocity LT, but some
physicists prefer to introduce a characteristic velocity ¢ and write it %—“t‘ +cu g—;‘ = 0 and in that case u has
no dimension.

Mathematicians studying equations from Continuum Mechanics or Physics should be careful about
the question of units, and as SOBOLEV spaces were originally introduced for studying solutions of partial
differential equations from Continuum Physics, this question does occur naturally in studying them. The
quantities [~ |u|P’dz and [,y |grad(u)|P dz are not measured in the same units, the first term having
dimension UPLY and the second one having dimension UPLY P, and it would be more natural when dealing
with physical problems to use a norm like ([ [u[? dz+ L§ [ |grad(u)|? dm)p, where Ly is a characteristic
length, but as was already noticed when the argument of scaling was used in relation with SOBOLEV’s
imbedding theorem, one can start from an inequality written without paying attention to units and then
deduce from it a better one which does take into account this question.

An important remark is that for some open sets {2 and some particular subspaces of W1?(Q) one can
avoid adding the terms [, |u[P dz and [, |grad(u)|P dz because POINCARE? inequality holds.

0, c is a characteristic velocity, measured in

Definition: If 1 < p < oo and Q is a nonempty open subset of RV, one says that POINCARE inequality
holds for a subspace V of W1P(Q) if there exists a constant C' such that one has ||u||, < C||grad(u)||, for
alueVm

Of course, C' has then the dimension of a length, and if there is no characteristic length that one can
attach to {2, then one expects that POINCARE inequality does not hold.

Proposition: i) If meas(Q) < oo and if the constant function 1 belongs to a subspace V of W!?(f2), then
POINCARE inequality does not hold on V.

ii) POINCARE inequality does not hold on WO1 P(Q) if Q contains arbitrarily large balls, i.e. if there
exists a sequence r, — oo and points z,, € Q such that B(z,,r,) C Q.

iii) If  is included in a strip of width d, i.e. there exists £ € RN with || =1 and Q C {z € RV :
a < (€.x) < B} and d = B — a, then ||u||, < Cod||grad(u)||, for all u € W, (), where Cj is a universal
constant, i.e. independent of which 2 is used. If p = co, POINCARE inequality holds on WO1 "°(Q2) if and only
if there exists C' < oo such that for all z € Q one has dist(z, Q) < C, where dist is the Euclidean distance.

iv) If meas(Q) < oo, then POINCARE inequality holds for W,?(Q) for 1 < p < oo, and one has
|[u]l, < C(p)meas(Q)'/N ||grad(u)||, for all u € W, P (RQ).

! Johannes Martinus BURGERS, Dutch-born mathematician, 1895-1981. He emigrated to United States
in 1955 and worked at University of Maryland, College Park.

2 Jules Henri POINCARE, French mathematician, 1854-1912. He worked in Paris. There is an Institut
Henri POINCARE (THP), dedicated to Mathematics and Theoretical Physics, part of University Paris VI
(Pierre et Marie CURIE). I have been told that this kind of inequality which is now named after him
appeared in his work on tides.
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v) If the injection of V into LP(Q) is compact, then POINCARE inequality holds on a subspace V of
WLP(Q) if and only if the constant function 1 does not belong to V.
Proof: i) If meas(Q) < oo, then 1 € WP(Q), but as grad(1) = 0 one must have C = 0, which is incompatible
with1 e V.

ii) Let ¢ € C.(RN) with ¢ # 0 and support(p) C B(0,1), then one defines u,, by un(z) = p(Z=2= z")

belongs to C5°(2) and one has ||u, ||, = /p||g0||p and ||grad(u,)||p = rn 1+N/p||grad( )||p; if the inequality
was true one would have 1 < TC . Therefore if POINCARE inequality holds on W0 ?(Q) it gives an upper
bound for the size of balls included in Q.

iii) One starts from the case N = 1, where one has shown that max.cg |v(z)| < 3 [ R| Y| da for all
v € C(R), so if for an interval I = (a,3) one has u € C°(I), one deduces that ||ul|, < ||u||°od1/p and as

f1| |da: < ||d"|| dP one deduces that ||ul|, < § || || for all w € C°(I). One deduces the case of the
strip by applying the preceding inequality in an orthogonal basis whose last vector is ey = £, so that the
strip is deﬁned by a < zy < B3, and for each choice of 2’ = (z1,...,ZzN_1) one has fﬂ lu(z', zn) P dey <

27Pgp f A )|P dzn, and one integrates then this 1nequa11ty in z’ in order to obtain POINCARE
1nequa11ty 1n the case 1 < p < co. In the case p = 0o, the condition is necessary because of ii), and it is
sufficient because for each z € Q there exists z € 9 with |z — z| < C, and if u € C(Q) there exists y on
the segment [z, z] and outside the support of u so that |u(z)| = |u(z) — u(y)| < Cllgrad(u)||c; then the
same inequality extends to W, > ().

iv) If p = o0, it follows from iii). If 1 < p < oo, one chooses ¢ < N such that 1 < ¢ < p < ¢*, and
one uses SOBOLEV imbedding theorem ||u||4« < C||grad(u)||, for all u € C*(RYN), and HOLDER inequality
|ull, < ||u||q*meas(Q)°‘ with a = % - ql* and ||grad(u)||q < ||grad(u)||pmeas(9)ﬂ with 8 = = — ;, and
therefore a+ 8 = ﬁ. Without the precise estimate for the constant it can also be proved by the compactness
argument used in v). There is a different proof for the case p = 2 based on FOURIER transform, and also a
proof of the compactness property using FOURIER transform, and they will be shown later.

v) The necessity that 1 should not belong to V follows from i). That this condition is sufficient is
the consequence of what I call the equivalence lemma, shown later, by taking E; = V, A = grad and

E; = (L”(Q))N and B the injection into E3 = L?(2).m

Of course, if Q; C Qg and POINCARE inequality holds for Wy (), then it holds for Wy P(£;), because
each function of u € Wy? () can be extended by 0 and gives a function & € Wy* (Qz).
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Questions of equivalence of norms play an important role in the theoretical part of Numerical Analysis,
because interpolation formulas or quadrature formulas are used on triangulations made with small elements
and it is important to know how the errors behave in terms of the size of these elements; in 1974, after I
was told about a classical result named after James BRAMBLE! and HILBERT?, whose theoretical part relies
on results of Jacques DENY? and Jacques-Louis LIONS, I developped a more general framework, which also
generalizes a different type of results by Jaak PEETRE, which I had seen being used in a book of Jacques-
Louis LIONS and Enrico MAGENES in order to prove the FREDHOLM* alternative for elliptic boundary value
problems. I call my framework the equivalence lemma, and at a theoretical level it is useful in order to obtain
many variants of POINCARE inequalities in various subspaces of SOBOLEV spaces, but it requires enough
regularity of the boundary in order to satisfy the hypothesis of compactness.

Proposition: Let E; be a BANACH space, Ey, E3 normed spaces (with || ||; denoting the norm of E;), and
let A € L(E1,Es), B € L(E1, E3) such that one has

(a) |[ully = ||Aullz + |[Bulls

(b) B is compact.

Then one has the following properties

i) The kernel of A is finite dimensional.

ii) The range of A is closed.

iii) There exists a constant Cy such that if F' is a normed space and L € L(E,, F) satisfies Lu = 0
whenever Au = 0, then one has ||Lu||r < Col||L|| ||Aul|2 for all w € E;.

iv) If G is a normed space and M € L(E1,G) satisfies Lu # 0 whenever Au = 0 and u # 0, then

lull ~ |4 ullz + 1M ullg.
Proof: 1) On X = ker(A), the closed unit ball for || - ||; is compact. Indeed if ||uy||1 < 1, then Bu, stays in
a compact of E3 by b) so a subsequence B u,, converges in F3 and is therefore a CAUCHY sequence in Fj,
and as Awu,, =0 it is a CAUCHY sequence in E5 and therefore a) implies that u,, is a CAUCHY sequence in
E,, which converges as F; is a BANACH space. By a theorem of F. RIESZ, X must be finite dimensional.

ii) As a consequence of HAHN®>-BANACH theorem, X being finite dimensional has a topological supple-
ment Y, i.e. X NY = {0} and there exist 7x € L(E1,X) and my € L(E1,Y) such that e = wx(e) + 7wy (e)
for all e € F1, and in particular Y is closed as it is the kernel of mx, and therefore Y is a BANACH space.

One shows then that there exists a > 0 such that ||Au||2 > a|u||; for all u € Y. Indeed, if it was not
true there would exist a sequence y,, € Y with ||y,||1 = 1 and Ay, — 0, and again taking a subsequence such
that B y,, converges in F3 one finds that y,, would be a CAUCHY sequence in Y and its limit yo, € Y would
satisfy Ayo, =0, i.e. Yoo € X and therefore y,, = 0, contradicting the fact that ||yeo||1 = imy, ||ym||2 = 1.

Then if f,, € R(A) satisfies f,, = fo in Es, one has f, = Ae, = A(rxe, + mye,) = Amye,; therefore
if one denotes y, = Tye,, one has a||yn — Yml||l1 < ||AYn — AYm||2 = ||fn — fml|2 so that y, is a CAUCHY
sequence in Y and its limit y,, satisfies Ay = foo, showing that R(A) is closed.

iii) As A is a bijection from Y onto R(A) it has an inverse D, and as one considers R(A) equipped with
the norm of E3, D € L(R(A),Y) with ||D|| < 1 by the previously obtained inequality (it show that R(A) is
a BANACH space, although one has not assumed that E5 is a BANACH space, and the closed graph theorem
has not been used). With this definition of D one hasy = D Ay for all y € Y, and in particular D Ae = wye

! James H. BRAMBLE, American mathematician. He works at Texas A & M University, College Station.

2 Stephen R. HILBERT, American mathematician. He works at Ithaca College, Ithaca, NY.

3 Jacques DENY, French mathematician. He was my colleague in Orsay from 1975 to 1982, one of the
very few who expressed his support for my (lost) fight against the methods of falsifications organized by our
communist colleagues and their friends who controlled the University; he must have been born in 1918, as
a meeting organized in 1983 in his honour must have been related to his being 65, the mandatory age for
retirement in France.

4 Erik Ivar FREDHOLM, Swedish mathematician, 1866-1927. He worked in Stockholm.

5 Hans HAHN, Austrian mathematician, 1879-1934. He worked in Vienna.
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for all e € E; because Ae = Anye. From the hypothesis Lu = 0 for u € X, one has Le = Larye=LD Ae
for all e € E, and therefore ||Le||r < ||L]||||D]|||Ae€||2, and therefore C may be taken to be the norm of D
in L(R(A),Y).

iv) One has ||Ael|l2+||M e|le < (||A||+ ||M]])||e||1, and if the norms were not equivalent one could find
a sequence e, € E; with ||e,||1 =1 and |[Aen]||2 + ||[M en|lc — 0. As before, a subsequence e, would be
such that B e,, is a CAUCHY sequence in E3, and as Ae,, — 0 in Es, e,, would be a CAUCHY sequence in
E;, converging to a limit e, which would satisfy the contradictory properties |lex||1 = 1, Aew = 0 and
Mey, =00

Other applications of the equivalence lemma will be encountered later, but a crucial hypothesis is the
compactness assumption without which the result may be false (but it is not always false); for example,
taking 1 < p < oo and By = WHP(R), A= &, E, = E3 = LP(R) and B the injection of WP (R) into LP(R)
(which is not compact), then the range of A is not closed, and is dense (for p = 1 it is closed, equal to the
subspace of functions in L'(R) with integral 0).

A compactness result, attributed to RELLICH® and to KONDRASOV?, asserts that if Q is a bounded
open set of RN with a smooth enough boundary 82, then the injection of W1®(Q) into LP(f2) is compact,
and it can be deduced from a result associated with the names of M. RIESZ, FRECHET and KOLMOGOROV,
but it can be proved easily from the result for Wol "P(Q') proved below, once extension properties will have
been studied. For unbounded open sets, or for bounded sets with nonsmooth boundaries, the situation is
not as simple, but for the case of WO1 'P(Q) the smoothness of the boundary is not important.

Most compactness theorems use in some way the basic results of ARZELA® and AScoOLI®: if u, is a
bounded sequence of real continuous functions on a separable compact metric space X, then for each z € X
one can extract a subsequence u,, such that u,,(z) converges, and by a diagonal argument this can be
achieved for all  in a countable dense subspace, and this is extended to other points if one assumes that
the sequence is equicontinuous at every point, a way to say that at any point y the functions are continuous
in the same way, i.e. for every € > 0 there exists § > 0, depending upon y and ¢ but not upon n, such that
d(y,z) < 4 implies |un(y) — un(2)| < € for all n. In order to cover many applications to weak convergence or
weak * convergence like the BANACH-ALAOGLUC theorem, one also uses a maximality argument, hidden in
TIHONOV!! theorem, that any product of compact spaces is compact.

For functions in SOBOLEV spaces, which are not necessarily continuous, but can be approached by
smooth functions, one needs to control precisely the error, and some smoothness properties of the boundary
will be needed if one works with W'2(0), but the following result is only concerned with W, ().

Proposition: i) If 2 is an unbounded open subset of RY such that there exists 7o > 0 and a sequence

T, € Q converging to infinity with B(z,,7o) C 2, then the injection of W, *(2) into LP(Q2) is not compact.
ii) If 1 < p < 0o and Q is an open set with meas(Q) < oo, then the injection of Wy?(Q) into LP(f) is

compact.

Proof: i) Let ¢ € C.(RN), with support(¢) C B(0,70), and ¢ # 0, then u, = 7., ¢ € WyP(Q), |[tnl|1p is

constant, but no subsequence converges strongly in L?(2) because w,, converges to 0 in LP(Q2) weak (weak

* if p = 00) and it cannot converge strongly to 0 as its norm stays constant, and not 0.

ii) One starts by the case where Q is bounded. For a bounded sequence u,, € WO1 ?(Q) one wants to
show that it belongs to a compact set of LP(2), i.e. there is a subsequence which converges strongly in
L?(Q). For proving that property it is enough to show that for every € > 0 one can find a compact set K. of
L?(Q) such that each u,, is at a distance at most C ¢ of K., i.e. one can decompose u,, = U ¢ + Wy, ¢, With
||Wn,el|lp < Ce and v, . € K.; indeed for a subsequence one has lim sup,y, ,,/_c0 ||Um — Um’||p < 2C¢, and a
diagonal subsequence is therefore a CAUCHY sequence.

6 Franz RELLICH, German mathematician. He worked in Géttingen.

7 V. I. KONDRASOV, Russian mathematician.

8 Cesare ARZELA, Italian mathematician, 1847-1912. He worked in Bologna.

9 Giulio AScoLl, Italian mathematician, 1843-1896.

Leonidas ALAOGLU, American mathematician.

11 Andrei Nikolaevich TTHONOV, Russian mathematician, 1906-1993. He worked at Moscow State Universi-
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For doing that, one extends the functions u, by 0 outside Q (still calling them w, instead of u,),
so that one has a bounded sequence u, € WP(RN) with support in a fixed bounded set of RY. For
a special smoothing sequence p.(z) = E%pl(g) (with p; € C®(RY), support(pi) C B(0,1), p1 > 0 and
Jr~ p1dz = 1), one takes vn e = Up*pe. This gives |[vne|loo < [|tn]|p||pe||p and ||8§’;f o = ||?91;: ||p||p€||p"
i.e. for € > 0 fixed v, stays in a bounded set of LIPSCHITZ functions, and keep their support in a fixed
compact set of R, and therefore by ARZELA-ASCOLI theorem, a subsequence converges uniformly on R,
and therefore the sequence of restrictions to € converges strongly in L*°(€), and therefore in LP(Q2). In
order to estimate |[un — Un,c||p, one notices that (un — up * pe) () = [pn Pe(y) (un(x) — un(z — y)) dy, ie.
Un — Un * Pe = [pn Pe(Y)(Un — TyUn) dy, and therefore ||[un — un * pellp < [rn Pe(¥)||tn — Tyunl|lp dy, but as
one has |[un — Tyunl|p < |y|||grad(un)||p and [p~ |ylpe(y) dy = Ae, one deduces |[un — un * pe||p < ABe,
where B is an upper bound for ||grad(u,)||, for all n.

If Q is unbounded but has finite measure, one chooses ry < r; < co such that the measure of Q\ B(0,r¢)
is < 7, and one chooses § € C°(R™) such that § = 1 on B(0,7¢) and support(§) C B(0,71). The sequence
Up — O uy, is bounded in WLP(RY) and is 0 outside 2\ B(0,7,) (one should avoid using its support, which
is closed and could be very big if 9Q is thick).

For p = oo, the maximum distance from a point of Q \ B(0,7) to its boundary is at most C(N)n*/N,
and as one can take a common LIPSCHITZ constant for all the functions u, — 6 u,, one deduces that they
are uniformly small in L*(Q), and as fu, stays in a bounded set of W,** (2 N B(0,71)), it remains in a
compact of LP (Q N B(0, 7'1)) by applying the result for the case of bounded open sets.

For 1 < p < o0, one bounds the norm of ||u, — 0 u,||, by using SOBOLEV imbedding theorem, choosing
g < N such that 1 < ¢ < p < ¢* < o0, and as u, — 0 u,, is bounded in W4(R") and therefore in L4" (RYN),

one has |[un, — O un||p < |[ttn — 0 un||g~meas(Q\ B(0,7¢))" with a = % - q% > 0, proving the desired uniform

small bound for ||u, — 0 up||p.
There is a different proof if p = 2 which relies on FOURIER transform.®

It is then time now to start studying the many questions where the regularity of the boundary plays a
role, approximation by smooth functions, compactness, extension to the whole space, traces on the boundary.
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For approaching functions in W1?(2) but not in W, *(£2), one needs smooth functions whose support
intersects the boundary 09.

Definition: D(Q) denotes the restrictions to 2 of functions in C°(RN).m

For some nice open sets {2, D(Q) is dense in WP(Q) for 1 < p < oo, but this is not true for some
open sets, like a disc in the plane from which one removes a closed segment [a, b], the intuitive reason being
that functions in D(Q) are continuous across the segment, while there are functions in W'?(Q2) who are
discontinuous across it (and for giving a mathematical meaning to this idea, one will have to define a notion
of trace on the boundary). The preceding example is one where the open set is not locally on one side of
the boundary, and will be ruled out for the moment, but one should remember that there are applications
where one must consider open sets of this type, in the study of crack propagation, or in the scattering of
waves by a thin plate, for example).

Definition: i) An open set Q of R is said to have a continuous boundary, if for every z € 8Q, there exists
r, > 0, an orthonormal basis ej,...,en, and a continuous function F of ' = (z1,...,2ny—_1) such that
{ze)z—z2|<r,}={ze€RN,|z— 2| <r,zny > F(z')}.

ii) An open set Q2 of RY is said to have a LIPSCHITZ boundary, if the same property holds with F' being
a LIPSCHITZ continuous function.®

Of course, e1,...,enx and F' vary with the point z, and the origin of the coordinate system may also
change with z. For this class of open sets, {2 is locally on only one side of the boundary.

With the preceding definition, assuming a < b, the open set {(z,y) € R?,z > 0,az? < y < bz?} is an
open set with continuous boundary if a b < 0, but not if ab > 0.

Proposition: Let {2 be a bounded open set with continuous boundary. If 1 < p < oo, then D({2) is dense
in W1P(Q).

If u € WH(Q), there exists a sequence u, € D(Q) such that u, — u in L®(Q) weak x and L?(Q)
strong for 1 < g < 0o, and for j = 1,...,N, %  2u iy [2°(Q) weak x and L4(f) strong for 1 < g < oco.

’ 8(1)j Ba:j
Proof: 2 being bounded, 912 is compact, and as it is covered by the open balls B(z,r,) for z € 09, it is covered
by a finite number of them, with centers z1,..., 2y,. There exists € > 0 such that |J;-, B(z;,r,,) contains

all the points at distance < ¢ from 9%, so that {2 is covered by the open sets B(z1,7,,),..., B(2m,72,, ) and
U = {z € Q,dist(z,00) > €}. Let 61,...,0,,¢ be a partition of unity associated to this covering, so that
0; € C°(B(2i,72,)),i = 1,...,m, ( € C(U) and Y7*, 6; + ( = 1 on (, so that every u € WHP(2) can
be decomposed as Z:’;l 0;u + Cu. As {wu has support in U, it can be approached by functions in C2°(2)
by smoothing by convolution. For each 4, in order to approximate v; = f;u by functions in D(Q2), one
chooses the set of orthogonal directions which gives a continuous equation for the boundary, and one uses
the fact that for a rigid displacement f (i.e. f(z) = Az + a for an orthogonal matrix A and a vector a),
and f(w) = ', then if ¢ € WP(w') and ¢ is defined by 9(z) = ¢(f(x)) then one has ¢ € W'P(w)). One
studies the case of a special domain Qr = {z € RY : zx > F(2')} with F (uniformly) continuous (as one
actually only uses functions which have their support in a fixed compact set, one only needs F' continuous,
and because it is uniformly continuous on compact sets, one may change F' far away in order to make it
uniformly continuous). If v € WP(Qr) and v has compact support, one wants to approach it by functions
from D(Qr), and for this one translates it down, i.e. for A > 0 one defines vj(z',zn) = v(z',zn + k), and
then one truncates vy and one regularizes the result by convolution.

For doing the truncation, one regularizes F' by convolution, and because F' is uniformly continuous
one can obtain in this way a function G € C®°(RN~1) such that F — % <G<LF+ % on RN~1; one
chooses 7 € C*°(R) such that n(t) = 1 for ¢ > 3! and n(t) = 0 for t < =2, and one truncates v, by

defining wp(z) = vh(w)n(z”%a(z')), so that wp(z) = vp(z) if zy > F(z') — 2 because zy > G(z') — & and
wp(z) =0 if 2y < F(z') — 22 because zx < G(z') — 2. Because of the truncation one has %Lm;}(a:’, TN) =
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2!
=) dv
8:1)]\1

8
;’; ('yzn + h)n (LG(E’)) —v(@',zn + h)n (LG(“) for j < N and g (2!, an) =
h)n (=2 G(s') ) +v(’,zNn + R)n (%) #, because the partlal derivatives of vp, might have another part
which is supported on zxy = F(z') — h but this part is killed by the term U(LG(EI)) Therefore if one
calls Wj, the restriction of wy to Qp, one finds that BW" (a: TN) = (w zn + h) in QF for j < N, and

therefore W}, converges to v in W?(Qp) strong if p < co. In order to approach W}, by fonctions in D(QF),
one approaches wy, by convolutions by smooth functions and one restricts them to (5.1

("BI, TN +

There is another way to do the preceding two steps of truncation and regularization in one single step,
and the idea is to do a convolution of v with a sequence of nonnegative smoothing functions p,, € C°(RY)
with integral 1 whose support shrinks to {0}. However, unless F' is LIPSCHITZ continuous, one must not use a
special smoothing sequence. and one lets the support of p,, shrink to {0} in a special way. If K = support(p),
the convolution (v * p)(z) = [~ v(z — y)p(y) dy is only defined if z — K C Qp, and one wants this set to
contain Qp, or better to contain Q_, for some n > 0; for doing this, one assumes that |y'| < e for y € K,
and therefore |F(z') — F(y')| < w(e) where w is the modulus of uniform continuity of F', and one asks that
y € K implies yy < —n — w(e).

This method also applies in some different situations, like for @ = {(z,y),z > 0,0 < y < 22}, which
is not an open set with continuous boundary with our definition, but D(f) is dense, and in order to show
that the cusp at 0 is not a problem one notices that if one translates 2 by a vector (—a, —b) with a > 0 and
b > a?, then one obtains an open set {2’ which contains 2, giving room for translating (by small amounts)
and regularizing by convolution.

Proposition: Let €2 be a bounded open set with LIPSCHITZ boundary. Then there exists a linear continuous
extension P from W1P(Q) into WP(RN) for 1 < p < oo (an extension is characterized by the property that
Pu|,=u for every u € WHP(Q0)).

Proof: One constructs the extension for the dense subspace D(f2), and using a partition of unity, it is enough
to construct the extension for Qr, where F is LIPSCHITZ continuous. One defines P u(z',zn) = u(z’, zn) if
zn > F(z') and Pu(a: zn) = u(z',2F (¢')—zn) if zxy < F(2'). In that way P u is continuous at the interface

Py

O0r and one has 2 De; (', zn) = g;‘ (z',zn) if oy > F(z') and j < N, and 6P“(a: :z:N) = gT"(a:’ 2F(z') —
zn) +22E (2’ 2 (w,2F(:L")—a:N) ifzy < F(z') and j < N, and 6P“(z wN) Y (z',2F(z') — zn) if

TN < F(a: ), and one verifies on these formulas that P is indeed linear continuous.®

B(Z)N

The extension constructed is the same whatever p is, but this method does not apply for showing that
there exists a continuous extension from W™?(Q) into W™P(RN) for m > 2 because higher order derivatives
of F might not exist. STEIN! has constructed a different extension which maps W™?(Q2) into W™P?(RN)
for all m > 0 and all p € [1, 0], but we shall only consider a simpler one which can be used for open sets
with smooth boundary, and the idea is shown for Q@ = RY = {z € RV zx > 0}.

Lemma: There is a continuous extension from W™?(RY) into W™P(RY), defined by Pu(z',zn) =
w(z',zn) if ey > 0 and Pu(z’,zy) = Z;n:l aju(z’,—jezn) if zy < 0, with suitable coefficients oj,j =
1,...,m.

Proof: Using the techniques already presented, one shows that D(RY) is dense into W™P(RY). In order to
check that the definition defines a continuous operator, one must show that derivatives up to order m — 1
are continuous on zy = 0. As for smooth functions taking tangential derivatives (i.e. not involving 63,\,)

commutes with restricting to znx = 0, it is enough to check that a; ;“ is continuous for k = 0,...,m — 1.
N

One finds the condition to be E;n:l aj(—j)¥ = 1for k = 0,...,m — 1, and as this linear systen has a
VANDERMONDE? matrix, it is invertible and the coefficients o, j = 1,...,m are defined in a unique way.®

The extension property does not necessarily hold for open sets which only have a HOLDER continuous
boundary of order # < 1. This can be checked in the plane for the open set Q = {(z,¥),0 < z, —z'/? <

! Elias M. STEIN, American Mathematician, born in 1931. He received the WOLF prize in 1999. He works
at Princeton University, NJ.
2 Alexandre Théophile VANDERMONDE, French mathematician, 1735-1796.
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y < z'/%}, by showing that H'(Q) is not (continuously) imbedded in all L?(f2) for 2 < p < oo, which would
be the case if a continuous extension existed, because SOBOLEV imbedding theorem asserts that H'(R?) is
(continuously) imbedded in all LP(R?) for 2 < p < cc.

For ¢ € C*(R?) with ¢(0) = 1 one defines 3 by ¥(z) = z*p(z), and one checks for what values
of a the function 1 does belong to LP(Q) or to H'(Q2). The function 9 belongs to LP(Q) if and only if
fol aPotl/bdy < oo, ie. pa+ 5 > —1, and ¢ belongs to H*(Q) if and only 2(a — 1) + 3 > —1; the
(excluded) critical value ac = 3 — 55 = %! (which is < 0) corresponds to the (excluded) critical value

pc = —i - ﬁ = 2(11;"09), and therefore H'(f2) is not imbedded in L?(2) for p > pc.
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For an open set with a continuous boundary, there is a notion of restriction to the boundary (called a
trace) for functions of W1?({2), which is easily derived for the case of Qr, with F continuous.

R w 1 o
Lemma: For u € D(QF) and 1 < p < oo, one has ||u(w',F(w’))||L,,(RN_1) < pllP ||3'1N||L/,,IZQF)||u||$:”,,($)F/§’.
Proof: 1f v € C°(R) one has [v(0)[F = — [° 40 dg < p [ [v[r=2]o'|dz < p||v]| & )P I[v'[1 3 5. One

applies this inequality to v(t) = u(a',t + F(z')) and then one integrates in ', using HOLDER inequality.®

For p = oo, the functions of W1 (2r) are locally uniformly continuous (each function is an equivalence
class and one element of the equivalence class is continuous), and the trace is just the restriction to the
boundary.

Notation: The linear continuous operator of trace on the boundary, defined by extension by (uniform)
continuity of the operator of restriction defined for D(2) will be denoted vo.®

Notice that ~yg is not defined as the restriction to the boundary, because the boundary has measure 0,
and the restriction to a set of measure 0 is not defined for functions which are not smooth enough.

Lemma: If1 <p,q,r <ocoand 1 = %—l—%, then for u € W'P(Qp) and v € WH4(Qp) one hasuv € Wi (Qp)
and yo(u v) = YouYov. -

Proof. The formula is true if u,v € D(2r) and as both sides of the equality use continuous mappings on
WP (Qp) x WH(Qp), the formula is true by density.m

Using a partition of unity one can then define a notion of trace on the boundary for u € W1?(Q) if Q
has a continuous boundary, but one should be careful that the definition does depend upon the choice of
the partition of unity and the choice of local orthonormal bases. One should be aware that the usual area
measure on the boundary, i.e. the (N —1)-dimensional HAUSDORFF measure, is not defined for F' continuous;
for F LIPSCHITZ continuous it is 1/1 + |V F(z')|2 dz’, and it has the important property to be invariant by
rigid displacements (rotations and translations). Using the invariance by rotation of the (N — 1)-dimensional
HAUSDORFF measure, one can show that for a bounded open set with a LIPSCHITZ boundary the trace does
not depend upon the choice of the partition of unity or the choice of local orthonormal bases.

Some notion of trace can be defined for other open sets, for example some which are not even locally on
one side of their boundary. For example, let {2 be the open set of R? defined in polar coordinates by r < 1
and 0 < € < 2w, i.e. the open unit disc slit on the nonnegative x axis. One can apply the Lemma to the
open subsets 2, defined by r < 1and 0 < § < w and Q_ defined by r < 1 and 7 < § < 27, and therefore
one can define two traces on the piece of the boundary corresponding to y = 0, 0 < < 1, one from the side
of O, and one from the side of {2_; these two traces are not necessarily the same for u € W1?(Q), although
they are the same for functions in D(2) (and D() is not dense in W1P(2) in this case); there is actually
some kind of a compatibility condition at 0 between the traces on the two sides (for p > 1).

An important result is to identify W, ®(£2), which is by definition the closure of C°(Q) in W1?(Q), as
the kernel of 7g, and this makes use of HARDY’s inequality.

Lemma: For p > 1 and f € L?(0,00), one defines g by g(t) = %fot f(s)ds. Onme has ||g|/zr(0,00) <
2711122 (0,00)-

Proof. By density, it is enough to prove the result for f € C¢°(0,00), for which g is 0 near 0 and decays
in € for large t (so that g does not belong to L'(0,00) when f € L'(0,00) and [;° f(¢)dt # 0). One
has tg'(t) + g(t) = f(t), and one multiplies by p|g|P~!sign(g) and one integrates on (0,0c0), observing
that [;°t(|g|P)'dt = — [ |g|P dt because t|g(t)|P — 0 as t — oo (because p > 1) and therefore one has

(p—1) [ |glPdt = —p [y f |g|P~*sign(g) dt, and one concludes by using HOLDER inequality.m
Another proof of HARDY’s inequality uses YOUNG’s inequality for convolution, noticing that (0, co) is
a multiplicative group with HAAR measure %, then one has g(t) = fg f(s)2 4 ie. g is the convolution

T t s
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product of f with the function k defined by h(t) = 0 for 0 < t < 1 and h(t) = I for 1 < t < oo (so that
h € L*(0,00; 4)).

Lemma: For F continuous, and p > 1, one has ||u(z'm’fvl"_)—1w)(zl)

WLP(Qp).
Proof: One applies HARDY’s inequality to f(¢)
integrates in z'.B

for all u €

ym < #21ll5ax zy0)

__ _Ou
- 3$N

(z',F(z') + t), one takes the power p and then one

Proposition: If F is LIPSCHITZ continuous and p > 1, then W, ?(Q) is the subspace of u € W'?(Qp)
satisfying you = 0.

Proof: If u € Wy'P(Qr) then there exists a sequence ¢, € C2°(Qr) such that ¢, — u in WHP(Qp); as 7 is
continuous from WP (Qr) to LP(RY 1), you is the limit of 4oy, and is 0 because each ¢, is 0 near 0Qr
and 7y is the restriction to the boundary for functions in D(Qp).

Conversely, for u € W1P(Qp) satisfying you = 0, one must approach u by a sequence from C°(Qp).
First one truncates at co, i.e. one chooses # € C°(RY) such that (z) = 1 for |z| < 1 and one approaches
u by uy, defined by u,(z) = u(z)0(2), and one has you, = 0 and u, converges to u (and the proof uses
LEBESGUE dominated convergence theorem). One may then assume that the support of u is bounded.

Then one wants to truncate near the boundary, and for this one uses the preceding Lemma, i.e #F(z,) €
LP(QF). Let n € C(R) with n(¢) =0 for ¢t <1 and n(t) =1 for ¢t > 2. One approaches u by u, defined by
un(z) = w(z)n(n(zn — F(z'))). The sequence u,, converges to u in LP(Q2r) strong by LEBESGUE dominated
convergence theorem (if p = oo the convergence is in L>®(Q2r) weak x and L] _ strong for all ¢ < oo, of

course). Similarly ?,Lw;' has a term %n(n(x;v — F(z'))) which converges to 52> but also another term

nun (n(zy — F(z')))w; with w; € L®(QF), as it is —2F if j < N and 1 if j = N. This last term tends to
J
0 by LEBESGUE dominated convergence theorem because one may write it ﬁF(m,)gn (:v N — F(z' ))wj with
(n(t) = ntn'(nt), and ¢, is bounded by sup,c(; o) t[n'(t)| and (n(t) tends to O for every ¢ > 0. One may
then assume that u has its support bounded and bounded away from the boundary.
The last part is to regularize by convolution.®

Corollary: If Q is bounded with LIPSCHITZ boundary and p > 1, then Wol’p (2) is the subspace of u €
WLP(Q) satisfying you = 0.

Proof: One uses a partition of unity and a local change of orthonormal basis and one applies the preceding
result.®

36



21-724. SOBOLEV spaces
Luc TARTAR, WEAN Hall 6212, 268-5734, tartar@andrew.cmu.edu

14. Wednesday February 16, 2000

An important result is GREEN’s formula, or simply integration by parts, and for this one needs the
boundary to be smooth enough so that a normal is defined almost everywhere (for the (N — 1)-dimensional
HAUSDORFF measure).

Notation: If €2 is an open set with LIPSCHITZ boundary, n denotes the unit exterior normal. For the case
— ! ! : ! ny — 1 OF (.1
of Qr = {(2',zn),zn > F(z')} for a LIPSCHITZ function F, one has n;(z', F(z')) = T reE 0o (& )

for j < N and ny (¢, F(2')) = — e m

Lemma: If F is LIPSCHITZ continuous, and u € W"P(Qr), v € Wh?'(Qr), then one has Jo, (w2 +

a(EN
8 _ N1 : /
. v) dr = faﬂp Youyov ny dH ,ie. — [pno1 Youyovde'.

Proof: For u,v € D(Qr) and each ' € RV~!, one has fFo?z,)(uai—II’V + 3‘1’; v)dzy = fF°‘(’z,) %:)dam =

—u(a’, F(z'))v(z’, F(z')). Integrating this equality in =’ shows that the formula is true for u,v € D(QF),
and as both sides of the equality are continuous functionals if one uses the topologies of W7 (2r) and
Wl”"(ﬂ F), the lemma is proved (in the case where p = 1 or p = 0o, one first approaches the function in
WL (Qp) and its partial derivatives in L™ (Q2r) weak x, and then the other function in W'!(QF) strong).m

Lemma: If F is LIPSCHITZ continuous, and u € W'?(Q), v € W#' (QF), then for every j =1,..., N one
0 1%} _ N-1

has fQF (u ij + ﬁ; v) dz = fBQF Youyovnj dHN 1.

Proof. The case j = N has been proved. If j < N and if one makes only z; vary, the intersection with

Qp can be an arbitrary open subset of R, i.e. a countable union of open intervals, so in order to avoid

this technical difficulty one uses a new orthogonal basis, with last vector ey, = ﬁ(e;v + ce;) (where

e1,...,en is the initial basis). Of course ¢ > 0 is taken small enough, so that using y to denote coordinates

in the new basis, the open set can be written as yy > G(y') with G LIPSCHITZ continuous. Therefore

the preceding Lemma shows that [, (u 8?/_11; + <9?/—11Lv v) dy =[50, Youvov (n.ely) dHN 1. One observes that
du  __ 1 o du

By = Vi FEyels \/li — 5, and similarly (n.efy) = \/1152 ny+ \/11 —n;, and therefore after multiplication
J
by v/1+ €2, one obtains a relation of order 1 in ¢; the equality for ¢ = 0 is true at it is the preceding Lemma,

and therefore the equality of the coefficients of ¢ gives the desired relation.®

Corollary: For any bounded open set {2 with LIPSCHITZ boundary one has fQ (ug—;j + g—;v) de =

Joq Youyovn; dHN " for j=1,...,N, for all u € WHP(Q), v € Whe' (Q).

Proof: One uses a partition of unity and the fact that one has a formulation invariant by rigid displacements,
for example by writing the formula [, (u (V v.€) + (Vu.€)v) dz = [y, Youyov (n.e) dHN ! for all vectors e
(of course, the fact that the LEBESGUE measure dz is also invariant by rigid displacements is also used).m

It should be noticed that even for a C* function F, the set of ' such that F(z') = A can be a general
closed set; actually, for any closed set K C R¥N~1, there exists G € O, with G > 0 and {z’, G(z') =0} = K.
For constructing G, one notices that the complement of K is a countable union of open balls RN~1\ K =
U,, B(My,ry) (for example for each point M ¢ K and M with rational coordinates, one keeps the largest
open ball centered at M which does not intersect K). One chooses a function ¢ € C°(RN~!) such that
{z,p(z) # 0} = B(0,1), and one may assume ¢ > 0. One defines G by G(z) = Y, cngo(%) with all
cn > 0, and @ satisfies the desired property if one chooses the ¢, converging to 0 fast enough so that the
series converges uniformly, as well as any of its derivatives (so that D®G € Cy(RN 1) for any multi-index
a).

However, there is a result of SARD! which says that for most A the set is not that bad; for example, if
F € C'(R), then except for a set of A with measure 0, at any point z with F(z) = A one has F’'(z) # 0, so
these points are isolated.

! Arthur SARD, American mathematician, 1909-1980. He worked at Queens College, New York
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The next question is to identify the range of ~p, for a bounded open set 2 with LIPSCHITZ boundary
for example. This was done by Emilio GAGLIRDO, but although 7, is surjective from W!(Q) onto L'(69),
it is not so for p > 1, and the image of W1?(Q) by ~p is not LP(8Q) for p > 1. Actually for p = oo it is
WL (90), the space of LIPSCHITZ continuous functions on the boundary, and as p varies from 1 to co one
goes from traces having no derivatives in L! to traces having one derivative in L™, and one can guess that
for 1 < p < oo the traces have 1 — % derivatives in LP, if one finds a way to express what this means. The
characterization of the traces is simpler in the case p = 2 because one can use FOURIER transform, which
will be studied for that reason.

Before doing that, one has now a simple way to prove the compactness of the injection of W1P({2) into
L?(Q) in the case of bounded open sets with LIPSCHITZ boundary, the case of continuous boundary being
left for later.

Proposition: If Q is bounded with LIPSCHITZ boundary, then the injection of W1P(Q) into LP(Q) is
compact.

Proof: The basic idea is that there exists a continuous extension P from W1?(Q2) to W?(RY), and this is
seen by localization, using a partition of unity. Writing u = ), 6;u, each 6;u belongs to a space W (Qp,) in
an orthonormal basis depending upon i, for some LIPSCHITZ continuous function F;. There is a continuous
extension P; from W'P(Qp,) to WHP(RY), and therefore there is a continuous extension P from W1P(Q)
to WHP(RN), given by Pu =", P;(6;u).

Let n € C°(RYN) such that n(z) = 1 for z € 2, and let Q' be a bounded open set containing support(n).
Then if a sequence u,, is bounded in W1(Q2), the sequence of extensions P u, is bounded in W?(RY), and
the sequence of truncated functions 7(Pu,) is bounded in W, ('), and therefore a subsequence 7(P )
belongs to a compact of LP(€'), and the sequence of restrictions to €, which is u,,, belongs to a compact of
LP(Q)m
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A decomposition in FOURIER series of a scalar function f in one variable consists in writing f(z) =
Yonez cne®™ /T for some (complex) coefficients c,,n € Z. If the series converges the function f must be
periodic with period T'.

A decomposition in FOURIER integral of a scalar function f in one variable consists in writing f(z) =
Jr F(€)e2i™=¢ dg¢ for some function f.

The extension to functions of NV variables leads to the following definition.

Definition: For f € L*(R"), the FOURIER transform of f is the function F f or f defined on (the dual of)
RN by Ff(&) = [~ f(z)e 27 dz. One also defines F by Ff(n) = [pn f(y)e™2 W1 dym

Having learned the theory from Laurent SCHWARTZ, I use his notations, but most mathematicians do
not put the coefficient 27 in the integral, and some different powers of 7 occur then in their formulas, in the
argument of the exponentials and multiplying the integrals. One should be aware of the fact that different
books may use different constants.

The FOURIER transform F maps L'(R") into Co(R"), but one important property is that it extends
as an isometry from L2(RM) to itself, with inverse F.

Another important property is that it transforms derivation into multiplication, or more generally
convolution into product, and one checks easily the following properties.
If f,g € L*(RY), so that f xg € L*(R"), then one has F(f xg) = Ff Fg.
If f € L'(RY) and @ € L*(R"), then one has 2520} — F(~2im ; f).
If f € LY(RN) and 2L € LY(RYN), then F2L = 2in¢; Ff.
J J

In order to define the FOURIER transform for some distributions (the initial definition extends imme-
diately to RADON measures with finite total mass by u(¢) = (u,e=27(€)) and gives u € Cy(RY)), Laurent
SCHWARTZ introduced the space of rapidly decaying smooth functions S(RN) = {u € C*°(RN), P D%u €
L>(RN) for all polynomials P, and all multi-indices o} (which is a FRECHET space). By iterating the
preceding remarks, one checks easily that F maps S(RY) into itself; one also finds that its inverse is F, and
that one has PLANCHEREL' formula [~ (Ff)gdz = [~ f(Fg)dz for all f,g € S(RY). This is the relation
which Laurent SCHWARTZ used for defining the FOURIER transform on the dual S’(R™N) of S(RY), called the
space of temperate distributions (one cannot define the FOURIER transform of an arbitrary distribution on
RY, or even of an arbitrary smooth function whatever its growth at oo is, and keep all the known properties).
For T € 8'(RYN), one defines FT € S'(RN) by (FT,¢) = (T, Fy) for all ¢ € S(RY),T € §'(RN), and one
finds easily that one has .7-'371; =2in&;FT and F(—2imx;T) = g—g forall T € 8'(RN) and j = 1,..., N,

and that F is an isomorphism from S’'(R™) onto itself, with inverse F.

For example, computing the FOURIER transform of u(z) = e ™ I#I* (which belongs to S(RY)), one notices

that % = —27x;u, so that one has ‘?9% = 21§ Fu for j =1,...,N, and therefore Fu(§) = Ce_”"f'z;

one finds C' = 1 by using the formula for ¢ = 0 and using [ Re " *® dp = 1 (the classical method for computing
Fu consists in moving a path of integration in the complex plane).

An other example is to show that F1 = &y, by noticing that 1 € L>°(RY) C S'(RY), so that F1 exists,
and from % = 0 one deduces that {;F1 =0 for j =1,..., N, and therefore 1 = C §o; one finds C =1 by

using u(z) = e~ 12" in the definition, so that C' = (F1,u) = (1, Fu) = 1.

From a scaling point of view, one should remember that using L to denotes a length unit for measuring
z and U to denote a unit for measuring u, then ¢ scales as L~ and Fu scales as U LY.

! Michel PLANCHEREL, Swiss mathematician, 1885-1967. He worked at ETH Ziirich (Eidgendssische
Technische Hochschule).
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Because F is an isometry from L2(RY) onto itself, one can identify the image by F of the SOBOLEV
space HY(RN) = W12(RN). As ng“j = 2im{; Fu, one finds that [y |grad(u)]® de = [y 472 |€]?| Ful? d€.
Definition: For a real s > 0, H*(RN) = {u € L%(RN), |¢|*Fu € L?>(RN)}.

For a real s < 0, H*(RN) = {u € S'(RN), (1 + |¢]?)*/?Fu € L*(RN)} m

If s is a nonnegative integer m, then this definition of H*(RY) does give the same space as W™?2(RN).

For s < 0, the space H*(RY) is not a subset of L2(RY), and in order to use F one starts from an

element of S'(RY), but one cannot define (1 + |¢])*Fu because (1 + |¢|)® is not a C* function.
Of course, H *(RY) is the dual of H*(RY), but the notation for an open set {2 is different.

Definition: For an open set 2 C RV, and a positive integer m, one denotes H ™ () the dual of HJ*(Q2)
(which is the closure of C°(€2) in H™(Q2)).®

Proposition: H-1(Q) = {T € D'(Q),T = fo — SN %% ¢ .. fn € L2(Q)}. If POINCARE inequality

j=1 3—31.’
holds for H}(Q), then every gy € L%(Q) can be written as Ejv:;l %’ with g1,...,9n € L3(R).
Proof: The mapping u — (u, 4=, .., 222 is an isometry of H§(2) onto a closed subspace of L*(Q)N*!, s0 a

linear continuous form L on H (f2) is transported onto this subspace and extended to a linear continuous form
on L*(Q)N+1, and therefore there exist fy, ..., fx € L?() such that L(p) = [, (fmo—}-Zj-v:l fi g—;’;) dz for all

¢ € HY(Q), or equivalently for all ¢ € C°(€2), but this means that L(p) = (T, ¢) with T' = fo — SN 2/

j=1 Bz;*
and because C2°() is dense in H}((2), one has L =T.
If POINCARE inequality holds for Hj(2), then the mapping u (a—“ . Ou ) is an isometry of

Oz, "' Oz
H}(Q) onto a closed subspace of L%(Q)N, and every linear continuous form L on H}(Q2) has the form

L(p) = Z;V=1 gjg—; dz for all ¢ € Hy(Q), with g1,...,95 € L?(), and in particular if go € L*(2) one can

write [, gop dz in this way.®

Proposition: For any s € R, C>°(R") is dense in H*(RN).

Proof: Considering the space FH* of functions in L? with the weight (1+[¢|?)*, i.e. [pn (14]£]%)%|u(€)|? d€ <
00. One can approach any function in FH?® by functions with compact support by truncation, defining u,,
by un (&) = u(§) if |¢] < n and u, (&) = 0 if |¢| > n, and by LEBESGUE dominated convergence, u, converges
to uw in FH®. Any u € FH*® having compact support can be approached by functions in C*°(R") because
for a smoothing sequence p,,, one has p,, xu — u in L?(RY), and because the supports stay in a bounded
set one has p,, xu — u in FH®. Therefore C>°(RY) is dense in FH*, and therefore S(R") is dense in
FH?. Using FOURIER transform one deduces that S(R”) is dense in H*(RY). Let m > s be a nonnegative
integer then one can approach any function v € S(RY) by a sequence in C°(RY), the convergence being in
H™(RN) strong, and therefore also in H*(R™) strong, and this is done by approaching v by v(z)0(2) with
6 € C*(RN) with 6(z) =1 for |z| < 1.m

In the characterization of the traces of functions from H*(RY) (for s > 1), one will use the following
result.

Lemma: If u € S(RY) and v € S(RN~1) is the restriction of u on the hyperplane zx = 0, i.e. v(z') =
u(a',0) for «’ € RN~!, then one has Fuv(¢') = [, Fu(é',&n) dén for & € RN-L.
Proof: Because Fdy = 1, one has p(0) = [ Fp(£) d€. One uses this relation for the function zy — u(z',zn),
and then one takes the FOURIER transform in z’ of both sides of the equality.m
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Proposition: For s > 2, functions of H*(RN) have a trace on the hyperplane zy = 0, belonging to
H*~3(RN~1). The mapping 7 is surjective from H*(R") onto H*~z(RN-1).
Proof: For proving the first part, it is enough to show that there exists C such that for all u € S(RY)
and v defined by v(z') = u(z',0) for ' € RN’1 one has ||v||gs—a/2(grv-1) < C||u||Hs(RN) One has
Fo(€') = [p Ful¢',én) dén, and one has [Fu(¢')[* < (fg(1+[€1?)*|Fu(s ) dén) (Jr(1+[€]?)~° dén) by
CAUCHY-SCHWARTZ 1nequa11ty. Using the change of variable £ = t1/1 + |€|2, one has [ (1+|¢]*)*dén =
(VIFIE) ™ fp ooy = C(s)(1 + [€12)/)=2, and therefore one has (1 + |¢/[})*~ 0/ Fo(@)] <
C(s) [r(1+ [€17)°*| Fu(€',én)|? dén, which gives the desired result by integrating in &', because C(s) < oo if
and only if s > %

In order to prove the surjectivity, one must show that if v € H*~(1/2)(RN—1) there exists u € H*(RN)
such that Fv(¢') = [ Fu(¢',€n) dén for almost all £’ € RN L.

One defines FU(E’,EN) = ]:,U(gl) (\/li-l\lrﬁ |2)\/1+|E'|2, with ¢ € Cgo(R) and fR (p(t)dt = 1, and

one must check that u € H®(RY). One shows that there exists a constant C such that for all ¢ €
RN~ one has fR(l + |£| S| Fu(e, én)Pdén = C(1 + |€'[2)*=(/?) | Fu(¢')[?, and this amounts to [(1 +

|§|2)S|(p \/1+|€f|2)| 1+|§/|2 dén = C(1+ |€'12)*= (/2 for all ¢’ € RN 1, which is proved by using the change

of variable {5 =t /1 + [€']2 and one obtains C = [,(1+ t?)*p(t)* dt.m

The condition s > % has not appeared in proving the surjectivity, but one should notice that the function
u constructed is not only in H*(R™N) but is such that Fu has its support in a region |¢y] < C'4/1+ [€/]2.

For a function u € H2(RN ) for example, one can define the trace you € H3/2(RM~!) but also the
normal derivative y1u = 95— a € H'Y/2(RN-1) (in general one takes y;u to be the normal derivative, with
the normal pointing to the out51de) and a more precise result is that u — (you,yi1u) is surjective from
H?(RN) onto H3/2(RN—1') x HY/?(RN~!), and more generally one has the following surjectivity result.

Proposition: Ifm+ <s<m+1+— and for k = 0,.

then u — (you, .. ,'ymu) is surjective from H*(RN) onto H*~ (M/2(RN-1) x ... x H* ™ (/2 (RN~ 1)
Proof: If u € S(RN) and vy = 7Yru, then one has Fu(§') = [,( 227r§N)k.7-'u(§’ EN) dén.

If vy, € H*~*=(/2)(RN-1), then one lifts it by taking u defined by Fu(¢',{n) = ka(ﬁ’)ga(\/m)( +
|¢'[2)=*+1)/2 and one imposes [4( 2z7rt) ©(t)dt = 1, but also fR(szt)J(p(t) dt =0 for j =0,. —1,k+
1,.. ,m,sothatonehasuEH““(R ), ku-vand'yju—Oforj—O k—1,k+1,. ,ml

In order to define H*(Q) for Q # RV, it is useful to deduce a property of H*(R") which does not use
explicitly FOURIER transform.
Lemma: For 0 < s < 1, u € H*(R") is equivalent to u € L*(R") and [pn [pn % dz dy < cc.
Proof. For h € RN, and 7pu(z) = u(z — h), one has Fryu(§) = e*"(hO Fy(€), and therefore [pn |Thu —
ul?dz = [ [1—e2 ("0 2| Fu(¢)|? d¢, and as [1—e? |2 = 45in” a, one deduces that [,y W%(IRN |Thu—
ul?dz) dh = Jrn |.7-'u(§)|2(fRN ‘lsr,’:lN—w dh) d¢; in order to compute S~ % dh for &£ # 0, one uses

the invariance by rotation and the change of variable h = |{|z and the integral is [£|** [,x 4;{}\,@‘:1 dz,

and therefore [pn [on %dwdy = C [pn [E1%|Fu(€)|?dé < o0, and C = [pn 4|Szi|‘}5f2§1 dz is finite
because |sin7 z;| < 7 |z| for z near 0 and s < 1 and |sin7 21| < 1 for z near co and s > 0.1

For an open set €2, one could define H*(Q2) for 0 < s < 1 in at least three different ways; a first one
is to decide that v € H*(Q2) means u € L*(Q) and [, [, % dz dy < o0; a second one is to decide
that u € H*(2) means that u = U|Q with U € H*(RY); a third one is to define H*(Q2) by interpolation
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(for a bounded open set with LIPSCHITZ boundary, the three definitions give the same space with equivalent
norms).

If u € WH°(RN) = Lip(R"), then the restriction of u to zx = 0 is a LIPSCHITZ continuous function
and conversely; if v is a LIPSCHITZ continuous function defined on a closed set A with LIPSCHITZ constant
M, then one can extend it to RY into a LIPSCHITZ continuous function u defined on R" and having the
same LIPSCHITZ constant M by u(z) = supsca(v(a) — M |a — z|).

If u € H'(RNY) = WY2(RY), the trace v belongs to H'/2(RN~1!), which was just shown to mean

v e L*(RN 1Y) and [pvo1 [paes dedy < 00. Actually, if u € WP(R¥) and 1 < p < oo, then

le—y|N
Emilio GAGLIARDO showed that the trace v satisfies v € LP(RY 1) and [pn_1 [pvos % dz dy < oo,
and that this characterizes the space of traces.
If u € WH1(RYN), then Emilio GAGLIARDO’s characterization is that v € L*(RN~!). Jaak PEETRE has
shown that there is no linear continuous lifting from L!(RN~1) to W11 (RN)1.

! T have read that statement but I have not looked for the proof.
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o € L*(RY).

Lemma: If u € HY(RY) and N > 3, then B
Proof. One proves that |||;|||2 < C||grad(u)||z for all u € CP(RN). For any o € R one has 0 <
Jan 2= 1|3m1 '”J“| dz = [pn |grad(u)|2dw+Z] 1fRN2u6“ S+ [on “r" dz. Because 4 €
T/Vlt,cl(RN) (for N > 3), and E] 1 Ba; 2 (24) = X32, one deduces that [y |grad(u)|®dz > (N — 2)a —

N-2
]
3 -

«a )fRN —zdav and one takes a =
The result is obviously false for N = 2, even for u smooth with u(0) # 0 as * ¢ L7 _(R?).

Corollary: The space of functions in C2°(RY) which are 0 in a small ball around 0 is dense in H!(RY) for
N > 3 (and also for N = 2).

Proof: As C(RY) is dense in H'(RY) for all N, one must approach any u € C®(RYN) by a sequence
of functions which are 0 in a small ball around 0, and this is done by taking u,(z) = w(z)0(nz) with
6 € C*(RM) equal to 0 for |z| < 1 and equal to 1 for |z| > 2. One has u, — u in L2(RM) by LEBESGUE
dominated convergence theorem, and similarly g—;‘jﬂ(n z) — gT“j in L2(RY), and in order to show that

un {;9 8 (nz) — 0 in L2(RY), one also applies LEBESGUE dominated convergence theorem to e (nz) with

f(@) = o] 22-m

Lemma: The space of functions in C2°(R?) which are 0 in a small ball around 0 is dense in H*(R?).

Proof: One cannot apply the same argument used in the corollary for N > 3. One proof consists in applying
HAHN-BANACH theorem, and showing that if T € H~'(R?) = (H" (R2)) and (T, ) = 0 for all p € C°(R?)
which are 0 in a small ball around 0, then T = 0. Because (T, p) = 0 for all ¢ € C°(w) for any open set
w such that 0 ¢ w, one finds that the support of T' can only be {0} (if T is not 0). As will be seen, if a
distribution 7" has support {0}, then 7' = )__ coD*&p (finite sum), but if some c, # 0 then T' ¢ H !(R?),

2
because FT' =Y co(2i 7 &)™ and no nonzero polynomial P satisfies || R2 % d¢ < ool

One deduces that if @ = RN\ F, where F is a finite number of points and N > 2 then Hy(Q) = H'(Q) =
H'(RN). This is not true for N = 1 as the functions in H!(R) are continuous. With some technical changes
the same proofs adapt to WP(RY) if 1 < p < N. Similar ideas show that one can approach every function
of HY(RY) for N > 3 by functions in C2°(R") which vanish in a neighbourhood of a given segment, but
that is not true for N = 2 as the functions in H'(R?) have traces on the segment.

Like for the limiting case of SOBOLEV imbedding theorem, there are norms which scale in the same way,
but which are not comparable; for example if N = 2 then ||grad(u)||2 and ||u|e scale in the same way but
functions in H'(R?) are not necessarily bounded, and ||%||, also scales in the same way but u € H'(R?)
does not imply % € L?(R?). However one has the following result.

Lemma: If Q C B(0, Ry) C R?, then the exists C such that ||m | |2 < C||grad(u)||2 for allu € Hg ().
Proof: One proves the inequality for u € CZ°(B(0,Ry)) and therefore it is true for u € C*(Q) and it
extends then to Hg (). For f smooth, one develops || B(0,Ro) N =1 aa: +x; f(r)u| dz > 0, and one uses the

integration by parts [p p )2u s xif(r)de = — [ gy lul? (f(r) —|—:1:2f ™) de, which is valid if r f(r) and
r2f!(r) belong to L'(0, Ry — €) for every € > 0, and one deduces fB(O Ro) |grad(u)|? dz > fB((),RO) lu|?(2f +

r f'—r? f?) da; if one takes f = %, one has 2f+7‘ fl—r?f? = g f—z, and one approaches then g =

—1
T 2log(r/Ro)’

which COI‘I‘eSpODdS to multlplylng |’U,| by W.

Because the logaritm vanishes for |z| = Ry, it is important to have Q bounded, but the same argument
works if 2 is unbounded and is outside a ball B(0, Ry), but there is a problem with the entire space; actually,
Jacques-Louis LIONS and Jacques DENY have shown that the completion of C2°(R?) for the norm ||grad(u)||2
is not a space of distributions on RZ2.
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In order to identify distributions with support at a point, one uses the following result.

Proposition: Let T € D'(Q) have its support in a compact Ky C 2, and assume that T is a distribution
of order m. Then if ¢y € C*(Q) satisfies D*pg(x) = 0 for all z € K¢ and all multi-indices o such that
|| < m, one has (T, @o) = 0.

Proof: As T is assumed to be of order m, for every compact K C Q there exists C(K) such that |(T, ¢)| <
C(K)supgek jaj<m | D¥p(x)| for all ¢ € C°(?) such that support(p) C K. Let &9 > 0 be such that
{z € RN d(z,Kp) < g0} C Q. For 0 < € < €9, let K. = {z € RY,d(z,Ky) < €}, and let x. be the
characteristic function of K.. Let p; € C°(RN) with support(p1) C B(0,1) and [,y p1(z)dz = 1, and as
usual ps(z) = 5w p1(%) for § > 0.

If 36 < e, let 85 = xa5 * ps, so that 65 € C(Q), 05(z) = 1 if z € K; and support(0s) C Kss C K.
One has (T, po) = (T, 05 po), because the difference is (T, (1 — 05)po) and the support of 1 — 65 is included
in O\ Kp, i.e. the largest open set where T is 0. One proves that (T, 05 o) — 0 as § — 0 by showing that
for any multi-index a such that |a| < m one has SUDgck,, |D*(8500)(z)| — 0 as § — 0.

One has |D?65(z)| < C 618! for all  and |3| < m. Because of TAYLOR formula and the vanishing of
the derivatives of o on K up to order m, one has [D7¢py(z)| < d(z, Ko)™ "In(d(z, Ko)) for |y| < m and
n(t) — 0 as t — 0. By LEIBNIZ formula, and using the fact that d(z, Ky) < 36 for = € support(fs), one
deduces that | D*(05p0)(z)| < Cn(d(z, Ko))m

Corollary: If T has support at a point a € 2, then T is a finite combination of derivatives of the DIRAC
mass at a.

Proof. If K = B(a,r) C £, then T has finite order m on K, and by the preceding result, D%gpo(a) = 0 for
all || < m implies (T, @o) = 0. A result of Linear Algebra says that on any vector space if for linear forms
Ly, ...,L, every u satisfying Lyu = ... = Lyu = 0 also satisfies Lou = 0 then there are scalars Ay,..., A\,
such that Lo = >7_; A\;L;. Therefore there are scalars A, for || < m such that (T, ¢) = 2 laj<m AaD%0(a)

for all p € () with support(e) C K, ie. T = E|a|§m(_1)|a|)‘aDa5a-.

Most compactness results rely on the theorems of ARZELA and ASCOLI, and the basic result of interest
here is that if one works on a compact set K of RV and if one has a sequence u,, € C(K) of functions which
have the same modulus of uniform continuity, i.e. |un(z) — un(y)| < w(|lz — y|) for all z,y € K and all n,
with w(t) — 0 as ¢ — 0, then there exists a subsequence u,, which converges uniformly on K, to us € C(K)
(using a diagonal argument one extracts a subsequence which converges on a countable dense set of K, and
the subsequence also converges at the other points by equicontinuity, and the limit is continuous for the
same reason).

For proving compactness in LP(Q2) for 1 < p < 0o, one extends the functions by 0 and one applies a
compactness result in LP(RY), usually attributed to KOLMOGOROV.

Lemma: If a sequence u, is bounded in LP(RY) and satisfies
i) For every € > 0, there exists R(g) such that flm|>R(€) |un|P dz < € for all n.

ii) For every e > 0 there exists § > 0 such that if || < § then [,y |un(z + h) — un(z)|P dz <e.

Then there exists a subsequence u,, which converges strongly to us, € LP(RYN).
Proof: It is enough to show that for every @ > 0 one can write u, = v, + wy, such that ||w,|[, < «
and that from v, one can extract a converging subsequence v,,; for the subsequence u,, one has then
lim Sup,,, /00 ||Um — Um||p < 2. Starting from the selected subsequence, one repeats then the argument
with o replaced by 5, and so on, and a diagonal subsequence is a CAUCHY sequence.

Using § € C°(RY) such that 0 < § < 1 and f(z) = 1 for |z| < R(e), one chooses v, = u, and
Wy, = (1—0)uy, and one notices that ||w,||, < € by 1), and because T,v, — vy, = (Th8 — 0)Thty, + 0(ThUy — Uy)
and ||740 — 0]|co < M |h|, one finds that v, is bounded in LP(RY), has its support in a fixed bounded set,
and satisfies ii).
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Assuming that the functions wu, satisfy ii) and have their support in a fixed bounded set, one uses
Un = Up x ps for a special smoothing sequence ps, and w, = (u, — u, * ps); one can apply ARZELA-
AscoLl to the sequence v,, as they form a bounded sequence of LIPSCHITZ continuous functions having
their support in a fixed compact set; because wn(z) = [pn P5(y) (un(2) — un(z — y)) dy, one has |Jw, |, <

fRN Ps(Y)||un — Tyun|lpdy < em

If Q is a bounded open set which is smooth enough so that there exists a continuous extension P from
WP (Q) to WLP(RN), then the injection of W1P(£) into LP(Q) is compact, because for a bounded sequence
up € WHP(Q) one considers the sequence 6 P u,, with § € C>°(R") and § = 1 on £, and the preceding results
show that a subsequence 6 P u,, converges strongly in LP(RY) and therefore the restriction u,, = Pum|Q
converges strongly in L?((Q).

Proposition: If 2 is a bounded open set with a continuous boundary, then the injection of W'?(2) into
L?(Q) is compact.

Proof: The preceding argument does not apply, and one must find a different proof. Using a partition of
unity one has to consider the case of Qp with F' uniformly continuous, for a subsequence having support

in a bounded set. One notices that in dimension 1 one has W'?(0,00) C C4(0,0), and therefore one has
fF((;,)H?’E |lu(z',zy)|Pdz < Ce fF(z,) (Ju(a', zn)|P+| 62:1;\: (', .’L’N)| ) dz v, which one may then integrate in z'.

Using the uniform continuity of F' one can construct § € C*°(RN) with0 <60 < 1,60(z) =0ifzy < F(z')+¢
and 0(z) =1 if xy > F(2') + 2¢. One uses then v, = O u, and w, = (1 — 0)un.l

It is sometimes useful to know different proofs of the same result, and using FOURIER transform one
can show that if { is an open set with finite measure then POINCARE inequality holds for H}(Q) and the
injection of H} () into L?(Q2) is compact.

Let u € H}(Q), extended by 0 outside 2, and let A = ||u||z and B = ||grad(u)||2. Because Fu(§) =
Jou(z)e™2™ (=) dz one has |Fu(€)| < Ameas()'/? for all £ € RV, and therefore Jie1<, | Fu(é)|>dé <

A?meas(Q)wnp", where wy is the volume of the unit ball. As f|€|>p | Fu(€)|? d¢ < fl€|>ﬂ %U’u({)ﬁ d¢ <

3 f 357> one deduces by adding these two inequalities that A% = [ov [Fu(€)[? d€ < A’meas(Q)wnp™ + %

for every p > 0, and therefore the choice meas(Q)wnp™ = 1 gives A < cymeas(Q2)'/N B for a universal
constant ¢y (i.e. independent of the open set).

In order to prove that the injection of H3(f2) into L?({2) is compact, one assumes that u, — 0 in
H}(Q) weak, and one wants to prove that u, — 0 in L?*(Q) strong. Indeed one may take ||u,|[2 < A and
llgrad(uy)||2 < B, and because Fu,,(£) is the L? scalar product of u,, by a fixed function in L?(Q2), one has
Fun(€) — 0 for every ¢ € RYN. Because |Fu(é)| < Ameas(Q)/? for all ¢ € RN one deduces by LEBESGUE
dominated convergence theorem that [, [Fun(£)|*d€ — 0 for any p > 0. Because [, , [Fun(£)|*d€ <

, one deduces that limsup,, . ||un||2 < 52, and letting then p — co one has |[u,||s — 0.8

B?
472 p2 27 p
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The main reason why SOBOLEV spaces are important is that they are the natural functional spaces for
solving the boundary value problems of Continuum Mechanics and Physics (at least up to now); they may
be elliptic equations like Au = f for which one invokes the names of LAPLACE or POISSON, parabolic like

the heat equation ‘?,—;‘ — Kk Au = f for which one invokes the name of FOURIER, or hyperbolic like the wave
equation ‘?:T;‘ — ¢2 Au = f for which one invokes the names of D’ALEMBERT! or D. BERNOULLIZ.
The SOBOLEV space H'(f) is adapted to problems of the form — Y, p %(Aij%) = f, written
) i J

—div(Agrad(u)) = f when the matrix A (which is usually symmetric in applications) has bounded measur-
able coefficients and satisfies the ellipticity condition that there exists o > 0 such that ), y A& > alE?
for all £ € RV, for a.e. € Q. There are various physical interpretations possible. A first one is to consider
the stationary heat equation, so that u is the temperature and A grad(u) is the heat flux. A second one
is to consider Electrostatics, which is a simplification of MAXWELL equations where there is no magnetic
field and no time dependence, so that u is the electrostatic potential, E = —grad(u) is the electric field,
D = Agrad(u) is the polarization field, f is the density of electric charge (usually denoted p), and the
density of electric energy is e = 1(E.D); using the SOBOLEV space H'(f2) for u corresponds to having a
finite electric energy stored in 2 (A is called the permittivity tensor in this case). A third one is to consider
a different simplification of MAXWELL equations with no magnetic field and no time dependence also but
where one considers the electric current j (which in principle must satisfies the equation % + div(j) = 0,
which expresses the conservation of total electric charge) is related to the electric field by OHM’s® law j = 0 E
(so A is the conductivity tensor ¢ in this case).

Whatever the physical intuition is, the equation —div(A grad(u)) = f, together with boundary condi-
tions, is dealt in a mathematical way by using LAX-MILGRAM lemma (which was also discovered by Mark
VISHIK), or some variant. One considers a HILBERT space V (which is usually a closed subset of H(Q) con-
taining Hy(Q2)), and a bilinear continuous form a(u, v) on V x V (which is usually [, (A grad(u), grad(v)) dz),
and a linear continuous for L(v) on V (which is usually of the form [, f vdx + [, gvovdHN '), and there
is a unique solution w of the variational formulation a(u,v) = L(v) for all v € V under the (sufficient)
condition that the bilinear form is V-elliptic, i.e. there exists & > 0 such that a(u,u) > a||u||} forallu € V.
V-ellipticity holds if and only if POINCARE inequality holds for V.

For the case of homogeneous DIRICHLET condition, i.e. you = 0 on 0(2, one takes V = H}(f2) and
POINCARE inequality holds if Q has finite measure or is included in a strip with finite width, and there exists
a unique solution for f € H~1(Q) of a(u,v) = L(v) for every v € V, or equivalently for every v € C°(2)
by density, and that is exactly the equation. For the case of nonhomogeneous DIRICHLET condition, i.e.
You = g on 9N, one asks that g belongs to v H*(Q) (which is HY/2(8Q) if Q is bounded with LIPSCHITZ
boundary), so that there exists u; € H*(Q2) with you; = g; one looks then for a solution u = u; + U with
U € H}(9) satisfying the equation with f replaced by f+div(A grad(u)), and there exists a unique solution
for f € H1(Q) and g € 70 H'(Q).

If V = H'(f) then POINCARE inequality does not hold in general, but assuming that there is a
solution u € H'(Q) of a(u,v) = L(v) for every v € H'(Q) and L has the simple form L(v) = [, fvdz +
Joq90vdHN "1 with f € L*(Q) and g € L?(dQ), it is useful to characterize what a solution can be in
this case. Taking all v € C°() gives the equation —div(Agrad(u)) = f in Q. Then assuming that
the coefficients a;; are LIPSCHITZ continuous and that the boundary of 2 is smooth, one can show that
u € H%(Q) and then an integration by parts shows that one has (4 ypgrad(u).n) = g on 852, the NEUMANN*

Jean Le Rond D’ALEMBERT, French mathematician, 1717-1783.

Daniel BERNOULLI, Swiss mathematician, 1700-1782. He worked in Basel.

Georg Simon OHM, German mathematician, 1789-1854. He worked in Munich.

Franz Ernst NEUMANN, German mathematician, 1798-1895. He worked in Konigsberg (now Kalin-
ingrad, Russia).

U R
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condition. If the boundary is not smooth enough the solution may not belong to H2(Q), and the coefficients
may not be smooth either, and an interpretation of the boundary condition will be studied later, but there
is another important point to discuss, concerning existence.

If Q has finite measure, 1 € H'(Q) and, because a(u,1) = 0 for every u € V = H'({2), a necessary
condition for the existence of a solution is that L(1) = 0. With the physical interpretation of a stationary
heat equation it means that the total amount of heat is 0, adding the source of heat inside {2 which is fﬂ fdzx
and the heat flux imposed on the boundary 92, which is [ an 9dH N—1.if this condition is not satisfied then
the solution of the evolution heat equation will not converge to a limit, and it actually tends to infinity (with
a sign depending upon the sign of the total heat imposed; of course, when the temperature becomes too
large, the modelization by a linear equation is not very good, and in a real problem the absolute temperature
cannot become negative anyway).

If the necessary condition L(1) = 0 is satisfied and if the injection of H'({2) into L2(f2) is compact then
a solution exists, but it is not unique as one may add an arbitrary constant to the solution (an example
of a FREDHOLM alternative). If one denotes by uq the average of u on 2, and by ugq the average of you
on 01, then the compactness assumption implies that POINCARE inequality ||u||2 < C||grad(u)||2 holds for
all w € H'(Q) satisfying ug = 0, and that it also holds for all u € H(Q) satisfying usq = 0. Even if
the compactness condition does not hold but one of these POINCARE inequality is true, then there exists a
solution.

Using POINCARE inequality for all u € H'(2) satisfying uq = 0, one changes V to denote the subspace
of u € H'(Q) such that ug = 0, and the bilinear form is then V-elliptic and a solution exists. One
does not have C*(Q) C V, but a(u,v) = L(v) only for v € C(Q) satisfying [, vde = 0, and therefore
there exists a LAGRANGE® multiplier A such that a(u,v) = L(v) + A [,vdz for all v € C(R), so that
—div (A grad(u)) = f + X in Q; then one obtains the boundary condition and A is such that the necessary
condition must hold and it is therefore equal to 0.

Using POINCARE inequality for all u € H'(Q) satisfying usq = 0, one changes V to denote the subspace
of u € H'(f2) such that upg = 0, and the bilinear form is then V-elliptic and a solution exists. One has now
C(R2) C V, so that —div(A grad(u)) = f in Q; then one obtains the boundary condition and a LAGRANGE
multiplier appears in the boundary condition but the necessary condition must hold and it is therefore equal
to 0.

5 Joseph-Louis LAGRANGE, Italian-born mathematician, 1736-1813. He worked in Paris.
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Let 2 be a bounded open set of RN with LIPSCHITZ boundary, and let u € H'(Q) satisfy a(u,v) = L(v)
for all v € H'(Q), with a(p,¢) = [o(X;; Aij;’T‘f;g—;ﬁ)dm for all p,9 € HY(Q) and L(¢) = [, fdz +
Joq 970 dHN! for all ¢ € H'(Q), with f € L?(Q) and g € L*(69). Using all v € C2°(€2) one deduces
that — 3=, a%i (Asj gT”j) = f in Q, and the question is to understand what is the meaning of the boundary
condition that u satisfies.

If one assumes that A;; € W->(Q) for i,5 = 1,...,N and u € H?(f), then A,-ng“j € HY(Q) for all
i,j = 1,...,N, and an integration by parts gives [, fvde = a(u,v) — [5q (Zi,j Aij'y()g—:j'yovm) dgN !
for all v € H'(Q), and therefore one has di Aiﬂ’o%‘j%v n; = g on OQ (so this can only happen if

g € HY%(89)).

In applications, one does not always have LIPSCHITZ coefficients A;;, because one often mixes different
materials and there are interfaces of discontinuity for the coefficients. In applications, one does not always
have smooth boundaries, and corners in the boundary put a limit for the regularity of the solution. Although
it is true that the solution for f € L?(f) and g = 0 does satisfy u € H%(Q) if Q is convex, it is not always
true independently of the size of the corners on the boundary, as the following example in the plane shows.
Let  be the sector 0 < § < 6 with 7 < 6y < 2, and let u = r® cos(af)p with ¢ € C*(R?) with ¢ =1
near the origin. Because ug = r* cos(a 6) is harmonic, i.e. satisfies Aug = 0 (because it is the real part of z*
for example), one sees that A u is 0 near the origin; the normal derivative of u on the side # = 0is 0, and it
is also 0 on the side 6 = 6, if .6 = 7, which gives 3 < a < 1, and therefore one does not have u € H?((2),
which requires o > 1. Actually, for a convex domain €, u € Hj(2) and Au € L?(2) imply H?(Q).

A different way to treat this problem of giving a meaning to the NEUMANN condition, is the following
argument® of Jacques-Louis LIONS.

Definition: H(div; Q) = {u € (L2(Q))", div(u) € L*(Q)} =

Of course, H(div; Q) is a HILBERT space.

One localizes by multiplying all the components of u by the same function #, noticing that if v; = 0 u;
for j =1,..., N, then one has div(v) = 6 div(u) + (u.grad(9)).

If P is an invertible matrix and ' = P 2, one transports a scalar function ¢ defined on Q to the scalar
function ¢ defined on Q' by ¥(Pz) = ¢(z) for z € Q, and one wants to transport u € H(div; Q) to v €
H(div; ') in such a way that one has [, (u.grad(p)) dz = [, (v.grad(¢))) dz’, but as (grad(y))(Pz).Py) =
(grad(p)(z).y) one has grad(v)(Pz) = P Tgrad(y)(z) (denoting P~T = (PT)~1), and one asks that
(u(z).grad(p)(z)) = (v(Pw).grad(y)(P z))|det(P)|, which gives v(Pz) = |det(P)|"'Pu(z). If P is an
orthogonal matrix then v(Pz) = Pu(z).

Once one works on Q for a LIPSCHITZ continuous function F, one proves easily that (’D(Q_F))N is

dense in H(div; QF).

All this proves that (’D(ﬁ))N is dense in H(div;€). The next step is to prove that one can define
the normal trace (u.n); for smooth functions it means }; you;n;, but for H(div;(2) the definition uses a
completion argument.

Proposition: The mapping u + (u.n) = }_; You;n;, defined from (’D(ﬁ))N into L*(01), extends into a
linear continuous map from H (div; 2) into (yoH* (Q))', the dual of the space of traces of functions of H({2),
ie. H-1/2(89) (as 09 has no boundary, H3/2(BQ) = H'/?(6%)). Moreover the mapping is surjective.

1 T believe that he proved it while I was a student, because in the first courses that I followed he used
the argument with the H?(Q) hypothesis, and later he started teaching the new argument with the space
H(div; Q).
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Proof: For u € (’D(ﬁ))N and v € H'() one has [, (EJ (u; z‘;% +div(u) v) dz = Joa (32 Youj nj)yov dHN1,
and as the left side of the identity is continuous on H(div; Q) x H'(f2), so is the right side, which one writes
{(u.n),yov) as a linear continuous form on o H'(f2); notice that if one starts from an element of vo H(Q) it
does not matter which v one chooses which has this element as its trace, as the left side will give the same
value whatever the choice is.

In order to show surjectivity, one takes g € (YyoH 1(9))’ and one solves [,(grad(u.).grad(v))dz +
Jo usvdz = (g,7v) for allv € H'(Q2), which has a unique solution u, € H'(Q), which satisfies —A u, +u, =
0 in Q and therefore ¢, = grad(u,) belongs to H(div; ), satisfies div(£,) = u., and the precise variational
formulation says that (£x.n) = g.|

The example of R? with u; = f1(z1)f2(z2) and uz = g1(x1)g2(z2) shows that one has u € H(div; R?)
if f1,92 € H'(R) and f,,g1 € L?(R), and therefore u; can be discontinuous along the line 2 = 0 while us
must be continuous, and (u.n) = —uy if @ = R3.

In a problem of Electrostatics, the potential u is in H'(2) and has a trace on the boundary; more
generally, on any interface u takes the same value on both sides of the interface. The polarization field
D satisfies div(D) = p and therefore D € H(div;Q) if p € L?(Q), and the normal component of D is
continuous at any interface (if it does not support a nonzero charge). For the electric field E, it is the
tangential component of E which is continuous, and its value is the tangential derivative of the trace of u;
one can actually define the space H(curl; Q) = {E € (Lz(ﬂ))N, gf;’ — %fj € L2(Q) forall i,j =1,...,N},
and prove an analogous theorem, that the tangential trace is defined.
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Although the term interpolation space only appeared much later, the subject has its origin in questions
studied by M. RIESZ, and then by THORIN', and also by MARCINKIEWICZ; they might have been motivated
by studying the properties of the HILBERT transform.

A holomorphic function in an open set of the complex plane is a complex valued function which has
a derivative in the complex sense, i.e. %ﬁéz") has a limit as z tends to zp, and if z = z + ¢y and
f(2) = P(z,y) + i Q(z,y) it leads to the CAUCHY-RIEMANN equations ‘3—1; = % and %—I; = —%, so that
both P and @ are harmonic, i.e. satisfy A P = A @ = 0 where the Laplacian A is 53—; + %. If one works in
the upper half plane y > 0, and one imposes the real part of f on the boundary, then P is determined (if the
given trace is nice enough) and then the partial derivatives of Q) are known, so that @ is defined up to addition
of an arbitrary real constant. In this way one is led to study the following transform named after HILBERT,
Hu= %pv% *u, i.e. Hu(z)=1lim, g % fly—w|>€ :(Ty; dy, which relates the real part to the imaginary part on
the boundary. Using FOURIER transform one can show that H is a surjective isometry from L2(R) into itself
and H? = —I. This was done a long time before Laurent SCHWARTZ extended FOURIER transform to some
distributions, but his proof is as follows: one notices that pv% € §'(R) as the sum of a distribution with
compact support and a bounded function, and because zpvl = 1, one deduces that d% (F(pvi)) = —2im 6o,

ie. F(pvl) = —irsign(¢) + C, and one deduces C = 0 from the fact that pvi is odd so that its FOURIER
transform must be odd (of course he had defined in a natural way what it means to be even or odd for a
distribution). Then one has F(H u)(§) = —i sign(€)Fu(£) and therefore || H ul|z = ||ul|2 and H? = —1I.

I think that it was M. RIESZ who showed that the HILBERT transform is continuous from LP(R) into
itself for 1 < p < oo, but the result is not true for p = 1 or for p = co (one usually replaces L! by the HARDY
space H!, and L>® by BMO). 1 suppose that it was in relation with the properties of the HILBERT transform
that M. RIESZ proved the following “interpolation” result in 1926, in the case pg < gp; this restriction was
removed by THORIN, in 1938.

Proposition: If 1 < pg,p1,q0,q1 < 00, and a linear map A is continuous from LP(2) into L% (') and from
LP1(Q) into L9 (') then for 0 < § < 1 it is continuous from LP¢(2) into L ('), where pie = 1;—00 + p% and
q%; = lq;oo + (%. Moreover one has ||A||s < ||Al|g™%||A]|¢, where ||A]|s denotes the norm of A as a mapping
from LP¢ () into L% (Q').m

If the HILBERT transform was mapping L!(R) into itself, then by this interpolation result if would map
LP(R) into itself for 1 < p < 2 and by transposition for 2 < p < oo, but it does not map L*(R) into L!(R).
However there exists a constant C such that if u € L*(R) one has meas{z : |H u(z)| > t} < % for all
t > 0, and from that result, the continuity in L?(R) and the symmetry of the HILBERT transform one can
deduce that it maps LP(R) into itself for 1 < p < oo.

THORIN’s prooof used a property of the modulus of holomorphic functions, the three lines theorem (a
variant of HADAMARD three circles theorem), stating that if f(z) is holomorphic in the strip 0 < Rz = z < 1,
continuous on the closed strip 0 < z < 1 and such that |f(iy)| < Mp and |f(1+iy)| < M; for all y € R,
then one has |f(6 +iy)| < M OMITY for all 6 € (0,1) and all y € R.

Generalizing the idea of THORIN, a complex interpolation method was developed by Alberto CALDERON,
by Jacques-Louis LIONS and by M. KREINZ.

If f € LP(€), then HOLDER inequality gives [, |f|dz < ||£||pmeas(E)'/?" for all measurable subsets E
of 2, and MARCINKIEWICZ introduced a space sometimes called weak L? (which one should not mistake with
L? equipped with the weak topology), and denoted LP»* in the scale of LORENTZ spaces, which is the space of
(equivalence classes of) measurable functions g for which there exists C such that [}, |g|dz < Cmeas(E)"/ v
for all measurable subsets E of (); it contains LP(£2) but if @ C RN and 1 < p < o it also contains functions

1 G. Olof THORIN, Swedish mathematician; he was a student of Marcel RIESZ in Lund, Sweden.
2 Mark Grigorievich KREIN, Ukrainian mathematician, 1907-1989. He worked in Kiev.
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like M+” In 1939, MARCINKIEWICZ published the following result, as a note without proof, and proofs
were written later by Mischa COTLAR® and by Antoni ZYGMUND.

Proposition: If 1 < py,p1,90,q1 < 00, and a linear map A is continuous from L*°(Q2) into L%°°(Q') and
from LP1(Q) into L9:*°(Q2') then for 0 < 8 < 1 it is continuous from LP¢(2) into L (Q') under the condition

1 _1-6, 6 1 _1-6, 6
thatpggqg,wherep—g— o+ or and =gt

The results of RIESZ, THORIN, and MARCINKIEWICZ, were generalized as theories of Interpolation,
and the main contributors were Nachman ARONSZAJN*, Alberto CALDERON, Emilio GAGLIARDO, KREIN,
Jacques-Louis LIONS and Jaak PEETRE, but similar techniques have been used by specialists of Harmonic
Analysis, like STEIN. Part of the motivation of Jacques-Louis LIONS was the question of identifying traces
of SOBOLEV spaces and their variants.

Definition: Let Ey and E; be normed spaces, continuously imbedded into a topological vector space £ so
that Eg N F, and Ey + E; are defined.

An intermediate space between Ey and F; is any normed space F such that Eg N E; C E C Ey + E;
(with continuous imbeddings).

An interpolation space between Ey and FE; is any intermediate space F such that every linear mapping
from Ey + E; into itself which is continuous from FEj into itself and from E; into itself is automatically
continuous from F into itself. It is said to be of exponent  (with 0 < 8 < 1), if there exists a constant C
such that one has ||Al|z(g,E) < C||A||1[g.07E0)||A||0£(E1,E1) for all A € L(Ey, Ey) N L(Ey,E,)m

One is interested in general methods (or functors) which construct interpolation spaces from two arbi-
trary normed spaces (or BANACH spaces, or HILBERT spaces).

For two BANACH spaces Ey, F1, the complex method consists in looking at the space of real analytic
functions f with values in Ey + FE1, defined on the open strip 0 < z < 1, continuous on the closed strip
0 < z < 1, and such that f(iy) is bounded in Ey and f(1 + ¢y) is bounded in E;, equipped with the
norm || f|| = max{sup, ||f(iy)|[o,sup, || f(1 +iy)|l1}, and one defines [Ep, E1]o for 0 < § < 1 as the space
of a = f(6), with the norm ||a||;g,,5,], = inff(g)=a ||f||. Of course such a space contains Eq N E;, as one
can take f to be a constant function taking its value in Ey N E;. The interpolation property follows easily
from the fact that if A € L(Ey, Fo) N L(E1, Fy), then A f(z +1iy) satisfies a similar property with the spaces
Fp and Fy, and therefore one has ||A a||[z,, ), < max{||A||z(&,,F0), [|Allc(Ey,m)}all[E,, By, and one may

actually replace max{||Al| (g, ko) |14l e, r0)} bY 141z, m0) | Al 1)

At least for the case of Jacques-Louis LIONS, one motivation for introducing interpolation spaces was
the question of traces for variants of SOBOLEV spaces. For example, if 2 = Rf = {z € RN,zy > 0}, and
one wants to describe the trace on the boundary of a function u € W1P(Q), one may consider that u €
L?(0,00; WHP(RN 1)) and that % € LP(0,00; L?(RN 1)), and he introduced a more general framework,
which Jaak PEETRE also did independently so that it gave a joint article, where they considered (strongly
measurable) fonctions defined on (0,00) with values in Ey + E; and such that t*°u € LP°(0,00; Ey) and
to ‘fi—? € LP1(0,00; E1), and looked for the space spanned by u(0) for a special range of parameters where
u(0) is automatically defined. It seems that this is a four parameters family of spaces, but changing t into ¢°
shows that three parameters are enough; it was Jaak PEETRE who finally showed that the family actually
depends only upon two parameters, and after simplification it led to the K-method and the J-method that
we are going to study.

3 Mischa COTLAR, Argentinian-born mathematician, 1913. He works at Central University of Venezuela,
Caracas.

4 Nachman ARONSZAJN, Polish-born mathematician, 1907-1980. He emigrated to United States in 1948,
and he worked in Laurence, Kansas, where I visited him during my first visit to US, in 1971.
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Definition: Let Ey and E; be two normed spaces, continuously imbedded into a topological vector space
€ so that one can define Ey N E;, equippped with the norm ||a||gy,ne, = max{||al|o,||a||1}, and E¢ + Ex,
equippped with the norm ||a||gy+E, = infa—ag+a; ||ao]lo + ||@1]]1-

For a € Ey + E; and t > 0 one defines K(¢,a) = info—gq,+q, ||aollo + t]|]a1]|1-

For0 <@ <land1 <p < oo,orfor§ =0,1 with p = co, one defines (Ey, E1)g,p as the space of a € Eg+
E1 such that t=9K(t,a) € LP (0, 00; %), equipped with the norm ||al|(g,,5,),, = [t 0K (¢, a)||z2(0,005dt/¢) B

An idea of Emilio GAGLIARDO is to consider a plane with coordinates zq,z; and for a given a € Fg+ E;
to mark all the points such that there exists a decomposition a = ag + a1 with ||ag||o < zo and ||a1||1 < z1.
This set is convex because if a = by+b; with ||bo|lo < yo and ||b1||1 < y1, then for 0 < < 1 one has a = ¢p+c¢;
with ¢g = (1—1n)ap +1be and ¢; = (1 —n)a; +nb; and the triangle inequality gives ||collo < (1 —7)zo + 1Yo
and ||e1]|1 < (1 — n)z1 + nyi. Using the function ¢ — K (¢,a) is one way of describing the boundary of this
convex set.

For t > 0, a — K(t,a) is a norm equivalent to the norm on Ey + E;. K(t,a) is nondecreasing in ¢
and M is nonincreasing in ¢, and moreover K (¢,a) is concave in ¢, as an infimum of affine functions,
and therefore continuous. One can give a definition of the space involving a sum instead of an integral:
on an interval e” < t < e™*! one has K(e",a) < K(t,a) < eK(e",a) for n € Z, and as the measure of
(e",em*1) for the measure % is 1, one sees that a € (Eo, E1)s,, if and only if e %K (e",a) € IP(Z), and
le=™?K (e",a)||i»(z) is an equivalent norm on (Ey, E1)g,p.

Lemma: If 0 < § <1 and 1 < p < g < o0, one has (Ey, E1)g C (Eo, E1)s,q (With continuous imbedding).
Proof: Using the definition using sums instead of integrals, one notices that [P is increasing with p.
Another way to prove the same result is to notice that if 1 < p < oo, and tp > 0 one has K(¢t,a) >
—6
K(tg,a) for t >ty and therefore ||a||€Eo’E1)9!p > K(tg,a)? ftzo topdt = K(tg,a)”t—%%, giving t5 K (to,a) <
Cllall(Eo,E1),,,» and therefore |[t™K(t,a)||ze(0,00,at/ty < Cllal|(Eo,E1)s ,» and by HOLDER inequality one
obtains ||al|(g,E1)e , = [t K (t,a)||La(0,00,4t/t) < C l|all(Eo,E1)e, for p < g < o0

Because for a € Ey+ E; one has K (¢,a) > min{1, t}||a|| g,+E, , one sees that if (Ey, E1)g,p is not reduced
to 0 one must have t~% min{1,¢} € L? (0, 00; %), and therefore the space (Ey, E1)g,p is reduced to 0if 6 < 0
or if # > 1, and also in the cases # =0 or 0 =1, if p < co.

Because for a € Ey N E; one has the decompositions a = a + 0 and a = 0 + a, one finds that K(¢,a
min{1, t}||a||g,nE, , and therefore for all the pairs (6, p) which are considered one has Eg N E; C (Ey, E;
(with continuous imbedding).

) <
)9,10

Although it will be important to characterize as much as possible what these interpolation spaces are
in each context, the interpolation property comes automatically.

Proposition: If A is linear from Eg + E; into Fy + F; and maps Eq into Fy with ||Az||r, < My||z||g, for
all z € Ey and maps F; into Fy with ||Az||r < Mi||z||g, for all z € E4, then A is linear continuous from
(Eo, E1)g,p into (Fo, F1)g,p for all §,p, and for 0 < 6 < 1 one has ||Aal|(r,,7),, < M&_oMf||a||(EO7E1)9,p for
alla € (E(),El)g,p.

Proof: For each decomposition a = ag+a; withag € Fg and a; € E1,onehas Aa = Aag+Aayi,and Aagy € Fy
with ||[Aao||p, < Mollaol|g, and Aay € Fy with ||Aa1||p, < Mi|lai1||g,.- One deduces that K(t,Aa) <
|Aaollm, + tllAai|lr < Mollaollm, + t Millar]|m, = Mo(llaol|m, + G5 lla1llm,), and therefore one has

K(t,Aa) < MoK (47>, a). Then using s = 53 one deduces that t?K (¢, Aa) < M3 MPs—°K(s,a) and
as % = 95 one finds that ||Aal|(ry,5),, = [t K (t, Aa)||Lr(0,00,dt/t) < My~ MY||s~PK (s, a)|| 1o (0,00,d/8) =
M&foMf||a||(Eo,El)o,p for all a € (Eg, E1)g p 8

An important example is the case Ey = L'(Q2), E; = L (), for which the corresponding interpolation
spaces are the LORENTZ spaces’, for 1 < p < oo and 1 < g < oo one denotes LP?(Q2) = (L'(f), L“(Q))l/p,’q,

! LORENTZ had introduced these spaces before the Interpolation theories were developed.
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and one will find that LP?(Q) = LP(Q2) (with equivalent norms). For a function f € L!(2) + L°°(f2) one can
calculate explicitly K (¢, f), and the formula makes use of the nonincreasing rearrangement of f.

For a measurable scalar function f on €2 such that for every A > 0 one has meas{z € Q, |f(z)| > A\} < oo,
one can define the nonincreasing rearrangement of f, denoted f* (and extensively used by HARDY and
LITTLEWOOD). It is the only (real) nonincreasing function defined on (0, meas(f2)) which is equimeasurable
to ||, and it can be defined by A € [f(t4), f(t-)] if and only if meas{z € Q,|f(z)| > A} < t < meas{z €
Q,|f(z)] > A}. When necessary, one extends f*(t) to be 0 for ¢ > meas(2). One basic property if that for

any piecewise continuous function @ defined on [0, c0) one has [, ®(|f(z)|) dz = [ meas(f) ®(f*(t)) dt.

Lemma: If Ey = L'(Q) and E; = L*(f) then for any function f € L'(Q2) + L>®(2) one has K(t,f) =
f(f f*(s)ds for all t > 0 (extending f* by 0 for ¢t > meas(f)).

Proof: If one decomposes f = fo + f1 with fo € L'(Q2) and || f1||r= (@) < A (and A > 0), then the infimum of
|| follz1() is obtained by taking fi(z) = f(x) whenever |f(z)| < A, and fi(z) = AI;(:)I whenever |f(z)| > A,
and this shows that K (¢, f) = ian>0(j‘|f(z)|>)‘(|f(x)|—)\) dz+t)) = inf)\>0(ff,,(s)>)‘( *(s)—A)ds+tA). The
infimum is attained for any A in the interval [f*(¢..), f*(¢_)] and is fot f*(s) ds (one extends f by 0 outside Q
and f* by 0 for ¢t > meas(Q?)). Indeed let T be such that A € [f*(r}), f*(7-)], then ff,,(s)»\(f*(s) —A)ds+
tA= [y f*(s)ds+ A(t — 7), and it is enough to check that [ f*(s)ds + A(t — 7) > 0 for all 7 > 0; this is a
consequence of f*(s) > A for s < t and f*(s) < A for s > ¢t

In order to compare two definitions of LORENTZ spaces, we shall use HARDY inequality.

Lemma: Let 1 < g < ooand a < 1. If t*% € L1(0,00,%) and 9(t) = 1 [ ¢(s)ds then one has
t*p € L9(0,00, %) and ||9)]|1a(0,00,t/t) < Tog |10l L2 (0,00,dt/2) -
Proof. The case g = oo is obvious, because |p(t)| < M ¢~ for all ¢ > 0 implies |¢(t)| < 4£= for all ¢ > 0.
For 1 < g < o0, one uses the fact that C.(0, 00) is dense in the space of ¢ such that t“go € L9 (0 00, )
so that one may assume that ¢ € C.(0,00), in which case 1) vanishes near 0 and behaves as % for t large As
1 is of class C! and t'(t) + ¥(t) = ¢(t), one multiplies by t“‘1|1/)|‘1 24 and one mtegrates agamst t- one
finds [;° ty't>e|yp|a2pdt = %fooo 9|7 = —a fo t*9|4|? 2 because t9)(t) tends to 0 at co. This shows
that (1 — a) [, [t*]? & = [ [t*4h|9- 2t t*p 9, and HOLDER inequality implies (1 — a)|[t*%|| < [[t%¢]|,
where the norm is that of L (0 00, dt) u

Proposition: For 1 < p < oo and 1 < g < 0o one has LP9(Q) = (L*(2), L(Q) )l/p 4 ={fe LD+
L™(Q),tY/Pf*(t) € L(0,00, %)}, and [[t'/? f*||14(0,00,d¢/¢) iS an equivalent norm (and therefore LPP(Q) =
L?(Q) with an equivalent norm). LP**°() is the weak LP space of MARCINKIEWICZ (with an equivalent
norm).
Proof The definition of the interpolation space would have t°K(t, f) € L9 (0 00, ) with 6 = ,, and as
fo s)ds > t f*(t) because f* is nonincreasing, it implies t °K (¢, f) > t! =0 f*(t) = tl/pf*( ).
Conversely, if tl/ p f* € L9 (0, 00, ‘it) then HARDY inequality implies ¢t1/71 fo f*(s)ds € L4 (0 0, ) because
a= % <1, and t4/71 fg f*(s)ds =t °K(t, f).

The definition of the weak LP space of MARCINKIEWICZ is that there exists M such that for every
measurable subset w of € one has [ |f|dz < M meas(w)'/?". The statement is then the consequence
of the fact that for ¢ > 0 one has sup,,cqs(w)=¢ [, |fldz = fg f*(s)ds, and this is seen by choosing A €
[F*(t+), f*(t-)] and defining wy = {z,|f(z)| > A} and w; = {z : |f(z)| > A, so that meas(wp) < t <
meas(w1) (and |f(z)] =t on wy \ wp). If w is not a subset of w;, one increases the integral of | f| by replacing
the part of w which is not in w; by a part of the same measure in w; \ w; if w is a subset of w; but does not
contain wy, one increases the integral of |f| by replacing a part of w which is not in wy by a corresponding
part of the same measure in wp \ w, so that finally the subsets of measure ¢ for which the integral of |f| is
maximum must contain wg and be contained in wj.
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We want to interpolate now between SOBOLEV spaces in order to define spaces like H*(Q2) when s is
not an integer. In the case where Q = RY, where the definition is based on FOURIER transform, they are
indeed interpolation spaces with the particular choice p = 2, and for p # 2 they belong to a larger family of
spaces named after Oleg BESOV?.

For s € R, let F, denote the space of (equivalence classes of) measurable functions v such that (1 +
47?|¢)?))*/2v € L?(RYN), then the FOURIER transform F is an isometry from H*(RN) onto F, and the
inverse FOURIER transform F is an isometry from F; onto H*(RY). Therefore the interpolation property
implies that F maps continuously (H*(R"), H’(RY)), ~into (Fa,Fp)e, and F maps (Fa,Fp)e,p into
(H*(RN), H'g(RN))eip and therefore (H*(RY), Hﬂ(RN))e,p
whose FOURIER transform belongs to (Fy, Fg)s,p (and one deduces in the same way that it is an isometry if
one uses the corresponding norms).

coincides with the (temperate) distributions

Identifying interpolation spaces between SOBOLEV spaces H*(RY) is then the same question than
interpolating between some L? spaces with weights, and this new question can be settled easily in a more
general setting.

Proposition: For a (measurable) positive function w on Q, let E(w) = {u : [, |u(z)|?w(z)dz < oo}

with [Julle = ([q |u(w)|2w(w)dz)1/2. If wp,w; are two such functions, then for 0 < 6 < 1 one has

(E(?.UO),E(wl))g,2 = E(wp) with proportional norms, where wy = wg~?w?.

Proof. One uses a variant of the K functional adapted to L? spaces, namely K»(t,a) = info_aq-a, (||aol |3 +

t2||a1||f)1/2, and one checks immediately that K»(t,a) < K(t,a) < v/2 K»(t,a) for all a € Ey+ E;, whatever
the normed spaces Fy, E; of the abstract theory are.

For Ey = E(wyp) and E; = E(w;), for any a € Eg + E; and ¢ > 0 one can calculate explicitly K2 (¢,a).
Indeed K3(t,a)? = info—aqta, [ (Jao(z)|2wo(z) + t2|a1(z)|>w1(z)) dz, and one is led to choose for ap(z) the
value A\ which minimizes |A[>wo(z) + t?|a(z) — A\J*wi(z), and as X is characterized by Awp(z) — t2(a(z) —

2
A)wi(z) = 0, one finds ag(z) = #ﬁﬁ}l(z) a(z) and ai(z) = #ﬁzﬂm(z) a(z) (which are measurable),

and this optimal choice gives |ag(z)|?wo(z)+12|a; (z)|?w; (z) = % la(z)|?, and therefore K»(t,a) =
2w (¢) w1 () 1/2

(fﬂ wo(zo)-l—tzq;l (z) |a(‘,1’.)|2 d:B) . )
For 0 < 6 < 1 one has ||t™Ka(t,0)||32(0,00,a00) = Jo Ja t_z"% |la(z)|? dz 4, which one

computes by integrating in ¢ first, by FUBINI’s theorem. One makes the change of variable t?> = %32’ S0

2 —
that 4 = 2 and one finds f;° t_”% & — wo(z)' 0w (z)? [° t11+—:: dt, and therefore one finds

2 . oo $1—26 . T
1t K2(t, a)l|z2(0,00,0/6) = € (Jq la(z) Pwe(z) dz)” with C? = [ L7 dt (ie. CF = 2sin(7r9))'.

1+t2

Using the Theory of Interpolation, one can improve the HAUDORFF-YOUNG inequality?, which asserts
that the FOURIER transform maps L?(RYN) into L? (RN) if 1 < p < 2, and this improvement uses LORENTZ
spaces. Indeed Ff(£) = [ f(z)e 2 "(@8) dz gives immediately || f||oo < ||f||1, Where ||-||, denotes the LP
norm; on the other hand ||Ff||2 = ||f||2 and therefore the interpolation property asserts that the FOURIER
transform maps (L'(RN),L?(RN ))94’ into (L*°(RN),L*(RN ))o,p' The important reiteration theorem (of
Jacques-Louis LIONS and Jaak PEETRE) will show that these spaces are in the family of LORENTZ spaces,
and the result will then be that for 1 < p < 2 and 1 < ¢ < oo the FOURIER transform maps LP?(R") into
LP"9(RN), and in particular maps LP(RY) into L??(RN), which is a subspace of L?' (RY) because p < p'.

1 Qleg V. BESOV, Russian mathematician. He works at the STEKLOV Institute of Mathematics of the
Russian Academy of Sciences, Moscow.
Vladimir Andreevich STEKLOV, Russian mathematician, 1864—1926.
2 YOUNG had proved the result when p’ is an even integer, and HAUSDORFF had proved the general case.

54



Results concerning convolution can also be improved using the Theory of Interpolation and LORENTZ
spaces, and in particular the SOBOLEV imbedding theorem can be improved, as noticed by Jaak PEETRE.
The classical result is that for 1 < p < N one has W1?(RY) c L*" (RN) with p* = Zév—f’p or 1% = ;7 — 4, and
this will be improved for 1 < p < N into W?(RY) c L?"»(R"), which is included in L*" (RY). The original
proof of SOBOLEV used a convolution formula u = j g—;‘j*g—fj for an elementary solution F of A, and as one
can take E = IzIC% for N > 3 and E = Cslog(|z|) for N = 2, one finds that g—fj € LN"(RN). Together
with the reiteration theorem and a duality theorem (also of Jacques-Louis LIONS and Jaak PEETRE), which
asserts that LV °°(R") is the dual of L™"'(R"), one finds that for 1 < p < N and 1 < q < oo, convolution
of LP4(RN) by LN">°(RN) gives a result in L?"4(RN).

Unfortunately, this argument does not give SOBOLEV imbedding theorem for p = 1, or the improvement
that W' (R") is continuously imbedded in L'"*(RY), which is indeed true. The reason is that convolution
of L'(RY) by any LORENTZ space L*®(RY) gives a result in L»*(R"™) and not better, as one can approach
the DIRAC mass at 0 by a bounded sequence in L!(RY).

This is something that one should be aware of, that different ways of using the Theory of Interpolation
may lead to results in different interpolation spaces, usually differing only in the second parameter.

The usual scaling arguments, for example, are insensitive to the second parameter for the LORENTZ
spaces, and cannot be used to check that a given result is optimal. For example, if v € L'(RN) + L>*(R"N)
and for A # 0 let U be defined by U(z) = u(\z) for z € RV, then any decomposition of u = ag + a; with
ao € L*(RN) and a; € L°(RYN) gives a decomposition U = A + A; with A4;(z) = aj(Az) for z € RN
and j = 1,2. Then one has |[Ao||z1(rv) = [A|7V|aol|z1(r~) and ||A1||ze(rv) = ||a1||p(rY), and therefore
K(t,U) = [A\|"NK(t|A|™,u), from which one deduces that ||U||zs.e(rv) = |A|“Y/P||ul|1r.a(rN), s0 that the
parameter ¢ does not appear explicitly in the way the norm changes.

3 The result of Jacques-Louis LIONS and Jaak PEETRE is valid for general BANACH spaces, and the
particular result for LORENTZ spaces may have been known before.
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Another interpolation method is the J-method. It is in some way a dual method compared to the
K-method.

The K-method is the natural result of investigations which originated in questions of traces: if u €
LP0(0,00; Ep) and v’ € LP*(0,00; E1) with 1 < pg,p1 < oo, then u € C°([0,1]; Ep + E1) and therefore u(0)
exists and the question is to characterize the space of such values at 0 (traces). As one can change wu(t)
in u(t)‘) with A > 0 and not change u(0), one then discovers naturally that one can consider spaces of
functions such that t*°u € L*°(0, co; Ep) and t**u’ € LP'(0,00; E1), and for some set of parameters u(0)
exists. These ideas may have started with Emilio GAGLIARDO, and I do not know if he had first identified
the traces of functions from W1P(RN) on an hyperplane before or after thinking of the general framework,
but certainly Jacques-Louis LIONS and Jaak PEETRE perfected the framework, and the K-method is Jaak
PEETRE’s further simplification, which shows that the preceding family only depends upon two parameters.

If one wants to characterize the duals of the spaces obtained, then one finds easily that these dual spaces
are naturally defined as integrals, and one considers then questions like that of identifying which are the
elements a € Eg+E; which can be written as [~ v(t) dt where t%v € L% (0, 00; Ey) and tP1v € L9 (0, oc; Ey),
for the range of parameters where the integral is defined. Again, looking at v(t*) shows that there are not
really four parameters, but one important observation is that these spaces are (almost) the same than the
ones defined by traces, and I do not know if Emilio GAGLIARDO had investigated such questions before
the basic work of Jacques-Louis LIONS and Jaak PEETRE. The J-method is then the simplification by Jaak
PEETRE of the preceding framework.

Definition: For v € Ey N E; and ¢ > 0, one denotes J(t,v) = max{||v||o, t||v||1} ™

The case ¢t = 1 corresponds to the usual norm on Ey N E;, which makes both injections into Ey or E;
continuous and with norms at most 1. J(¢,v) gives then a family of equivalent norms on Fo N E.

Definition: For 0 < § <1 and 1 <p < o0, or for § = 0,1 and p = 1, one defines (Ey, E1)g,p,s as the space
of a € Eo+ E; which can be written as a = [, v(t) % with v(t) € EoN E; for almost all ¢ > 0 and satisfying
t=9J(t,v(t)) € LP(0,00; %). One defines ||a||g g = inf, ||t J (¢, v)||1r(0,005dt/¢); the infimum being taken
among all possible v whose corresponding integral gives a.®

As every a € Eg N E; can be written as a = fooo eo(t)a % with ¢ having compact support in (0, 00) and
satisfying fooo o(t) % = 1, one could consider other values of 8, p, but the infimum of |[t=¢J (¢, v)|| L (0,003t /1)
would be 0 in these cases. Indeed one may replace ¢ by p(\t) and let A tend to co, and the infimum tends
to0if § < 0 or if 8 = 0 and p > 1; similarly letting A tend to 0 the infimum tends to 0 if 6 > 1l orif 6 =1
and p > 1.

The important property is the following equivalence result, which says that apart from the extreme
cases 0 = 0,1 where the two methods use different values of p anyway, the J-method gives the same spaces
than the K-method.

Proposition: For 0 <0 < 1and 1 < p < o0, the J-method gives the same spaces than the K-method, with
equivalent norms.

Proof. Let a € (Ey, E1)g,p;7, so that a = [ u(s) 2 with s~%J(s,u(s)) € LP(0,00, %). As a — K(t,a) is a
norm, one deduces that K (t,a) < [;° K (t,u(s)) 2 < [;° min{||u(s)[o, ||u(s)||1} %, because for u € EqNE;
one has the decompositions © = v+ 0 = 0 + u and therefore K(¢,u) < min{]||u||o,t]||u||1}. Because for
u € EpN E; one has ||u|lp < J(s,u) and |ju|l; < 1J(s,u), one deduces that min{||u(s)||o,? |[u(s)|]1} <

min{1, £} J(s,u(s)), and therefore t *K(t,a) < [;° min{ (2)70, (5)170}370(](3,“(8)) ds This is a convo-
lution product for the multiplicative group (0, c0) with the HAAR measure %, of the function t~?J (¢, u(t))

which belongs to L? (0, 00; %) and the function min{t=% #'=%}, which belongs to L! (0, o0; %), and there-
fore one has ||t ™K (t, a)||1r(0,00;at/8) < C ||t (¢, u(t))||£r(0,00:dt/t), PTOVing that (Eo, E1)g pg C (Eo, E1)g,p

with continuous imbedding.
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In order to prove the opposite continuous imbedding, one must start from a € (Ey, E1)g,p, and construct
u(t) € EqN Ey such that a = [° u(t) % and t=9J (¢, u(t)) € LP(0,00; %), and for that it is enough to ensure
that one can construct such a u satisfying J (¢, u(t)) < C K(t,a) for all ¢ > 0. This fact is true in a slightly
more general context, one chooses u(t) = uy for e" < ¢ < e"*1, so that a = [, u(t) % means a = 3% u,,
and the basic construction is shown in the following Lemma. Because a € (Eg, E1)sp C (Eo, E1)p,00, ODE
has K(t,a) < C't? and the hypothesis of the Lemma is indeed satisfied.m

Lemma: If a € Ey + E; satisfies K(¢t,a) - 0 as t — 0 and m — 0 as t — oo, then for n € Z there exists
un € Eq N E; such that the function u defined by u(t) = u, for e” <t < e"*! satisfies a = [;° u(t) % and
J(t,u(t)) < CK(t,a) for all t > 0 (for a universal constant C).
Proof: Let Cyp > 1, and for each n € Z let a = ag,n+0a1,, With ag, € Eg, a1,, € E1 and ||aon|/o+€"||a1,n]|1
CoK (€™, a). In particular ||ag,n|lo — 0 as n = —oo and ||a1,n|[1 — 0 as n — +o0.

Let up, = @o,n+1 — Go,n = @1, — G1,n+1, SO that u, € Eg N Ey, and for ¢ < j one has u; + ... +u; =
a9,j+1—0Qg; = @—ay j+1 —0ap,i, which converges to a in Ey+ E; as 1 — —oo and j — +oo because a; ;11 — 0

A

in By as j — +oo and ag; — 0 in Ey as n — —oo. Because K(t,a) is nondecreasing in ¢ and M is
nonincreasing in ¢, one has K(e",a) < K(t,a) < K(e"*',a) and Ztr K(e",a) < K(t,a) < L K(e", a) for
e <t < e™1. One has ||un|lo < [|@o.n+t1llo + |laonllo < CoK (e, a) + CoK(e™,a) < Co(1 + e)K(t,a),
and t||up|l1 < tllarns1ll1 +t|larnll < Coggr K (€™, a) + Co L K(e", a) < Co(1+€)K(t,a), and therefore
J(t,u(t)) < Co(1+e)K(t,a)m
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Definition: For 0 < 6 < 1, one says that a normed space E is of class K(8) if E¢NEy C E C (Ey, E1)6,00;k»
that E is of class J(0) if (Eo, E1)g,1,0 C E C Ep+ E1, and that E is of class 7(0) if (Eo, E1)s,1,0 C E C
(Eo, E1)g,00;x

Of course, for 0 < @ < 1 the indices J and K may be dropped as the two interpolation methods give
the same spaces, but for the extreme values # = 0,1 the only interpolation spaces that we use correspond to
p =1 for the J-method or p = oo for the K-method.

The reiteration theorem will state that if Fp is of class H(6p) and F; is of class H(f;) with 6y # 6y,
then for 0 < # < 1 and 1 < p < oo one has (Fy, F1)s,p = (Eo, E1)np with n = (1 — 0)6p + 160;. Therefore
if Fo = (Eo,E1)py,p, and F1 = (Eg, E1)p, p,, the interpolation space (Fy, F1)gp is the same, whatever the
precise values pg, p; are, if 6y # 61, but the interpolation spaces do depend upon pg, p; in the case 8y = 61,
and in that case they may be new spaces, i.e. not included in the family indexed by 6, p.

Proposition: A normed space E is of class K(6) if and only if Eg N E; C E and there exists C such that
K(t,a) < Ct9|a||g for allt > 0 and all a € E.

A normed space E is of class J() if and only if E C Ey + E; and there exists C such that ||a||g <
Ct=%J(t,a) for all t > 0 and all a € EyN Ej, or if and only if there exists C such that ||a||z < C ||a||s°|al|d
for all a € Eg N Ej.

Proof: As one must have ||a||(Eo,E1)9,m;K < C||al|g for alla € E, and ||a||(Eo,E1)e,m;K = ||t_9K(t, )| (0,00)
the condition is the same than K(t,a) < Ct?||a||x for all ¢ > 0.

One must have |la||g < C||al|(z,,E1)e,,, for all a € E, and the necessary condition follows from the
fact that for a € Eo N Ey one has ||al|(g,,E)e,,, < t ?J(t,a) for all £ > 0. Indeed if ¢ € L'(0, oo; dt)
and [ ¢(t)% = 1, then every a € Eo N Ey can be written as a = [;° u(t) % with u(t) = ¢(t)a for
t > 0, and one has ||al|(g,,5,)e 1., < It 0e(t)|J(t,a) %. For ty > 0, one takes a sequence ¢, converging
to tody, (for example ¢, (t) = n if o < t < ™ty and ¢,(t) = 0 otherwise), and one obtains at the
limit ||a||(gy,B1).,, < ty%J(to,a). Having shown that ||a||z < Ct=0J(t,a) = C max{||a|lo,t]||a||1} for all

_ llallo
lallx

llal|zg < Ct°J(t,a) for all @ € Ey N E; and all ¢t > 0 is equivalent to ||a||z < C|la||;™%||al|{ for all
a € EypN E;. Conversely, assume that there exists a constant C such that ||a||lz < Ct=%J(¢,a) for all
a € EyN E; and all t > 0; for b € (Ey, E1)g,1;,7 and a decomposition b = [ u(t) 4 with u(t) € Eo N E; and
[t 0T (tu(t)) % < oo, one has [|bl|g < [i° [[u(t)|lg 2 < [;°Ct 9 (¢ u(t)) %, and taking the infimum
on all decompositions of b one deduces that ||b||z < C||b||(&,,£,)

a € FgN E; and all ¢t > 0, one takes the minimum in ¢, which is attained for ¢ and therefore

n
0,1;7"

The preceding observation of Jacques-Louis LIONS and Jaak PEETRE is very useful, and must often be
used with the reiteration theorem. For example, SOBOLEV space H'/2(R) is not imbedded in L>°(R), but
the slightly smaller interpolation space (H'(R), L*(R)), /2,1 18 imbedded into Cy(R), the space of continuous

functions tending to 0 at oo, because of the fact that H'(R) C Co(R) with the precise estimate ||u||p~(r) <

||u||i/22( R)||u’ ||2/22( Ry; then by using the reiteration theorem, one finds that for 0 < s < 3 the space H*(R) is

continuously imbedded in the LORENTZ space LP(*)2 with p(ls) =1

Therefore, one should be aware that some results which are not true for limiting cases, like SOBOLEV
imbedding theorems, may be obtained by the Theory of Interpolation because the limiting case is actually
true if one uses a slightly different space, and the difference does not matter that much because of the

reiteration theorem.

— 8.

Interverting the order of the spaces is a special case of the reiteration theorem but can be seen easily.

Lemma: If FO = El and F1 = Eo, then (FOaFl)O,p = (EO,E1)170,p-

Proof. Denoting Kr(t,a) the K functional using the spaces Fy, Fy, for any decomposition a = ag + a; with
ao € Eg and a; € Ey, one has Kr(t,a) = inf(||a1||1 + t|laollo) = t inf(||acl|o + %||a1|l1) = t K (},a), and
therefore the change of variable t = 1 gives ||t Kr(t,a)||1r(0,005at/t) = ||s* P K (8, a)||1r(0,00;dt/t) ™
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The theorem of reiteration is proved in two steps.

Proposition: If Gy C (Ey, F1)g,,00 and G1 C (Ey, E1)6,,00 With 6 # 61 (and continuous imbeddings), then
for 0 <0 < 1and 1< p< oo onehas (Go,G1)s,p C (Eo, E1)yp withn = (1—0)6p+ 06;.

Proof: One uses the K-method and the fact that for ¢ > 0 one has |[t7% K (t,a)||1»(0,005at/¢) < Co ||allc, for
all @ € Gy, and in particular one has K(t,g0) < Cot?||gol||g, for all g € Go; similarly one has K(t,g1) <
C1t%|g1]|g, for all g; € Gi.

For a € Gy + G1, let Kg(t,a) = infa—gotg, ||90l|lce + t|91]lce, then K(t,a) < K(t,90) + K(t,91) <
Cot?||gol|c, + C1t%||g1]/c,, and minimizing among all decompositions of a one deduces that K(¢,a) <
CotHOKg(Cl tP1—00 a) and therefore t_"K(t a) < Cot9°_’7Kg(g—;t91_9°,a). As 0, # 6y one may use the
change of variable s = t%*~% (which gives % = (6; — p)%), and as s7% = ¢t~9(%2=0) = %7 one finds that
t "K(t,a) < s_ng(C;s a) and therefore a € (Go,G1)e,p implies a € (Eg, E1), ™

Proposition: If (Ey, E1)g,1 C Ho and (Ey, E1)g,,1 C Hy with 6y # 6, (and continuous imbeddings), then
for 0 <6 < 1and1<p<ooonehas (Ey, Ei)yp C (Ho,H1)op with n = (1 —6)0y + 06,.

Proof: One uses the J-method and the fact that for ¢t > 0 one has ||ul|#, < Co||ul|(8,,B1)s,,, < Co t=%J(t,u)
and ||ul|m, < C1||ull(gy,21),, < C1 t=%1J(t,u) for all u € Ey N E.

For a € (Eo,E1)yp one has a = [ u(t) % with u(t) € Eg N Ey and ¢t "J(t,u(t)) € LP(0,00;%).
One chooses A = 6; — 6, and because u(t) € Eq N Ey C Ho N Hy, one can estimate Ja (t*,u( ) =
max{||u(t)||z,, t* ||[u(t)|| 1, }, but as ||u(t)||z, < Cot=%J(t,u(t)) and ||u(t)||m, < Cit~%J(t,u(t)), one finds
that max{||u(t)||m,, t* |[u(t)||m } < Ct=%J(t,u(t)), with C = max{Cp,C1}. One has (t*)~%Jg (t)‘, t)) <
Ct="J (t,u(t)) because —A0—0g = —(01—00)0— 0 = —(1—0)6p—0 6, = G If one defines v(t*) = u(t), one
finds that a = [[° u(t) % = X [[°v(t) %, and t~0Jg (¢,v(t)) € LP(0,00; %), showing that a € (Ho, H1)g,p

Corollary: If 6; # 6, (E(),El)gml C Fy C (EOaEl)Go,oo and (EOaEl)Gl,l CcC F; C (EO,EI)Ol,ooa then for
0<6<1land1l<p< ooonehas (Fy,Fi)o, = (Eo, E1)yp with n = (1—0)8+6 6,, with equivalent norms.m

As an application, let us consider the limiting case of SOBOLEV imbedding theorem in R?, where H'(R?)

is not imbedded in L>(R?) but nevertheless for 0 < s < 1 the space H*(R?) = (H'(R?),L*(R?)),__, is
actually imbedded into (L°°(R2),L2(R2))1_3’2, which is L*(*)2(R?) with als) = 152 by the reiteration

theorem.

The result follows from the fact that X = (H*(R?), L?(R?)) 121 C© L% (R?) (and actually C FL'(R?) C
Co(R?), the space of continuous functions converging to 0 at c0). As both X and H'(R?) are of class #(1/2)
for Eg = H*(R?) and E; = L?(R?), one has H*(R?) = (H'(R?), L*(R?)) = (X,L*(R?)),_,, by the
reiteration theorem, and therefore C (L*°(R?), L2(R2))1_s y = Le():2(R?).

For s > I one has H*(RN) c FL*(RN) C Co(R"N), because u € H*(RY) implies (1+|¢|)*Fu € L*(RN)
and as (1 + |£])* € L?(RY), one deduces that Fu € L!(RN). Because H2(R?) C L*°(R?), one deduces
that ||u||g~(r2) < C||D?ul|z2(r2) + C||ul|p2(r2) for all u € H?(R?), and by rescaling, i.e. applying the
inequality to u(x) = v(Ax) one deduces that ||u||f~(r2) < C|A|||D?ul|p2(r2) + |%||UHL2(R2)a and taking the

. 1/2 1/2 e 1/2 1/2 .
best X gives |[ul|z=(r2) < C" || D?ul |5 pay|[1l|{ gay; this implies |[ul| oo (r2) < C" [[ua]| g2 oy [l 157 o) Which
is equivalent to (H?(R?),L?(R?)) C L*°(R?) (the same scaling argument works with L*°(R?) replaced
by FL!(R?)).

Another way to obtain the same result is to let A = ||u|[z2(g2), B = ||u||m2(r?), and for p > 0 to bound

1/2 1/2 12
Jiejzo \FuldE by A (figc, d€) " = vm Apand [ig,  [Ful dE by (fig, [€1*17ul* d€) " (fig», €171 )
%, and therefore || Fu|r1(r2) < C(Ap+ %) and the best p gives ||Fu||z1(r2) < C'VAB.

1—s,2

1/2,1
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Before a general Theory of Interpolation had been developed, for which the interpolation property is
proved for linear continuous mappings, some nonlinear interpolation method had already been used, for
example for proving that the maximal function maps LP(RY) into itself for 1 < p < co. Probably because
this classical proof is well known to specialists of Harmonic Analysis, or experts in the theory of Singular
Integrals, they rarely mention the Theory of Interpolation when they use this type of argument.

Sotom 7@ dy

Definition: For f € L} (RY), the maximal function M f is defined by M f(z) = sup,-, BT

loc
where B(z,r) is the ball centered at z and with radius r, and |B(z, )| is its volume.®

The concept was introduced by HARDY and LITTLEWOOD, who proved the following result in dimension
1, the general case being due to WIENER!

Proposition: If 1 < p < oo, then f € LP(RYN) implies M f € LP(RN), with || M f||, < C(p)||f|l, for all
feLP(RN)and C(p) > c asp— 1.

This will be proved below, but the fact that the result is not true for p = 1 and that C(p) must tend to
oo as p tends to 1 is seen easily by condidering for f the characteristic function of the unit ball, for which one
has M f(z) > W because for 7 = 1 + |z| one has fB(z,r) |f(y)| dy = |B(0,1)|, because B(z,r) contains
B(0,1), and |B(z,r)| = rN|B(0,1)|. Therefore M f does not belong to L*(R"), and as ||M f||, — oo as
p — 1, one must have C(p) — oo.

The same argument shows that if f € L!(R™) and f # 0, then M f is never in L(RY) as it is bounded
below by # for |z| large, and in this case one has a result involving the weak L! space, which has a definition
analogous to that of the MARCINKIEWICZ spaces for p > 1, which coincide with the LORENTZ spaces LP>*°
for p > 1, but the weak L! space is not included in the family of interpolation spaces between L'(RYN)
and L°(RY), as it is not in L*(RN) 4+ L>®(RY) (but it was probably included in the original definition of
LORENTZ spaces). The proof of the result for p = 1 uses a covering lemma, which seems quite classical, and
was probably known to either VITALI? or BESICOVITCH? who have proved more refined covering results.

Lemma: Let A be a measurable subset of RV, covered by a family of (closed) balls B; = B(C;,r;),i € I,
whose radii satisfy 0 < r; < Rg < oo for all 7 € I. Then for each € > 0 there exists a subfamily J C I such
that the balls B; are disjoint for j € J, and |A| < (3 + &)V > jer | Bil-

Proof: For 0 < o < 1 one chooses a first ball B;, with radius r;, > (1 — &) sup;c; 75, and one discards all the
balls which intersect Bj,, and one repeats the process as long as there are any balls left. In that way, one
has selected a finite or infinite subfamily J such that the balls B; are disjoint for j € J by construction. If
>_jer |Bjl = +oo the result is proved. If 3. ; |Bj| < oo and if the family is infinite one has |B;,| — 0 and
therefore 7;, — 0 as n — 0o, and therefore all the balls have been discarded at some time because if one
has (1 — a)r; > rj, then the ball B; must have been discarded before the step n, or the ball B;, could not
have been selected at step n; if the family is finite then all the balls have been either selected or discarded
after a finite number of steps. Any ball B; has been discarded because it intersects a selected ball B;,
and therefore one has r;,, > (1 — a)r;, which implies that B; C B(Cj,,,kr;,,) with k > 1+ 12_; therefore
A CUjes B(Cj,krj), so that A < kN > jes |Bj| and taking o small one can choose k£ < 3 +¢.®

Proposition: For f € L'(RN) one has meas{z € RN,|M f(z)| >t} < 3”||+||1 for every ¢t > 0.

! Norbert G. WIENER, American mathematician, 1894-1964. He worked at MIT, Cambridge, MA (Mas-
sachusetts Institute of Technology).

2 Giuseppe VITALI, Italian mathematician, 1875-1932. The Department of Pure and Aplied Mathematics
of the University of Modena is named “Giuseppe VITALI”.

3 Abram Samoilovitch BESICOVITCH, Russian-born mathematician, 1891-1970. He held the Rouse BALL
Professorship at Cambridge, 1950-1958, succeeding LITTLEWOOD, and he visited United States from 1958
to 1966.
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Proof: Let Q, = {z € RN,|M f(z)| > s}, so that for every z € Q; there exists r(z) > 0 such that

[f(y)l d
% > s. One uses the lemma for the covering of Q, by all the balls B(z,r(x)) with z € Q,,

and the radii are bounded because s|B(0,1)[r(z)"Y = s|B(z,r(z))| < fB(z @) [F@dy < [[fll1- One
finds a disjoint family of balls with centers z € X C €, such that |Q5] < (3 +¢&)V EzeX|B(x,r($))| <

|f()ld
B+e)VY,ex o r(e) b 3+€) [|fl|1. Letting € tend to 0 gives |Qg| < TN||f||1 and choosing
s=t—mnforn>0and lettlng n tend to 0 gives the desired bound.®

Notation: ||f||.; denotes the smallest constant C' > 0 such that meas{z, |f(z)| >t} < £ for allt > 0.m

One has ||f||1 < ||f||+1 for all f € L'(Q). Despite the notation, || - ||.1 is not a norm; one does have
[IAFll«1 = |A||If]l«1 for all scalars A, but the triangle inequality does not always hold. For example, if
for @ = (0,1) one takes f(t) = 1 and g(t) = {5, and h = f + g, so that ||f||sx1 = ||g/ls1 = 1, one has
h(t) = ﬁ and h*(t) = h(%) for 0 < t < 1, and ||h|[,q = 4.

Actually one always has [|f1 + fallr < (v/T7allr + /ITFaller) for all f1, fo, because for 0 < s < t < oo
one has {z : |fi(z) + fa(z)] > t} C {z : |fi(z)| > s} U{z : |f2(z)] > t — s} and therefore meas({z :
Ifi(z) + fa(z)] > t}) < ”fl”*l + ||f2”*1 ; taking the value of s for which the right side is minimum, i.e.

s = a+/||fills1 and t — s = a\/||f2||*1 with o defined by t = a(y/[[fills1 + V/I|f2lls1) gives meas({z :
|f1(~’lf)+f2($)| > t}) < \/||f1||*1:\/||f2||*1 _ (\/||f1||*1‘*;\/||f2||*1) .

Notation: If f is a measurable function on Q for which there exists C such that meas{z € Q : |f(z)| >
s} < € for s > so (and so > 0), then one defines K, (t, f) = infs_g14||g]|s1 + t||h||c for ¢t > 0O.m

For f € L}(Q) + L>(Q) one has K. (t, f) < K(t, ), because ||g||«1 < ||g||1 for every g € L1(f).

Lemma: If there exists C such that meas{z € Q : |f(z)| > s} < < for s > s, then one has t f*(t) < K.(t,a)
for all ¢t > 0.

Proof: Because |fi| < |f2| a.e. in Q implies || f1||«1 < ||f2||+1, one deduces that among all the decompositions
f = g+ h with ||h]||c < A, the one for which ||g||«1 is lowest corresponds to |g| = (|f| — A)+ (and |h| =
min{|f|,A}). For € > 0 there exists A > 0 such that ||(|f|—A)+|[s1+t A < (1+e) K (2, f); if g = (|f|—A)+, then
as the nonincreasing rearrangement of g is (f* — A)4, one has ¢ (f*(t) — )+ < ||gll«1 < (1 +e) K. (t, f) —t A
If A < f*(t) it means ¢ (f*(t) — A) <||gll«1 < (1 +€)Ky(t, f) — t A, while if A > f*(t) it means 0 < ||g||+«1 <
(1+¢e)K.(t, f) —tA, and in both cases one has ¢ f*(¢) < (1 + E)K*(t, f), and letting € tend to 0 gives the
desired bound.®

For f € L'(Q) + L>(Q) one has then ¢ f*(t) < K.(¢,f) < K(¢t, f) for all t > 0.

Corollary: Let 0 < § < 1 and 1 < g < co. If there exists C such that meas{z € Q : |f(z)| > s} < &
for s > s¢ and t‘aK (t,f) € LI(0,00; %) then f € L*(Q) + L>°(Q) and t~?K(t, f) € LI(0,00; &), i.e.
f € LP9(Q) for p= 115, and ||t K (¢, f)||Lq(o,oo,dt/t) < SO KL (¢, £)]] La(0,00;dt/5) -

Proof: As K,(t, f) is nondecreasing in ¢, t 9K, (¢, f) € L%(0, 00; %) implies t * K, (¢, f) € L= (0, 00; %), i.e.
K.(t,f) < Ct° for t > 0, and therefore f*(t) < Ct?~! for t > 0, and therefore f € L'(Q2) + L>®(2). One has
t1=9£*(t) € LI(0,00; %), and by HARDY inequality one deduces t K (¢, f) € L?(0, 00; %) with the precise
estimate shown.®

One can now finish the proof of the HARDY-LITTLEWOOD / WIENER result that the maximal function
maps LP(RY) into itself for 1 < p < oo, and obtain the same result for LORENTZ spaces.

Proposition: For 1 < p < oo and 1 < ¢ < o0, f € LP9(R"N) implies M f € LP»4(R") and ||M f||1p.0(rv) <
3N/P

rl[fllzea(mm).
Proof For f € L'(RN)+L>(R"N) one has K, (t,M f) < 3N K (&, f) for t > 0. Indeed the maximal function

l9(y)+h(y)| dy l9(y) dy |R(¥)] dy
is subadditive, because Joer B < fB(T};(z,m + fB(T};)(z,m < M g(z) + M h(z) a.e. z € RN

and for all » > 0, one deduces that M (g +h) < Mg+ Mh a.e. in RN. For each decomposition f = g+ h
with g € LY(RY) and h € L°(RY), one has then M f < Mg+ M h and therefore M f = go + ho with
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0<go<Mgand0< hyg <Mh and therefore K.(t, M f) < ||goll«1 + t||Polloo < [IM gl|ls1 +t||M |l <

3¥||g|1 + t||h||cos and taking the infimum on all the decompositions, the right side can be made as small

as 3N infs—g.n(|lgll1 + 5% ||hlloo) = 3V K (5%, ). If f € LP9(RN) then t 9K (¢, f) € L(0, 00; %) with § =

z%’ one deduces that |[t 0K, (t, M f)||La(0,005a/t) < 3VA-9||tPK(t, )||La(0,00;d¢/t), and then this implies
_ N(1-6) _

[t 0K (¢, M £)||La(0,005at/t) < 25— [t P K (t, f)

|| La(0,00;dt /) ™
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08. Friday March 24, 2000.

Another family of nonlinear interpolation results is based on the method of traces of Jacques-Louis
LIONS and Jaak PEETRE. One considers the space of (weakly) differentiable functions from (0, co) to Eg+ E1
such that t*u € LP°(0,00; Ey) and t*'u' € LP'(0,00; E1) and for suitable values of ag,po,@1,p1 (namely
ao+ pio > 0and a1+ pil < 1) these functions are automatically continuous on [0, 1] with values in Eq+ E; and
the space spanned by u(0) is an interpolation space. Using the change of function v(s) = u(s?) with v > 0
amounts to replace ag, a; by Bo, 81 defined by By = v g + 7p—_01 and 81 =ya; — 7;,11, or By + pio =v(a0+ pio)
and B + 57 = v(e1 + 5-) +1 — 7, and therefore the family of interpolation spaces depends upon at most
three parameters, but Jaak PEETRE showed that the corresponding space is equal to (Eq, E1)g,p, and one

can choose v such that Gy + pio =0 and B; + pll =6, and p is defined by % = 1;—00 + p%.

This will be shown later, but assuming that the characterization has been obtained, one can deduce a
few properties.

The interpolation property for a linear operator A € L(Ey, Fo) N L(E1, F1) follows immediately, because
v(t) = Au(t) gives t*v € LPo(0, 00; Fp) and t**v' € LP1(0, 00; Fy). Actually, as was noticed by Jacques-Louis
LIONS, one can deduce a nonlinear interpolation theorem.

Proposition: If Ey C Ey, Fy C F1, and A is a possibly nonlinear operator from E; into F; which is globally
LIPSCHITZ continuous, i.e. ||A(u) — A(v)|]1 < Mi||lu—wv]||; for all u,v € Eq, and which maps Ej into Fy with
[|A(u)|lo < Mp||ul|o for all u € Ey, then for 0 < 6 < 1 and 1 < p < oo, A maps (Eg, E1)e,p into (Fo, F1)a,p,
and ||A(u)||(FO1F1)9,p < C||u||(EO7E1)9,p for all u € (EO’ E1)97P'

Proof: Defining v(t) = A(u(t)), one has ||[v(t + h) — v(t)||;, = [|A(u(t + h)) — A(u(t))||r, < Mi|ju(t+h) —
u(t)||E,, and dividing by |h| and letting h tend to O one deduces that ||[v'(¢)||F, < Mi||v/(t)||E, for ae. ¢ €
(0,00). Therefore, as for the linear case, one deduces that t*°v € LP(0, co; Fy) and t*1v' € LP* (0, c0; Fy).m

In 1970, Jacques-Louis LIONS had asked me to consider the case where A is only HOLDER continuous,
where his idea does not work, and I noticed that his result can be proved directly by the K-method in a way
which can be extended to the case of HOLDER continuous mappings as will be shown later, and this was also
noticed by Jaak PEETRE.

One just notices that for every decomposition a = ag + a; one has A(a) = by + b1 with by = A(ap) and
by = A(a) — A(ao) and |[bollo < Mpllao|lo and [|by||1 = [|A(a) — A(ao)||1 < Milla — aolls = Mi]|as][1, and

therefore K (t, A(a)) < MOK(tAJ/\I'{)l,a).

There were other interpolation theorems, for example by Jaak PEETRE or by Felix BROWDER! but
under the assumption that the mapping is LIPSCHITZ continuous from Ej to Fy and from F; to Fi. An
application considered by Jacques Louis LIONS was to interpolate the regularity of the solution of some
variational inequalities, as he had done for linear (elliptic or parabolic) equations with Enrico MAGENES,
but in his example the mapping considered is not LIPSCHITZ continuous from Fy to Fy, and I suppose that
it was the reason for his particular hypothesis.

The same idea of Jacques-Louis LIONS applies to a bilinear setting (and I have generalized it to a
nonlinear setting).

Proposition: Let B be bilinear from (Eq+ E) X (Fo+ Fi) into Gg + G1, satisfying the following conditions.
i) B is bilinear continuous from Ey x Fy into Gy, and ||B(eo, fo)lla, < Molleol|r, || fol|F, for all eg € Ey
and all fy € Fp.
ii) B is bilinear continuous from Ej x F; into G; and bilinear continuous from E; X Fy into G, and
IB(eo, fi)lle, < Milleol|&ollf1llr, for all eg € Eo and all f; € Fi, and ||B(es, fo)lle, < Malleil|s, ||fol|r, for

all e; € E; and all f, € Fp.

! Felix BROWDER, American mathematician, born in 1928. He works at RUTGERS University, New
Brunswick, NJ.
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Then if 0 < §,n<1withf+n<1and1l<p,q,r < oo with % = ]l) + %, B is bilinear continuous from
(Eo, E1)o,p X (Fo, F1)n,q into (Go, G1)o1n,r, and ||B(e, f)ll(co,G1)04n. < Cllell®o,B)0,, | fll (R0, 1), , for all
[AS (Eo,El)g’p and all f € (FUaFl)n,q-

Proof: Any e € (Eo, E1)s,, can be written as e = u(0) with t°||u(t)||g, € LP(0,00; %) and ¢°||u/(¢)||z, €
L?(0,00; %), and any f € (Fo, Fi)y,q can be written as f = v(0) with ¢"||v(t)||s, € L?(0,00; %) and
7| (t)| |, € L9(0,00; %). One defines w(t) = B(u(t),v(t)), and B(e, f) = w(0); one has t+7||w(t)||c, €
L7 (0,00; %), and because w'(t) = B(u(t),v'(t)) + B(u'(t), v(t)), one has t+7||w'(t)||g, € L™ (0, 00; %), and
therefore B(e, f) € (Go, G1)o+y,» With corresponding bounds.m

The same result was essentially obtained by O’NEIL, who derived precise bounds for the convolution
product analogous to those for the product®.

The product corresponds to the choice Ey = Fy = Gy = L*(Q) and E; = F; = G; = L'(Q) (with
My = M; = 1), and in this case the result states that if 1 < p,q,r < oo with % = % + % and 1 <a,b,c <
and 1 =141 then the product is continuous from L?%(£2) x L9®(Q2) into L™°(€2) (the limiting cases will be
discussed when studying the duals of interpolation spaces); as a particular case, the product is continuous
from LP(Q2) x L(Q) into L"(2), a simple consequence of HOLDER inequality.

The convolution product corresponds to the choice Ey = Fy = Gy = L! (RN )and Ey = F; = Gy =
L>*(RN) (with Mo = M; = 1), and in this case the result states that if 1 < p,q,s < oo with 1 = % + % -1
and 1 < a,b,c < ocoand £ =14 1 then the convolution product is continuous from LP*(RN) x L2?(RN)
into L™°(RN). As a particular case, the convolution product is continuous from LP(RY) x L4(RY) into
L*}(RY), an improvement from the YOUNG inequality; one cannot take a = p and b = g, which would give
% < ¢ < 1, but one may choose a > p and b > g such that ¢ = 1 (one can actually define interpolation spaces
with 0 < # <1 and 0 < p < oo, but for 0 < p < 1 they are only quasi-normed spaces).

There is another bilinear interpolation result, due to Jacques-Louis LIONS and Jaak PEETRE, with quite
different assumptions.

Proposition: Let B be bilinear from (E+ E) X (Fo+ Fi) into G + G1, satisfying the following conditions.

i) B is bilinear continuous from Ey x Fy into Gy, and ||B(eq, fo)|la, < Mol|eol|m, || fol| 7, for all eg € Ey
and all fy € Fp.

ii) B is bilinear continuous from E; x F; into G1, and ||B(ex, f1)||le, < Malle1||g,||f1||m, for all e € E4
and all f; € F;.

Then if 0 <6 <1and 1 < p,q,r < oo with 2 = ;—) + % — 1, B is bilinear continuous from (Ey, E1)gp X
(Fo, F1)o,q into (Go, G1)a,r, and ||B(e, )ll(Go,c1)0,. < C llell(Bo,B1)0,,||f1|(Fo,Fr)s,, for all € € (Eo, E1)p,p and
all f (S (Fo,F]_)o’q..

It should be noticed that there are situations where both theorems can be used but give different results,
in the second parameter (the first one is usually the same, compatible with scaling properties). For example,
applying this last bilinear theorem to the product with Ey = Fo = Go = L*(Q2), and E; = F; = L?(Q)
an G; = L*(Q), one only obtains that the product maps LP%(Q) x LP*(Q) into LP/?¢(Q) with 2 < p < oo
and 1 < a,b,c < co and % = % + % — 1, while the first bilinear theorem gives the result in L?/21(Q) (but it
has used a more general information, that the product of a function in L'(2) and a function in L>®(Q) is
defined).

A similar situation arises for the so called RIESZ-THORIN theorem, which states that if a linear mapping
is continous from LP0(Q) into L% (') and from LPt (Q) into L9 (Q)'), then for 0 < 6 < 1 it is continuous
from LP¢(Q) into L% (L), where = = - + % and L = 1-¢ + 7. RiEsz had only proved this result
under the additional assumption that pg < qe, and this condltlon was removed by THORIN. The K-method
follows RIESZ’s approach and implies that the mapping is continuous from LP¢?(Q) into L%-*(Q) for any
p € [1,00], but if one chooses p = pg, the space L%?? (') is only included in L% (') if ps < go. THORIN’s
method corresponds to the complex interpolation method, which on this example is more precise, but for
other questions has the disadvantage of having only one parameter.

! HARDY and LITTLEWOOD have shown that [)(f g)*ds < [; f*g* ds for all t > 0.
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Talking about variants of interpolation methods, it is useful to obtain LP({2) as an interpolation space
between L'(2) and L™ (), but with the exact L? norm.

Notation: For a € Ey + E1, one defines L*(s,a) as the infimum of ||ag||o among the decompositions
a = ag + a1 with a9 € Ey,a; € E; and ||a;][; < s.®

In relation to the GAGLIARDO (convex) set associated to a, i.e. the set of (zg,z1) € [0,00) x [0,00)
such that there exists a decomposition a = ag + a1 with ag € Ey,a1 € E; and ||aol|o < zo,||a1]|1 < 1, the
boundary of this set has the equation g = L*(z1,a).

Lemma: For Ey = L'(Q2) and E; = L°°(2), and 1 < p < oo one has fooop(p — 1)sP~2L*(s,a)ds =
Jq la(z)[? dz for every a € L'(Q2) 4+ L ().
Proof. The optimal decomposition consists in taking a;(z) = a(z) if |a(z)| < s and ai(z) = faa((;;)l if

la(z)| > s, so that L*(s,a) = fla(m)|>3(|a(w)| — 8);+ dz. Then, using FUBINI’s theorem, one has [;° p(p —

1)sP=2L*(5,0) ds = [;° p(p—1)5""2( [}y 0y 3 (10(@)| —5)+ dz) ds = [o (fo* p(p—1)57*(la(x)| —5) dz) ds =
Jo la(z)|P dem
If ® is convex of class C? on R and ®(0) = ®'(0) = 0 then one has [;° ®"(s)L*(s,a)ds = fn |a(:c)|) dz

for every a € L*(2) + L>(Q2) (one uses the TAYLOR formula with remainder, ®(h) = (0) + h—i—fo (h—
t)®"(t)dt). If @ is convex with ®(0) = ®'(0) = 0 then ®” is a nonnegative measure and one must use a
STIELTJES! integral. Therefore, the same approach can deal with ORLICZ? spaces.

Lemma: If A is a linear mapping from L!(Q) + L*(Q) into L'(Q’) + L*°(£)') which is continuous from
L'(Q) into L*(Q) with norm M; and which is continuous from L*(f2) into L*°(€') with norm M, then
for 1 < p < oo it is continuous from LP(2) into LP (') with norm < Mll/pMéc{p’.

Proof. For every decomposition a = ag + a; with ||a;||1 < s one has a decomposition Aa = Aag + Aay
with ||Aal|l; € Mys and as ||[Aallo < Mjillaollo one deduces that L*(Mys,Aa) < M;L*(s,a). Then
[y sP2L (s, Aa)ds < [ sP~ 2MlL*( i—,a)ds = MiME™ [(¥ 0P~2L*(0,a) do, ie. [, |Aa(z)[Pde <
MyME! [ |a(z)|P dz.m

In order to describe some technical improvements concerning imbedding theorems of spaces of SOBOLEV
type into LORENTZ spaces, it is useful to derive equivalent ways to check that a function belongs to a
LORENTZ space LP?(Q), with 1 < p < 0o and 1 < ¢ < c0.

The definition that has been used was that f € L”%(2) means that ¢ /7' K(t, f) € L9 (0, 00; ) and
as K(t, f) can be expressed in terms of the nonincreasing rearrangement f* of f by K(t, f) = fo
f € LP49(Q) is equivalent to ¢~ 1/7’ (f f*(s)ds) € L1(0,00; &).

Because t f*(t) < [ f*(s)ds, f € L»9(Q) implies t'/7f*(t) € L(0,00; %), or tW/P-/Dfx(t) €
L%(0,0), which was the definition used by LORENTZ. It is indeed equivalent if 1 < p < co by HARDY’s
inequality, but this definition can also be used for p = 1.

The nonincreasing rearrangement is defined on (0,meas(f2)), and one extends it by 0 in order to have
it defined on (0,00). For n € Z, one chooses a, € [f*(e]}), f*(e™)], so that one has meas{z, |f(z)| > an} <
e" < meas{z,|f(z)| > a,} for every n € Z. Then one has f € LP%(Q) if and only if €"/?a,, € 19(Z).
Indeed for e” < t < e™*! one has f*(e™*!) < f*(t) < f*(e"), and therefore a,1 < f*(t) < an; this implies
a ||e"/pan||lq(z) < ||t1/1’f*(t)||Lq(0,oo;dt/t) <gB ||e”/pan||lq(z), for two positive constants c, 3.

! Thomas Jan STIELTJES, Dutch-born mathematician, 1856-1894. He worked in Toulouse, France.
2 Wiladyslaw ORLICZ, Polish mathematician, 1903-1990. He worked at the Polish Academy of Sciences,
Poznan.
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If for every A > 0 one has meas{z,|f(z)| > A\} < oo, then f € LP4(Q) if and only if €*/?(a, — @nt1) €
19(Z). The added condition is equivalent to lim,_,, a, = 0. Let b, = a, —apn41, so that a, = b, +bpy1+.- .,
and e"a,, = e"b, + e_le"+1bn+1 + ..., so that e™a, is obtained from e™b,, by a convolution with ¢,, defined
by ¢, =0 for n > 0 and ¢, = e™ for n < 0, and then an application of YOUNG’s inequality gives the result.
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One can obtain a nonoptimal imdedding theorem W?(RN) C L4(R™N) by decomposing u = (u — u
Pe) + u* pe, where p. is a special smoothing sequence. Using ||mhu — u||p < |h|||grad(u)||p, and v — ux p. =
J(w = myu)pe(y) dy ome has [l — ux pell, < [lyllpc(y)| dyllgrad(u)ll, = Cellgrad(u)|lp; one also has
lu* pelloo < |[ullpllpellpr < Cllullpe™/?". This means that using Eo = LP(RYN) and E; = L>®(RY),
one has K(t,u) < Ce+ Cte N/® for all € > 0, and taking the best ¢ gives K (t,u) < Ct?'/(N+7) je
u € (Eo, E1)p,00 = L9°°(RY), with § > 0 and therefore g > p and choosing any g € (p,gp) one has shown
that there exists ¢ > p such that ||u||, < A||u|l, + B||grad(u)||, for all u € WP(RN). The precise value of
g obtained is not important, as long as ¢ > p, and from this nonoptimal imbedding theorem, the best known
imbeddings will be derived.

The first step is the usual scaling argument; one should not add ||u||, and ||grad(u)||, which are not
measured in the same unit, and one applies the inequality to uy defined by wuy(z) = u(})

One obtains |\|N/9||u|l; < A|NY/P||ull, + B|A®/P) 71| grad(u)||, for all u € W P(RN). One chooses
the best A, and one deduces that there exists 6 € (0,1] such that |[ull; < C||ul|}~?||grad(u)||? for all
u € WHP(RY) (in the case 1 < p < N one finds that one must have ¢ < p* = NN—_’;, or a contradiction would
be derived by letting A tend to 0). The new inequality is now invariant by scaling, which means that 6 is
such that & = (1-0)X +6(F —1) =X —6,ie 1 =120+ % with L =1 — & (withp* =ocoforp=N

q p p* p
and p* < 0 for p > N).

The second step is to apply the inequality to a sequence of function ¢, (u), but it is important to choose
a sequence which is adapted to u, and it uses the levels a,, introduced previously.

One defines ¢, by ¢,(0) = 0 and ¢'(v) = 11is a, < |v| < ap—1 and ¢’'(v) = 0 otherwise. One has
||grad(gon(u)) || = Yn € IP(Z). For any 7 < oo one has [y |¢n(u)|" dz < |ap—an_1|"meas{z, |u(z)| > an} <
|lan —an_1|"€™ and [y [on(u)|” dz > |an — an_1|"meas{z, [u(z)| > an_1} > |an —an_1]"€" . One deduces
that |ap — ap_1]e1/2 < C(lan — an_1|e"/”)1_9'yz, and therefore |a, — a,_1|?e™/D—=(n(1=0)/p) < Cel/a48,

120 — 9 one deduces that |a, —an_1]e™/?” < C1/%¢'/?4~,, and therefore |a, —an_1|e™?" €

o1
n mg — — = -
and us 87 > >

I7(2).

In the case 1 < p < N one has p* = + &

N < 00, and one has shown that u € W?(R") implies
u € LP"?(RYN), the improvement by Jaak PEETRE of the original result of Sergei SOBOLEV.

In the case p = N one has p* = 0 and therefore |a,, — a,, 1| € IN(Z). Let b, = a, — any1 > 0, then
as n tends to —oo one has a, = b, + byy1 + ...+ b1 + G, and an application of HOLDER inequality
gives |an| < |am| + ([ba]N + ... + |bm_1/¥)/N|n — m|YN', and therefore for every ¢ > 0 one can choose m
such that for n < m one has |a,| < €|n — m|'/N' + |an|, i.e. for every € > 0 there exists C(e) such that
lan|N' < €|n| 4 C(e) for all n < 0.

For k > 0 one chooses ¢ < %, and one computes the integral of e® [ on the set where |u(z)| > ao; on
the set where a1 < |u(z)| < an, which has a measure < e®*1, one has |u(z)| < a, and therefore & |u|V" <

klan|N' < ke|n| 4+ £ C(e) for all n < 0, and therefore flu(Z)IZao erlul™ gz < Zg:m enereInltrCE) < oo

Therefore e*1“I" € LL (RY), which is the improvement by Neil TRUDINGER of a result of Fritz JOHN and
Louis NIRENBERG concerning BMO, which improved the result of Sergei SOBOLEV for the limiting case
p=N.

For p > N one has p* < 0 and therefore from |a,, — a,_1|e™/?" € IP(Z), one deduces that Zngoo lan —
an_1| < 0o, and therefore that |a,| < M for all n € Z. Having proved that W1P(RY) C L*°(R"), one must
have ||ul|oo < C|[u[}~?||grad(u)||?, and % — £ =0,ie 0= %.

One applies then the result to v = 7,u — u, for which one has ||v||, < |h|||grad(u)||, and ||grad(v)||, <
2||grad(u)||p, and one obtains the estimate ||Thu — u||oo < C |h|*~V/P)||grad(u)||,, i-e. the fonctions in
W1P(RN) are HOLDER continuous with exponent oo = 1 — %, as Sergei SOBOLEV had proved.
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The original method of proof of Sergei SOBOLEV consisted in writing u = ), 2% *% for an elementary
J

j Ox;
solution F of A, and it is not adapted to the case where the derivatives are in diﬁe;’ent spaces.

The different proof of Emilio GAGLIRDO and of Louis NIRENBERG can be used for the case where

€ LPi(RN) for j =1,..., N, and this was done by TROISI and by Alois KUFNER.

The case where the derlvatives are in the same LORENTZ space can be proved by using the Theory of
Interpolation, as was done by Jaak PEETRE, but the limiting case Where € LN?(RN)forj =1,...,N was
treated by Haim BREZIS and Stephen WAINGER by analyzing a forrnula of O’NEIL about the nomncreasing
rearrangement of a convolution product.

As far as I know, these classical methods do not permit to treat the case where the derivatives are
in different LORENTZ spaces; of course, this question is quite academic, but serves as training ground for
situations which often occur where one has different informations in different directions, for example because
some coordinates represent space and another one represents time.

Bz

First, it is useful to observe that SOBOLEV imbedding theorem for p = 1 is essentially the isoperimetric
inequality. The classical isoperimetric inequality says that among measurable sets A of RN with a given
volume, the (N — 1)-dimensional measure of the boundary § A is minimum when A is a sphere; equivalently,
for a given measure of the boundary, the volume is maximum for a sphere.

Analytically it means that meas(A) < Co(meas(d A))N/ (N=1) "and it tells what the best constant Co
is, while SOBOLEV imbedding theorem for W!(RN) gives [y [u' dz < C1|lgrad(w)||N ™Y, but does
not insist in identifying what the best constant C] is.

The relation between the two inequalities is that one can apply the last inequality to u = x4, the
characteristic function of A, which is not in W11 (R¥) but has its partial derivatives % which are RADON
measures, and one can apply the inequality to x4 * p. and then let £ tend to 0; in this way one learns that
Co < C;. Conversely, knowing the isoperimetric inequality, one can approach a function u by a sum of
characteristic functions, using A, = {z,ne < u(z) < (n+1)e} and deduce SOBOLEV imbedding theorem, so
that C; < Cp and the two inequalities are essentially the same. However, the proof of the last part involves
the technical study of functions of bounded variation (denoted BV), which is clasical in one dimension, but
owes to the work of Ennio DE GIORGI!, FEDERER? and Wendell FLEMING? for the development of the
N-dimensional case.

Starting from SOBOLEV imbedding theorem W1(RN) C L'"(RY), one can easily derive all the results
already obtained. Using the functions ¢,, adapted to u, one writes ||, (u)||1+ < Col|¢), (w)grad(u)||1, and by
HOLDER inequality one has ||¢! (u)grad(u)||: < ||¢,(u)grad(u)||,e™?", and one deduces the same inequality
than before, |an_1 — a,|e™/?" € IP(Z).

The case of derivatives in (different) LORENTZ spaces will be obtained by using a multiplicative variant.

Lemma: The additive version ||u[[1+ < A}, I a“ ||1 for all u € W1 (RY) is equivalent to the multiplicative

version ||ul|1- < N A ([]; ||6“ |, )1/ for all u € WH1(RN).
Proof: One rescales with a dlfferent scaling in different directions, i.e. one applies the additive version to v de-
fined by v(z1,...,zN) = u(f‘—i, e f‘—x), and one obtains (A1 ... An)Y ||ull1s < AXi... AN P )‘%Hg—;‘]Hl

! Ennio DE GIORGI, Italian mathematician, 1928-1996. He received the WOLF prize in 1990. He worked
at Scuola Normale Superiore, Pisa
2 Herbert G. FEDERER, American mathematician, born in 1920. He works at BROWN University, Provi-
dence, RI.
Nicholas BROWN Jr., American merchant, 1769-1841.
3 Wendell H. FLEMING, American mathematician, born in 1928. He works at BROWN University, Provi-
dence, RI.
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Then one notices that if A\; ... Ay = g > 0 is given then the minimum of ) j i—ﬁ is attained when A\; = B a;
J

for all j for some LAGRANGE multiplier 3, and the constraint gives 3V a; ...an = p, so that the minimum is

%(al ...an)'/N; one applies this remark to the case o = ||th- | |1 and one finds the multiplicative version,

as the powers of u are identical on both sides of the inequality (because the inequality is already invariant
when one rescales all the coordinates in the same way).

The multiplicative version implies the additive version by the geometric-arithmetic inequality, i.e.
(al...aN)l/N < w for all positive numbers a1,...,ay; putting a; = e* this is just the convex-
ity inequality for the exponential function.

Proposition: Let u satisfy g—; € LPi9 (RN) where 1 < pj < oo and 1 < ¢; < oo for j = 1,...,N. Let

Pefs and p;;; be defined by I%H = % EJ. pij and P:lff = ﬁ — % similarly, gess and g, are defined by
1 _ 1 1 1 _ 1 1 . e
2es; N Z]’ 2’ and Ty T W Then one has |a, 1 — an|e”/p 15 € 1951 (7).

Proof. Let f; = % for j = 1,...,N. One applies the multiplicative version to ¢,(u), and one has to
J
estimate ||¢} (u)fj|l1. A classical result of HARDY and LITTLEWOOD states that for all f € L'(Q) +

L>*(f) and all measurable subsets w C Q one has [ |f(z)|dx < fomeas(w) f*(s)ds. As the measure of
the points where ¢} (u) # 0 is at most e”, one deduces that ||¢) (u)f;|[i < K(e", f;) for j = 1,...,N.

Because e "% K(e", f;) € 1%(Z) with 6; = i for j = 1,...,N, one deduces by HOLDER inequality that
J
e ™Pers || ()| |1+ < NA(Hj e i K (em, f]-))l/N € 19:57(Z), and this gives the desired inequality.®

If pess < N then it means u € LPess9es7 (RN).

If pesf = N and gess = 1, which means that g¢; = 1 for j = 1,..., N, then one has |a,_1 — a,| € I}(Z)
and therefore one deduces a bound for a,, i.e. u € L®(RY); using the density of C>*(R") in LPi:}(RN),
one deduces that u € Co(RY).

If pesf = N and 1 < geff < 00, then for every £ > 0 one has erlul®el? ¢ Li (RM).

If pegf = N and gefs = 0o, then one deduces that |a,| < a|n| + 3 and therefore there exists g9 > 0
such that eol*l € L} (R™). This is the case for example when all the derivatives belong to L™>°(R"Y), and
because log(|z|) is such a function, it is not always true that e*!*l € L} (RN) for all k > 0. The space of
functions considered are in BMO, and Fritz JOHN and Louis NIRENBERG have shown the stronger result
that for every function in BMO there exists o > 0 such that e/l € L} (RN).

If pegs > N then one has u € L™ (RN). Of course, one can deduce that u is continuous, but because
there are different derivatives in different directions, there is no automatic statement that v must be HOLDER

continuous.

Having different informations on derivatives in different directions is usual for parabolic equations like
the heat equation. For example, let {2 be an open set of RV, given ug € L?(2), one can show that there exists
a unique solution u of ‘g—;‘ —Au=0inQx (0,T) satisfying the initial condition u(z,0) = ug(z) in Q and the
homogeneous DIRICHLET boundary condition you = 0 on 89 x (0,T), in the sense that u € C ([0, T]; L*(Q2)),
u € L*(0,T; H}(Q)) and & € L2(0,T; H~1(Q)).

If ug € Hy(R) then the solution also satisfies u € C°([0,T]; H}(R)), Aw, 24 € L*(0,T;L*(Q)) =
L? (Q x (0, T)); if the boundary is of class C* or if the open set  is convex (or if an inequality holds for the
total curvature of the boundary), then one has u € L*(0, T; H*()).

If uy belongs to an interpolation space between H3 () and L?(f2) then one has intermediate results,
but this requires enough smoothness for the boundary.

As an example, consider a function u(z,t) defined on RN x R and satisfying u, 2%, Au € L2(RN*1)
(this implies that % € L2(RN*Y) for j = 1,..., N by using FOURIER transform). Denoting (£, 7) the dual
variables, the information is equivalent to Fu, T Fu, |£|2Fu € L2(RN*!) (and therefore ¢;Fu € L?(RN*1)

for j=1,...,N).
Because (1+|7|+[£|?)Fu € L*(RN™?), if one shows that gz € LP°°(RV?) for some p € (2,00),
one deduces that Fu € L92(RN*+1) with % =1+ % and because 1 < ¢ < 2 and F maps L'(RN*!) into

L®°(RN*1) and L?(RN+!) into itself, one finds that u € L% 2(RN+1),
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One has m € L*®°(RN*!), and it is the behaviour at co that is interesting for obtaining the
smallest value of p, and therefore one checks for what value of p one has W € LP*>°(RN*1) and one
obtains the same information for the smaller function m One uses the homogeneity properties of
the function, and for A > 0 one computes meas{(¢, ), W > A}; by making the change of coordinates
T=X17"and £ = A 1/2¢ it is C A1 N/2) with C = meas{(¢,7), W > 1}, and this corresponds to

p=1+% = ¥E2 which gives ¢ = z(li,v_"_"g) and ¢’ = % if N > 3. For N = 2 one finds that u € L"(R3)

for all r < co.
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Using FOURIER transform one can obtain an imbedding result for spaces H*(R") into LORENTZ spaces.

Proposition: For s > Y one has H*(RN) c FL*(RM) C CO(RN).
For 0 < s < & one has H*(RM) C L”(s) 2(RN) with p(s) =1-2.
Proof. One has .7-'u(§) = (1+|¢°)Fu(§) 1+|€|s, and as u € HS(RN) means (1 + |[£]*)Fu(¢) € L2(RYN), and

one must check in which LORENTZ space the function

1 i
T
For s > & one has 1+|€|‘“ € L*(RN) and therefore+]|-§1|1 € L'(RY), and one uses the fact that F or F
map L'(RY) into Co(RY).

For 0 < s < & one has ﬁ < IEI*’ € LN/#>(RN), and therefore Fu € L*(*)?(RN) with a(s) T+
Because F~! = F maps L'(RY) into L*®(RY) and L2(RN ) 1nt0 itself, it maps (L'(R™), L*(RY )) into
(L°°(RN) L2(RN))9 ,; the first space is LPO)2(RN) if (9) = 1=¢ + 2 and the last space is L) (RN)
with q(9) 1648 =1 W’ so that ¢(6) = p(8)'. Therefore .’Fu € L*():2(RN) implies u € L(*):2(RN)
with b(s) = a(s) Le. 555 =3 — x ™

For SOBOLEV spaces corresponding to p # 2, one cannot use FOURIER transform, and proofs must be
obtained in a different way.

Definition: For 1 < p < oo and 0 < s < 1, the SOBOLEV space W*P(RY) is defined as W*?(RY) =
(WhP(RN), L”(RN))1 opr

For 1 < p,q < 00, and 0 < s < 1 one defines the BESOV space By?(RY) = (W'?(R"N), L?(RN)), o

If k is a positive integer and k < s < k+ 1, one may define the SOBOLEV space W*P(RY) or the BESOV
space BSP(RN) in at least two ways; one way is that u € W*P(R") and for all multi-indices o of length
la| = k one has D*u € W*=*?(RN) or Bi=%P(RN); another way is to define it as (W™P(R"), LP(RN)), o
with ¢ = p or not, with an integer m > k + 1, and with (1 — 8)m = s. Of course, there are a few technical
questions to check in order to show that these two definitions coincide.

Before using scaling arguments for W™P(RY) it is useful to remark that an equivalent norm is ||u||, +
2 jaj=m |[P%ul|p, ie. for 0 < |B] < m one can bound ||[DPul|, in terms of ||u||, and all the norms || D%u||, for
the multi-indices of length exactly equal to m. One may start in one dimension, noticing that (p H)' = do+,
where H is the HEAVISIDE function, ¢ € C°(R) is equal to 1 near 0 and therefore ¢ € C°(R); one deduces
that (¢ H) xu” = u’' 4+ ¢ x u, from which one deduces that ||u'||, < ||¢ H||1||uw"||, + ||'¢v’||1 ||u||p Slmllarly,
if 0 < k < m, one replaces the HEAVISIDE function by the function K defined by K(t) = (m k)l, H(t)
for all ¢, so that (¢ K)(™~%) = §, + x with x € C°(R), and deriving k times and taking the convolution
with u one finds that |[u®||, < |l¢ K||1]|uw™]|, + [|x®||1 ||u||,- In order to bound ||D?ul|,, one denotes
v =1(0,82,-...,8n), a = (m+ 31 —|8],B2,-..,0n) and v = D7y, so that for almost all zs,...,zN one can
use the one dimensional result in order to derive a bound for the norm of DPu = D?'v in terms of v and
Dy = D;n_lﬂ |v; then one takes the power p and one integrates in x,...,zN; one finishes by an induction
argument on N.

By using a scaling argument one deduces that ||DPull, < C|lull;™ (3 4=m ||D°‘u||p)0 with 6 = 181,

This implies that if 0 < k < m one has (W™P(RN), LP(RN))(m,k)/m , C WEP(RN).

For using the reiteration theorem of Jacques-Louis LIONS and Jaak PEETRE, one also needs to check
that W*?(RN) c (W™P(RN), LP(RN)) (m_k)/m,co- For doing this, one tries the usual decomposition u =
pe*u+(u— pexu), where p, is a special smoothing sequence; for |a| = m one writes D*(p.xu) = DPp.xDVu
with o = 3+ and |3] = m—k and |y| =k, so that ||pc*u||pm.o(rvy < Ce¥~™; one has u(x) — (pe *u)(z) =
Jrw pe(y) (u(x) —u(z — y)) dy, and if k = 1 one just uses the fact that ||u — ryul, < C|y|||grad(u)||,, but if
k > 1 one must be more careful, and besides the condition || gy P1(y) dy = 1 one also imposes the conditions

71



S~ ¥7p1(y) dy = 0 for all multi-indices y with 1 < |y| € k—1. One uses the TAYLOR expansion with
) -1 (k)

integral remainder f(1) = f(0) + f/(0) + ... (k 11)(? fo % dt for the function f defined by

f(t) = u(z —ty), using the fact that for 1 < |'y| < k—1one has [pn pe(y)Du(z)y” dy = 0, and one deduces

that ||u — pe * ul|, < Ce*, and as this decomposition is valid for every ¢ > 0 it proves the assertion.

Repeated applications of SOBOLEV’s imbedding theorem for W1:¢(RY) show that if p > % one has

WmP(RN) Cc L*(RYN), and a scaling argument gives then ||u||oo < C’||u||11,’0(2|a|=m ||D°‘u||p)0 with 6 =
=5, and this means that (W™?(RN),LP(RN)),, C L*(RY) with 1 — ¢ = ;JT. From this, using the
reiteration theorem one deduces that for 0 < s < I one has W*?(RN) c LP(*)9(RN) and B;?(RN) C

(3)7 N 1 _ S
Lr*)9(RY) with p(s) N

Another problem where an interpolation space with second parameter 1 is useful is the question of traces
of H* spaces. For s > 1 functions in H*(R") have a trace on RV, which belongs to H*~(*/2)(RN-1),
and one can reiterate this argument, so that if s > % functions in H*(RY) have a trace on RN~% which
belongs to H*~(¥/2)(RN—*) and the continuity of functions in H*(R") for s > % appears then as a natural
question related to taking traces on subspaces. Although functions in H*/2(RY) do not have traces on RN !
(actually functions in C°(RY) which vanish near R¥ ! are dense in H/2(R")), the slightly smaller space
(H'(RM),L*(R™)), /2,1 do have traces on RN~1 and the space of traces is exactly L2(R™ !). That traces

exist and belong to L2(RV—1) follows immediately from the standard estimate ||you|l2 < C ||ul|5/?||0nul/?,
but I had not heard about this remark before a talk by Shmuel AGMON in 1975, where he discussed some joint
work! with Lars HORMANDER where they had proved surjectivity by an argument of Functional Analysis,
working explicitly on the transposed operator. One can construct directly a lifting by adapting an argument?
which is related to the theorem of Emilio GAGLIARDO that every function in L'(RN~1) is the trace of a
function in W1(RY), and it is useful to describe that result first.

The idea is shown on the case of R?, and given a function f € L'(R) one wants to construct u € W' (R?)
whose trace on the = axis is f. One uses a standard approximation argument used in Numerical Analysis,
based on continuous piecewise affine functions.

For a (positive) mesh size h one considers the space Ej, of functions in L'(R) which are affine on each
interval (k h, (k+1)h) for k € Z, and continuous at the nodes k h, k € Z; because there exists 0 < o < 3 such
that a(|g(0)|+g(1)]) < fol lg(z)|dz < B(|g(0)| + |g(1)]) for all affine functions on (0,1), one deduces that for
g € Vi one has 2ah Y, lg(kh)| <|lg|l1 = [ |9(z)|dz < 28R, lg(kh)|; the important observation is
that V, C W'(R) and for g € V;, one has ||g/||l1 = Y4z l9((k+1)h) —g(kh)| < 234z l9(k h)] < Fyllglla-

A function g € Vj, is lifted to a function in W'!(R?) by the explicit formula G(w y) = g(z)e¥I/P
and one checks immediately that the trace of G is g and that ||G|ly = 2h||g|l1, ||5E ||1 = 2||g/|1 and
|| ||1 =2h||¢'||l1 < 2||g||:. Once one knows that the union of all V}, for k > 0 is dense one has a way to lift
fe LZ(R) by writing it as a series Y .- ; gn, choosing 0 < 6 < 1 and choosing g1 such that ||f—g1]|1 < 8]|f]]1,
then g» such that ||(f — g1) — gall1 < 01f — g1ll1 < 6?[||l1, and so on, so that 3.7, [lgnll] < 1Z4lI£lls-

The density is proved by approximating functions in C.(R), which is a dense subspace of L!(R). For
¢ € C.(R) one constructs the interpolated® function Il which is the function of V}, such that II,p(kh) =
¢(kh) for all k € Z; one checks easily that [IInp(z) — ¢(z)| < w(h) for all z, where w is the modulus

1 They were working on questions of scattering and they needed a space whose FOURIER transform has
traces on spheres, with traces belonging to L?; they introduced then the FOURIER transform of the space
described here.

2 When I was a student, I had tried to read Emilio GAGLIARDO’s article, but not knowing much Italian
at the time I had trouble understanding what he was doing with all these cubes which appeared in his proof.
Many years after, I constructed my own proof, but although I have not tried to check if my understanding
of Italian is better now and if I can understand his proof, I think that my argument must be identical to his
original idea.

3 Here we encounter the other meaning of the word interpolation, going back to LAGRANGE, a classical
tool in Numerical Analysis.
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of uniform continuity of ¢, so that when h, — 0, the sequence II;_ ¢ converges uniformly to ¢ and as
support(IlLp) C support(p) + [—h, +h] one also has ||, ¢ — ¢||1 — 0.

Jaak PEETRE has shown that there does not exist a linear continuous lifting from L!(R) into Wh!(R)
(I have never looked for the proof).
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Again the idea is shown on the case of R?, and given a function f € L?(R) one wants to construct
u € (H'(R?), [*(R?)), /o1 whose trace on the z axis is f. For a (positive) mesh size h one considers the space
E}, of functions in L?(R) which are affine on each interval (k h, (k+1)h) for k € Z, and continuous at the nodes
kh,k € Z; because there exists 0 < a < 8 such that a(|g(0)[2+|g(1)[2)V/2 < (/' |g(z)[? dz) "> < B(|g(0)|* +
|g(1)|?)*/2 for all affine functions on (0, 1), one deduces that for g € V}, one has v2a vh(Y ;o |9(k R)|?) V2 <
lgllz = (J l9(@)2 dz)"* < V2B VA(E ke l9(k B)[2)"/?; the important observation is that Vi, C H(R) and
for g € Vi one has [|g'|lx = 2= (Seez l9((k + DR) — g(kB))? < 2 (Shez lakR)2) " < Ellglla.

A function g € Vj, is lifted to a function in H'(R?) by the explicit formula G(z,y) = g(z)e I¥!/?,
and one checks immediately that the trace of G is g and that ||G|l2 = vh||g||2, ||%—§||2 = ﬁ“g”z and

||%||2 = \/E||gl||2 S %Hg”z One has then ||G||L2(R2) S \/ﬁ||g||2 and ||G||H1(R2) S %Hg”z forO0< h < 1,
Nijay = C||G||g12(R2)||G||2/22(R2) < C'||g||2- Then one uses the fact that the
union of all V;, for h > 0 is dense, so that any f € L?>(R) can be written as a series > . | g,, with
> onet lgnll2l < CI£]l2-

Although functions in H'/ 2(R) are not continuous, as they are not even bounded, piecewise smooth
functions which are discontinuous at a point do not belong to H'/2(R). For example, let ¢ € C°(R) with
¢ = 1 near 0 and let u = ¢ H where H is the HEAVISIDE function; then u' = § + 9 with ¢ € C°(R) and
therefore 2i m EFu(€) = 1+ Fy(€) so that |Fu| behaves like #IEI near oo, and therefore (1 + |¢|Y/2)|Fu| ¢

L*(R), so u ¢ H/2(R).

and therefore ||G||(H1(R2),L2(R2

As it seems that functions in H'/ 2(R) cannot have discontinuities at a point, one expects some kind of
continuity, but of a different nature as the value at a point does not make sense. The following ideas have
been introduced by Jacques-Louis LIONS and Enrico MAGENES, and some related work has been done by
Pierre GRISVARD!.

Lemma: If u € H'/2(R) then one has % € L*(R).

A
Proof By HARDY’s inequality one has ||W||2 < C||«/||2 for v € H'(R), and similarly one has
||W||2 < C||¢/||2, and therefore ||W||2 < 2C|[¢'||2 for all w € H*(R). One considers the
mapping u — u — % which maps H'(R) into L? for the measure f;% and L?(R) into L? for the measure dz,

and therefore it maps H'/2(R) = (H*(R),L*(R))

L2 for the measure |d?z|.l

1/2,2 into the corresponding interpolation space, which is

Similarly, Jacques-Louis LIONS and Enrico MAGENES noticed that when considering the interpola-
tion spaces (Hj (), L?(R2)), , for a bounded open set with a LIPSCHITZ continuous boundary, it does give
Hy~%(9) for @ # 1 (and one has H§(Q) = H*(Q) for 0 < s < 1), but for § = 1 it gives a new space, which
they denoted Hé({z (Q).

1/2
Lemma: If u € Hy)(0,00) = (H3(0,00), L2(0,0)), ,, ,, then % € L*(0,00).
Proof: As u € Hj(0,00) implies % € L?(0,00) by HARDY’s inequality, one has (Hj (0, 00), L?(0, c0))

(L2 (0,00, %),Lz(o, OO,d.’L')) = L2 (0, 00; df).

1/2,2 C

1/2,2

A related result is that if u € HZ(Q) the extension % of u by 0 outside Q belongs to H'(RY) and
similarly if u € H§(2) (closure of C°(Q) in H*(Q2)) then & € H*(RN) for 0 < s < 1 if s # 1, but not

for s = 1; this is easy seen as 1 € H3/2(Q) = H'/%(Q) and the extension by 0 is piecewise smooth and

! Pierre GRISVARD, French mathematician, -1994. He worked in Nice.
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discontinuous and therefore is not in H'/2(RY). Actually, H&f () can be characterized either as the space
of functions in H'/2(Q) such that —%“— € L?(), where d(z) is the distance of z to the boundary <, or as

V(=)

the space of functions u € H/2(Q) such that 4 € HY/2(RN).
A related difficulty is that any partial derivative 52~ maps H'(Q) into L?(Q2) and L?() into H~1(f2),

and it does map H*(f2) into H*(Q) = (HS(Q))I for 0 < s <1 and s #  but not for s = 1, because in this
case it maps H/2(Q) into the dual of Hy}> ().

This technical difficulty appears when one solves boundary value problems like —A v = f in Q with
the boundary 02 made of two disjoint pieces, I'p where a DIRICHLET condition is imposed and I'y where
a NEUMANN condition is imposed; in the case where the parts I'p and I'y have a common boundary, the
precise pairs of data allowed is a little technical to characterize. If all the boundary is I'y then the precise
space is H~1/2(99), the dual of H'/2(8Q) (traces of functions of H*(Q2)), but the important point is that one
cannot restrict an element of H~1/2(99) to a part I'y whose boundary is smooth enough, because restriction
is the transposed of the operator of extension by 0, and this extension operation~does not act on H/ ('y)
if the (N-1)-dimensional HAUSDORFF measure of I'p is positive.

These technical difficulties may seem quite academic, but some modelizations in Continuum Mechanics
lead to using operations which are not defined in an obvious way, and it is important to understand if one
should reject some laws as being unphysical or if one should try to overcome the mathematical difficulty that
they represent. One such example is the static law of friction due to COULOMB?, which involves a sign of a
normal force at the boundary and an inequality on the strength of a tangential force at the boundary; if one
uses Linearized Elasticity, the natural information coming from the finiteness of the stored elastic energy
gives the various forces as normal traces of functions in H(div;Q), i.e. elements in H~'/2(9Q); unfortunately,
one cannot define the absolute value of an arbitrary element in H~'/2(91); however, one can define what a
nonnegative element is by stating that it is a nonnegative measure, so the question is to find a way to express
COULOMB’s law which makes sense from a mathematical point of view, although there are indications that
COULOMB’s law is not exactly what real materials follow (as dynamics play a role).

2 Charles Augustin DE COULOMB, French mathematician, 1736-1806.
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One has proved that for all integers 0 < k < m and all 1 < p < co one has (W™P?(RN), LP(R")),, C
Wwkp(RN) C (W’"’f"(RN),Llf’(RN))@,oo with m(1 — ) = k. For s > 0 which is not an integer one defines
the SOBOLEV space W*P(RN) as (Wm*”(RN),L”(RN))n’p
from the reiteration theorem of Jacques-Louis LIONS and Jaak PEETRE that one also has W*?(RY) =
(Wmp(RN), Wm2P(RN)) ¢ p With equivalent norms if my,my are nonnegative integers such that s = 1-
¢)m1+{mg for some ¢ € (0,1) (i.e. either m; > s > mg or m; < s < my), and this is still true even if m;, msy
are nonnegative reals numbers which are not necessarily integers, always under the condition ¢ € (0,1), of

course.

Similarly, if for s > 0 and 1 < g < co one defines the BESOV space By?(RY) as (W™P(RN), L”(RN))n .
with m > s and (1 — n)m = s, one deduces that for nonnegative reals s;, sy such that s = (1 — ¢)s; + ( s2
with ¢ € (0,1), one has By (RN) = (Wr(RN), W7 (RY))_ and By»(RY) = (Bypr(RN), B (RV)),
with equivalent norms, for all 1 < ¢y, g2 < .

If 5 is not an integer, one has W*?(R"N) = B5P(RN).

Although one has H'(RY) = (H*(R"),L*(R")) 12,27
Wb (RN) which is the space of LIPSCHITZ continuous functions (often denoted Lip(RY)), is a proper
subspace of (W>(RN), L>(RN)), /2,00> Which coincides with a space introduced by Antoni ZYGMUND
and denoted A;(RY), which is the space of functions u € L®(RY) for which there exists C such that
|u(z — h) +u(z + h) — 2u(z)| < C|h| for all z,h € RN, or equivalently ||Thu + 7_pu — 2ul|eo < C|h| for all
h € RN,

with m > s and (1 — n)m = s, and one deduces

the case for p = oo is different and the space

One deduces also that if s > k where k is a positive integer, then for every multi-index o with |a| = k
the derivation D* is linear continuous from W*P(R") into W*~|*l?(RN) and also from BZ?(R") into
B;"""” (RN), if 1 < p,q < oo. This follows immediately from the fact that for any integer m > k
the derivation D* is linear continuous from W™P(RYN) into W™ |¢:?(RN), and after choosing m;,ms
such that £ < m; < s < mg and computed ¢ € (0,1) such that s = (1 — {)my + {m2, one ap-
plies the interpolation property, and D maps continuously (W™ ?(RY), W™=*(RY)). = ByP(RY) into

(Wml*lalyp(RN), szilal’p(RN))C = Bg_lal’p(RN).

For Q an open subset of RY, one may define W*?(Q2) for all positive real s which are not integers
in at least two different ways; the first one as the space of restrictions of functions from W*?(RY), with
the quotient norm ||u||ws.»(q) = infy|g—u ||U||ws.»(r~), which will be denoted X *? for the discussion; the
second one as an interpolation space (W™ (1), W™2:P(Q2)) ¢ p With m1,m; nonnegative integers such that
s =(1—¢)my + {ms with 0 < ¢ < 1, which will be denoted Y**? for the discussion (of course, one can also
give two definitions for defining the spaces By?(Q2)).

Because the restriction to ( is linear continuous from W™P(RN) into W™?() and also linear con-
tinuous from W™2?(RY) into W™2P(Q), it is continuous from W*?(RN) = (W™ ?(RN), Wm2:?(RN))
into Y*P = (Wmlvp(Q),sz”’(Q))C,p,
WeP(RYN), one deduces that X*P C Y*P.

If the boundary of 2 is smooth enough so that there exists a continuous extension P which maps
WmP(Q) into W™ (RN) and W™2(Q) into W™2P(RN), then it maps Y P = (W™P(Q), W’”Z*p(ﬂ))c’p
into W*?(RN) = (W™2(RN), Wm2?(RN)) ¢ p» and therefore every element of Y is the restriction to
of an element of W*?(RY), i.e. one has Y*? C X*P.

The extension property has been shown for W1?(Q) if  is bounded with a LIPSCHITZ continuous
boundary, and an anologous situation has been described which works for WW*? (Rf ) and 0 < k < m, and
it extends to the case of bounded open sets with smooth boundary. Actually STEIN has constructed an
extension valid for all W™ P(Q) if Q is bounded with a LIPSCHITZ continuous boundary.

¢p
and as every element of X*®P? is the restriction of an element from
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Before giving a characterization of W*?(Q) in the case of a bounded open set with a LIPSCHITZ con-
tinuous boundary, it is useful to begin with the case of RY. One starts with a preliminary result.

Lemma: If 0 < s < oo and 1 < p < oo one has B3P = (W'?(RN),LP(R")), . = {u € LP(RN), there
exists C such that ||u — Thul|, < C |h|* for all h € RN}.
Proof. If u € WYP(R™N) one has ||u — mpull, < |h|||grad(u)||, and if u € LP(RY) one has ||u — hul|,
2||u||p, and as the mapping u — u — Thpu is linear, one finds that for § € (0,1) one has |ju — Thullp
C |h|1_9||u||(Wl,p(RN)’Lp(RN))9"x’ for all u € (Wl’p(RN),Lp(RN))e
Conversely, assume that u € LP(RN) and ||u — 7hu||, < C|h|® for all R € RY. One decomposes
u = pe *u+ (u— p. *u), where p, is a special smoothing sequence, i.e. pe(x) = Zvp1(2), with p; € C°(RY)
and [~ p1(z) dz = 1, but one adds the hypothesis that p; is an even function. One has u(z) — (p. xu)(x) =
Jrw Pe(y) (u(z) —u(z—y)) dy and therefore [ju—pexullp < [on |oe(¥)| [lu—Tyullpdy < [rx Clpe(y)llyl* dy =
C'e®. Onme has ||pc * ull, < ||pellillullp = C||ullp, and for any derivative 0; = 6%,- one has 0;(pe x u) =

<
<

,00

(8;pe) * u, but one needs a better estimate than [|0;(pe * u)|l, < [||(9jpe)ll1llully = <||ullp, which has
not used all the information on u; changing y into —y in the integral, one can write 9;(pe * u)(z) as either
Jrn (B50e)(y)u(z—y) dy or [n(8;pe)(—y)u(z+y) dy or as the half sum of these two terms, and this is where
having choosen for p; an even function is useful, as ;p, is an odd function and therefore 0;(pe * u)(x) =
L Jow (8300 () (w(e — ) — u(z + ) dy, from which one deduces |10 (s * ©)llp < + [ [(3506) (W)l lIry2x —
T_yullpdy < C [pn [(05pe) )| |R|* dy = C"e*~1. For Ey = W"?(RN) and E; = LP(R"), this shows that
K(t,u) < C1(1+&° 1)+ Cate®, and choosing ¢ = 7 for t > 1, one obtains K (¢,u) < C3t'~* and for 0 < t < 1
one has K(t,u) < t||u||, (because in the case Ey C E; one always has the decomposition v = 0 + u), and
therefore t ° K (¢,u) € L*(0,00) with § =1 — 5.1

Proposition: For 0 < s < 1and 1 < p < oo, W*?(RN) = {u € LP(R"), [on [p~ % dz dy < oo},
or equivalently v € LP(RN) and [x (%)p Ij% < 0.

Proof. Let Eg = WYP(RN) and E; = LP(RN). If u € W*P(RN) = (Ey,E1)s, with § = 1 — s, one
has a decomposition u = ug + uy with ug € Eg,u; € E; and ||grad(uo)l||p + t||uillp, < 2K(¢,u) and
t 0K (t,u) € L?(0,00; ©). Fory € RV one has |[u—myull, < [Jug—rytollp+lur—ryuallp < ly|llgrad(uo)ll,+
2||usl], < C(lyl + )K(t u); one chooses t = ﬁ and one uses ||u — Tyull, < C’|y|K(|y|,u) This gives

K L, .
fRN(”” |;|”"”")p |:|’{v < C [pn (W)p Izt/i%’ and denoting by ox_; the (N — 1)-HAUSDORFF measure

of the unit sphere, it is = Con_1 [~ [|y|1—3K(ﬁ,u)]p Itiyl = Conor [ (t K (t,u)” % < co.

Conversely, assume that v € L*(RM) and [pn [~ %d:ﬂ dy < oo, so that if one denotes
F(z) = |lu — 7oull, for z € RN, one has [,n |Zf;,(ﬂp dz < oco. Let F(r) be the average of F on the
sphere |y| = r, so that by HOLDER inequality one has f| = [P F(y)|PdHN-1 < Jiyi=r @) dHN=1) and

oo |F(r)|P dr _ _1 F(z)
therefore [~ 553 = ;o Jan Reres 4z < Jan T |Z|N+“, dz < .

i
Then as for the preceding lemma one decomposes u = p. *u + (u — pe *x u) for an even special smooth-
ing sequence with support(p1) C B(0,1), and one obtains ||u — pe x ull, < [pn |pe(W)||[u — yullpdy =

Jan oW Fly)dy < & Jyi<e FW) dy = s%flylse F(y)dy = 9721 [<F(r)dr; then using the fact that
;6. is 0dd, one obtains [[8;(p. % Wlly < & o 1852 (W)| |17y = 7yl dy < 3 fpo 105 (F(y) + F(—)) dy <

F(y)dy < % Jy F(r)dr. One deduces that K (t,u) < C(1+ % [; F(r)dr) + <t [ F(r)dr,
and therefore for ¢t > 1 one takes ¢ = } and one has K(t,u) < C + Ct? fl/t (r)dr (and K(t,u) < t|]ullp
for t < 1). Then with § = 1 — s, one has t K (¢t,u) = Ct=% + Ctt fol *F(r)dr, and as the desired con-

dition t~?K(¢,u) € LP(0,00; %) is invariant by the change of ¢ into 1, one has to show that the function

_C
EN—1 -f|y|<s

7



G defined on (0,1) by G(e) = % 06 i(: ) dr belongs to LP (0, 1; df), as a consequence of the hypothesis that

@ eL? (0, 00; %), and this is like deriving HARDY’s inequality.®

Of course, the proof also applies to the case p = 0o, but is covered by the previous Lemma.
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One can now deduce a characterization of W*?(Q) in the case of a bounded open set of RN with a
LIPSCHITZ continuous boundary, with 0 < s <1l and 1 <p < 0.

Proposition: If Q is a bounded open set of RY with a LIPSCHITZ continuous boundary, then for 0 < s < 1
—u p
and 1 < p < o0, u € W*P(Q) if and only if v € LP(Q) and [, [, %d:pdzj < 0.

Proof. If uw € W*P(Q), defined as the restriction to 2 of a function U € W*P(RY), then one has U €
LP(RM) and therefore by restriction v € LP(Q), and [, [, %dw dy = [4 [a %71%{{),,'? dzdy <

U(e)-U(y)[?
Jrn Jrn %dwdy < 0.

Let u € LP(Q) satisfy fQ fQ %% dx dy < oo. For a partition of unity 6;,7 € I, each 6;u satisfies a
similar property, because |(6;u)(z) — (6iu)(y)| < |0i(2)] [u(z) —u(y)|+[60:(z) - 0:(y)| [u(y)| < C'u(e) —u(y)|+
C|z — y| |u(y)|, using the assumption that each 6; is a LIPSCHITZ continuous function. One deduces that
|(6iw)(2)— (6:w) (y)|P < C" [u(z)—u(y)|P+C" |z—yl? [u(y)|P, and one must show that [y, [, TR dz dy <

oo; this is a consequence of [, % dr < M uniformly in y € €2, which holds because if {2 has diameter

d, the integral is bounded by f l2|<d |z|N|+5P dz=0C fd dﬁ < o0,as @ =14 sp—p < 1. Using a local change
of basis, one is led to consider the case of Qr = {(z',zn),zn > F(2'} for F LIPSCHITZ continuous, and one
extends u by symmetry, defining Pu(z',zn) = u(z’,zn) if ey > F(2') and Pu(z',zn) = u(z',2F (z') —zn)
if zy < F(z'). If for ¢ = (2',zn) one defines T = (z',2F(z') — zn), so that (Z) = z, then the integral
Jan [pn W dz dy can be cut into four parts, one is I = fQF fQF %% dz dy, which is finite

by hypothesis; two parts have the form fQF fRN\QF lu@—u@I” g0 gy < KPI because |z — 7| < K|z — 9

fa—y 7

for all z € Qp,y € RN \ QF, and the fourth part is fRN\QF fRN\QF @ -_vw@I® gz dy < KPI because

[e—y[NFep
|z —y| < K|z —y| for z,y € RN \ Qp; indeed the map z = (¢/,zn) — (z/,zn — F(z')) is LIPSCHITZ
continuous from Qr onto RY, and its inverse is LIPSCHITZ continuous as it is z = (2, zn) — (2, 2v+F(2')),
and one is reduced to study the same inequalities for RY , i.e. in the case F = 0, where one has |z—7| < |z—y|
ifzy >0>yn,and |T—7| = |z — y| for all z,y.m

Of course, the proof adapts to the case p = 0o, the only difference coming from the fact that the norm
is not expressed by an integral. It is important to notice that without any regularity hypothesis on a set
A C RV, any LIPSCHITZ continuous function defined on A can be extended to RN, and the same result is
true for HOLDER continuous functions. For showing this, one assumes that C; < u(z) < C, for all z € A,
and that there exists @ € (0,1] and K > 0 such that |u(z) — u(y)| < K|z — y|* for all z,y € A, then one
defines v(z) = sup,c 4 u(y) — K |z — y|*, and this gives a HOLDER continuous function which coincides with
u on A, and then one truncates it by w(z) = min{Cs, max{Cy, v(z)}}.

One should notice that W1:*°(£2) contains the space Lip({2) of LIPSCHITZ continuous functions, but may
be different if Q is not a bounded open set with a LIPSCHITZ continuous boundary, because u € W (Q)
implies that there exists K such that |u(z) — u(y)| < K dq(z,y) where do(z,y) is the geodesic distance from
T to y, the infimum of the lengths of paths from z to y which stay in €2, and the geodesic distance from
to y could be much larger than the Euclidean distance from z to y.

As a way to ascertain the importance of the regularity of the boundary in proving some properties of
SOBOLEV spaces, I describe a counter-example which I had constructed in order to answer (partially) a
question that Sergei VODOP’YANOV! had asked a few years ago in a talk at CMU; I mentioned my result
to my good friend Edward FRAENKEL2, who had studied domains with irregular boundaries, and he later

1 Sergei Konstantinovitch VODOP’YANOV, Russian mathematician; he works in the SOBOLEV Institute of
Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk.

2 Ludwig Edward FRAENKEL, German-born mathematician, 1927; his father, Eduard FRAENKEL, 1888-
1970, was a classical scholar who emigrated to England in the 30s and was the first foreigner to obtain
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mentioned it to O’FARRELL?, who gave a more general construction. After learning about O’FARRELL’s
construction, I contacted Sergei VODOP’YANOV who mentioned that he had also done the case p > 2.

Proposition: For N > 2, there exists a (bounded) connected open set { such that W>°(Q) is not dense
in WhP(Q) for 1 < p < oo.
Proof: 1 only give the proof for NV = 2 and for the case 2 < p < o00; for the case 1 < p < 2, O’'FARRELL
has introduced a more technical construction. One defines Q& = A U B|J,, Cr, where A is the open set
{(z,y),z > 0,y < 0,22 + y? < 1}, B is the open set {(z,y),z < 0,y < 0,22 + 3> < 1}, and for n > 1 the
passage Cy, is defined in polar coordinates by {(z,¥),0 < § < 7,27" —¢e, < r < 27"}. The sequence ¢,
satisfies 0 < &, < 27" ! so that the passages do not overlap but also £, — 0 sufficiently rapidly so that
Y nEn2"P < oo for every p € [1,00).

One checks immediately that the function u, defined by u, = 0in A, u, = 7w in B and u, = 6 in all
C,, belongs to W1P(Q) for 1 < p < co. This function u, cannot be approached in W1?(Q2) by functions
in WH(Q). Indeed, because A is a bounded open set with a LIPSCHITZ continuous boundary, functions
in WhP(A) have an extension in W1?(R?), which is a continuous function as p > N = 2, and therefore
u € WHP(Q) implies u € C°(A), and the linear form Lau = u(0) is continuous, where u(0) is computed
from the side of A. The same argument applies for B, and the linear form Lgu = u(0) is continuous, where
u(0) is now computed from the side of B. One has Lg(us) — La(us) = m, and u, cannot be approached
by functions from W1°°(2) because Lg(u) = La(u) for all u € W*(Q), and therefore any function
v belonging to the closure of W1 (Q) must satisfy Lg(v) = La(v). Indeed, if u € W1*°() one has
lu(z) —u(y)| < ||grad(u)||oda(z,y) where da(z,y) is the shortest distance from z to y when one stays in €2,
and letting = tend to 0 from the side of A and y tend to 0 from the side of B, one has dq(z,y) — 0 because
there are arbitrary short paths by using the passages C,, for large n.l

For the general case 1 < p < 0o, O’FARRELL’s starts with a CANTOR? set with positive measure
in a segment imbedded in an open set of R%, and he constructs passages through the complement of the
CANTOR set in such a way that going from one side to the other by using the passages can be done with
da(z,y) < Cd(z,y) for all z,y € Q; then he defines a function taking different values on both sides of the
CANTOR set, which cannot be approached by functions in W!*(Q) because they take the same value on
both sides of the CANTOR set, and for functions in W11(2) the restriction to any side of the CANTOR set
is continuous.

The classical CANTOR set has measure zero, and is used in the construction of a nondecreasing func-
tion f, on [0,1], with f(0) = 0, f(1) = 1, but is constant on disjoints intervals I,,n > 1 such that
>, length(I,) = 1; this construction is often called the “devil’s staircase”, as it has infinitely many flat
levels (steps) and it goes up from 0 to 1 without having any jump.

The particular function f, constructed satisfies foo (1 — ) = 1 — foo () for all z € [0,1], and foo (3z) =
2foo(z) for all 0 < z < %, and it is HOLDER continuous of order o = ig%; it is the unique fixed point of the
mapping T defined on functions ¢ which are continuous on [0, 1] with ¢(0) =0 and ¢(1) =1, and T(p) = ¢
means (z) = 3¢(3z) for 0 <z < %, ¢(y) = 3 for z € [0,3] and P(z) = 1 — (1 —z) for 2 < 2 < 1;
one usually starts from fo(z) = z for all z and one defines f, = T'(f,_1) for n > 1 and f,, converges to fs
uniformly.

a prestigious chair at Oxford. Edward studied in Canada during World War II, and specialized in Fluid
Dynamics; he later became professor in Cambridge, where his too mathematical approach irritated his
colleagues who were working in the traditional British way of doing Applied Mathematics, where one writes
expansions without wondering too much if they converge or if they really approach the solution of the real
problem that one is interested in. Edward’s approach is more akin to the French way of doing Mathematics
with applications to real problems (which one should certainly criticize for being often too abstract), where
one is supposed to prove all the assertions made. Edward was bound to have difficulties with his colleague
for he used to construct counter-examples showing that the methods that were taught did not always work.
He works at the University of Bath, England.

3 Anthony G. O’FARRELL, Irish mathematician; he works at National University of Ireland, Maynooth.

4 Georg Ferdinand Ludwig Philipp CANTOR, German mathematician, 1845-1918. He worked in Halle.

80



21-724. Interpolation spaces
Luc TARTAR, WEAN Hall 6212, 268-5734, tartar@andrew.cmu.edu

17. Monday April 24, 2000.

The characterizations of W*?(Q) and W*P(RY) provide a characterization of which functions u €
W*?(Q) are such that the extension of u by 0 outside {2, denoted @, belong to W*?(RN).

Lemma: Let Q be a bounded open set of RY with a LIPSCHITZ continuous boundary. Then, for 0 < s < 1
and 1 < p < oo one has & € W*P(RY) if and only if u € W*P(2) and d~*u € LP(f2), where d(z) denotes
the distance from x to the boundary 2.

Proof: One shows the case p < oo, the case p = oo being easier, using the fact that the functions used are

HOLDER continuous of order s. & € LP(R") is equivalent to u € LP() and [pn [~ %7}\,‘92,',? dzdy < oo

is equivalent to [, [o %dmdy < o0 and [q [pviq m'_”}ﬁ%dwdy < o0, i.e. u € WP(Q) and
pu € LP(Q) where |p(z)? = fRN\Q Wdy for z € Q. Because B(0,d(z)) C € one has |p(z)[P <
Jiz1>d(e) s 42 = g@hes so that [p(z)| < C'd(z)~°. This shows that if u € W*P(Q) and d~*u € L?(12)
then @ € W*P(RY).

In order to prove the other implication, one uses a partition of unity, 8;,7 € I, and one notices that
v; = Biu € W*P(Q) and if & € W*P(R") one has v; = 6;u € W*P(RYN), and as I is finite it is enough to
show that for each ¢ one has d~®v; € LP(f2). This corresponds to proving that |¢| > Cd~* in the case of
Qp when F is LIPSCHITZ continuous; by using the mapping (z',zn) — (¢/,zx — F(z')) whose inverse is
(¢,xn) — (2',zn + F(2')) which are both LIPSCHITZ continuous, one has to consider the case F' = 0, and
in that case one has Y <0 IE—yI% dy = K|zn|™® if zy > 0, by an argument of homogeneity, and K is
the value of the integral for zxy = 1.1

The devil’s staircase is an example of a function which is not absolutely continuous, a term equivalent to
having the derivative in L', and the derivative in the sense of distribution is actually a nonnegative measure
whose support is the CANTOR set, and it is useful to show Laurent SCHWARTZ’s proof that nonnegative
distributions are RADON measures.

Lemma: If a distributions T' € D'() is nonnegative in the sense that (T, ¢) > 0 for all p € C°(Q) such
that ¢ > 0, then T is a nonnegative RADON measure.
Proof: Let K be a compact in 2 and let § € C°(Q) satisfy 6§ > 0 everywhere and § = 1 on K. Then for every
p € 0(Q) with support(y¢) C K, one has —||¢||wl < ¢ < ||¢||cof, and therefore —||p||oo (T, 8) < (T, ) <
[lelloo (T, 0), ie. {T,¢)| < Ckl||¢||co, With Cx = (T',0). Then one extends this inequality to the case where
¢ € C.(2) with support(¢) C K, showing that T is a RADON measure, by applying the preceding inequality
to pe * ¢ for a smoothing sequence p. (and using Ck- for a larger compact set). Of course one also proves
in this way that (T, ¢) > 0 for all ¢ € C,(Q) such that ¢ > 0.8

In one dimension, one says that a function f has bounded variation if there exists a constant C such
that for all N and all increasing sequences z; < 2 < ... < zy one has Zf\:ll |f(z;) — f(zit1)] < C. One
proves then that such a function f has a limit on the left and a limit on the right at every point, with at most
a countable number of points of discontinuity, and that f = g — h where g and h are nondecreasing, and as
one checks easily by regularization that the derivative of a nondecreasing function is a nonnegative RADON
measure, one finds that if f has bounded variation then f’ is a RADON measure with finite total mass (and
the converse is true, because any RADON measure p can be written as g, — u_ for nonnegative RADON
measures (4, f4—, and every nonnegative RADON measure is the derivative in the sense of distributions of a
nondecreasing function.

In order to define functions of bounded variation in more than one space dimension, one needs to define
the space My of bounded RADON measures.

If K is a compact, then C(K) the space of continuous functions on K equipped with the sup norm is
a BANACH space, whose dual M(K) is the space of RADON measures on K, equipped with the dual norm
||l = supygyi.. <1 |{#, )| If M, are distinct points in K then p =3 cndum, belongs to M(K) if and only
if 3°, |en| < 0o and one has ||u|| =Y, |cal-
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If Q is open, then C.(Q2) and its dual M(Q) of all the RADON measures in {2 are not BANACH spaces
(nor FRECHET spaces either), and if a sequence M,, of points tends to the boundary 02 then p =" cn,dnm,
belongs to M () for all coefficients ¢, (as each compact K only contains a finite number of these points).

The space Mj(2), the space of bounded RADON measures, also called the space of measures with finite
(total) mass or the space of measures with finite total variation, is the space of p € M(Q2) such that there
exists C' with |(u, ¢)| < C||¢|le for all ¢ € C.(R2), and it can be shown that p can be extended to all
¢ € Cp(f), the space of bounded continuous functions in 2, which is a BANACH space with the sup norm, so
that My () is the dual of C(€2) and is a BANACH space. If M,, are distinct points in Q then = cndm,
belongs to M () if and only if ) |cn| < oo and one has ||u|| =, |cnl-

The extension to more than one space dimension has been studied by Ennio DE GIORGI, FEDERER and
Wendell FLEMING, but the earlier names of TONELLI' and Lamberto CESARI? are often mentioned.

Definition: For an open set 2 C R, a function u belongs to BV (f2), the space of functions of bounded
variation in Q if u € L*(2) and 2% € My(Q) for j=1,...,N.®
J

Proposition: BV (RY) is continuously imbedded in L!"*'(RY) for N > 2, and in L®(R) for N = 1. If
p. is a smoothing sequence and u € BV(RYN) then p, x u is bounded in WL (RY). BV(RN) = {u €
LY(RN),||mhu — ully < C|h| for all h € RN}.

Proof For j = 1,...,N and ¢ € C®(RN) one has (2% o) — —(p, % u, 22) = —(u,ﬁs*%‘%> =

3Ej 32_7-
—(u, a(g;z:“’)) = (g—;‘j, pe *x ), and therefore as g, x ¢ is continuous with compact support and has a sup norm

< C|¢||oo one deduces that |<6(§;z’;”),ga>| < C|¢||eo and as ('9({;;;;;11.) € C*®(Q) it means that ||a((,“;;m’;u)||1 <C.
By Jaak PEETRE’s improvement of SOBOLEV’s imbedding theorem, p. * u stays in a bounded set of the
LORENTZ space L'"'(RN) if N > 2 (or a bounded set of L®(R) if N = 1); of course, p. x u converges
to uw in L'(RY) strong, and because L'"'(R") is a dual (as will be proved later), one has u € L' ' (RY).
For w € BV(R™) one has mou — u € L*(RYN), and p. x (Tht — u) — Thu — u in L}(RY) as ¢ — 0, but as
it is also Th(pe * u) — (pe * u) one has ||Th(pe * u) — (pe *x u)||1 < |h|||grad(pe * w)||1 < C|h|, which gives
|[Thu — u||; < C|h| for all h € RN. Conversely if u € L'(RY) and ||7hu — u||; < C|h| for all h € RN, then

Tte, U—U Su

. . . . T B‘u_u . .
for h = te; one has —i— — 2% in the sense of distributions as t — 0, but as —4— is bounded in
J

LY(RY) and L*(RN) C (C’b(RN))' = M;(RY), the limit belongs to M;(RY).m

Therefore the fact that u € WHP(RYN) is equivalent to u € LP(RY) and ||7hu — u||, < C|h| for all
h € RY is true for 1 < p < oo but not for p = 1. However the difference between W11(RN) and BV (RY)
is not seen for some interpolation spaces defined with these two spaces.

Lemma: For 0 < § < 1 and 1 < ¢ < oo one has (My(RY),L=(R")), = (L'(RY),L®(RY)), =
LP(RN) for p = {15, and (BV(RN),Mb(RN))e’q = (BV(RN),Ll(RN))e’q = (Wl’l(RN),Mb(RN))o’q =
(WLL(RN), Ll(RN))O,q — BI-%1(RV).
Proof: One uses the fact that L'(RY) C My(RY) and for u € L*(R"N) the norm of u in L*(RYN) and the
norm of u in M;y(RY) coincide. Let Eg = My(RY), E; = L*(RY), and Fy = L}(RY), then Fy C Ey and
therefore (Fo, E1)p,q C (Eo, E1)s,q; conversely a € (Eo, Ey)g,q means a = [~ u(t) % with u(t) € EoN E; a.e.
t € (0,00) and ¢t =% max{||u(t)||&,, t||u(t)||, } € L(0,00; %), but then as EqN E1 = FyNE; and |[u(t)||g, =
|lu()||F,, one has u(t) € Fo N Ey ae. t € (0,00) and ¢t~% max{||u(t)||m, ¢ ||u(t)||r,} € LI(0,00; %), and
therefore a € (Fy, E1)g,q- The same argument gives (BV(RY), My(RY)), = (BV(RY),L'(RY)), and
(Wl’l(RN), Mb(RN))o,q — (Wl’l(RN), LI(RN))B,q'

One observes that (BV(RY), L (RN))(),oo c (WH(RN), LI(RN))g,Oo, and therefore these two spaces
are equal, and one then uses the reiteration theorem of Jacques-Louis LIONS and Jaak PEETRE. Indeed, the
linear map u — 7u—u € L} (RY) has a norm < C |h| in BV(RY) and a norm < 2 on L*(R") and therefore

0.9

! Leonida TONELLI, Italian mathematician, 1885-1946. The Department of Mathematics of the University
of Pisa is named “Leonida TONELLI”.

2 Lamberto CESARI, Italian-born mathematician, 1910-1990. He worked at University of Michigan, Ann
Arbor.
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anorm < C'|h|*~? on (BV(RY), L*(R")), _, i.e. one has ||7hu —u||; < C|h|'~? on this space, which is the

characterization of elements of (W''(R"), L'(RN)), =
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21-724. Interpolation spaces
Luc TARTAR, WEAN Hall 6212, 268-5734, tartar@andrew.cmu.edu

18. Monday April 26, 2000.

Solving non linear partial differential equations sometimes requires a careful use of adapted functional
spaces. The knowledge of the Theory of Interpolation helps for creating a large family of such spaces, and
some of them may indeed be useful.

Many of the non linear partial differential equations which are studied have their origin is Continuum
Mechanics or Physics, but very few mathematicians do spend the time to try to understand what the right
equations and the right questions should be, and many work for years on distorted equations without knowing
it; there are unfortunately many who know the defects of the models that they use but prefer to hide them
in order to pretend that they work on some useful realistic problem. It is wiser to be aware of the defects of
the models! and mention them, and explain what one tries to achieve by working on simplified or defectuous
models; indeed if a technical difficulty has been identified on a realistic model, it is much better to try to
overcome that particular difficulty by working first on a simplified model, which may have lost some of the
realistic features of the problem that one would like to solve.

The space BV has been widely used in situations where solutions are discontinuous, but there are reasons
to think that this functional space is not really adapted to most nonlinear partial differential equations where
discontinuous solutions are found.

Of course, there are problems where the BV space is asked for, and some problems in Geometric Measure
Theory are of this type, and there are applications to image processing for example, but one has imposed to
look for a domain with finite perimeter (i.e. whose characteristic function belongs to BV'), or to look for a
set with finite (IV — 1)-dimensional HAUSDORFF measure.

The main class of partial differential equations where discontinuous solutions appear for intrinsic reasons
is that of hyperbolic conservations laws; this class covers important situations in Continuum Mechanics, and
too little is understood from a mathematical point of view. Because of their practical importance, numerical
simulations of these problems are performed, for example in order to compute the flow of (compressible) air
around an airplane. The (Franco-British) Concorde is the only commercial plane who flies over MACH? 1,
but most commercial planes fly fast enough to require computations of transonic flows; indeed the speed of
sound depends upon the temperature and the pressure, and the shape given to the wings of the plane makes
more air go below the wing and creates a slight surpression below the wing but a high depression above
the wing, and at the cruise velocity of large commercial jets the speed of sound in that depression (which
sucks the plane upward) is then inferior to the velocity of the plane. Doing these numerical simulations has
become much less expensive than using small scale planes in wind tunnels, and the shape of the plane can
be improved (mostly for diminishing the fuel consumption of the plane, rarely for diminishing the noise it

! Some very good and very honest mathematicians may stay unaware of some practical limitations of
the equations that they have studied, and an example was given to me by Jean LERAY, when he explained
to me in 1984 the origin of the political difficulties that he had encountered. As an officer in the French
army, he had been taken prisoner and he spent most of World War II in a German camp (while a famous
member of the BOURBAKI group had dodged the draft), but he continued to do research, and even organized
a university (of which he was chancellor) inside the camp. He told me that he had stopped working on
NAVIER-STOKES equations, for fear that his results could be used by the German; fourty years after his
decision he still seemed unaware that the works of mathematicians on this oversimplified model has hardly
any practical use.

Nicolas BOURBAKI is the pseudonym of a group of mathematicians, mostly French; those who chose the
name certainly knew about a French general named BOURBAKI.

Charles Denis Sauter BOURBAKI, French general, 1816-1897; of Greek ancestry, he declined an offer of
the throne of Greece in 1862.

2 Ernst MACH, Czech scientist, 1838-1916. He worked in Vienna. The MACH number is the ratio of the
velocity of the plane to the speed of sound.
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makes), but the mathematical knowledge of these questions, mostly due to the work of GARABEDIAN® and
of Cathleen MORAWETZ?, is still insufficient for corroborating the intuition of the engineers.

For 1 < p < oo, the BESOV space B;{p’p(R) = (W"?(R),LP(R)) poo = {u € LP(R),||thu — u||, <
C |h|*? for all h € R} contains discontinuous (piecewise smooth) functions (while for 1 < g < oo, the space

B;/ PP (R) does not contain piecewise smooth discontinuous functions). The excluded case p = 1 corresponds
to BV(R), and p = oo corresponds to L*°(R), so why think that the case 1 < p < oo is better?

Linear partial differential equations with constant coefficients can be solved by using elementary solu-
tions, and for elliptic equations this leads to singular integrals which can be studied by CALDERON-ZYGMUND
theorem, which requires 1 < p < oo. For example, solving Au = f for f € LP (RN ) gives aaiz;z,- € LP(RN )
fori,j =1,...,N,if 1 < p < oo, but the result is false for p = 1 or p = 0o, and f € L*(R") does not imply
that the derivatives g—:i belong to BV (RY).

There are however other spaces which can be used for replacement, using the HARDY space H!(RY)
instead of L!(RY), and the space BMO(RY) instead of L>°(RY), and indeed singular integrals acts from
HI(RYN) to itself and from BMO(RY) into itself; actually, the interpolation spaces between #!(R™) and
BMO(RY) are the same than the already studied interpolation spaces between L'(RY) and L*(RY), but
these results cannot be derived so easily. However there is another obstacle, which suggests that the choice
p = 2 is the only right one.

i,j=1 Bz;
where the coefficients pa;j,i,7 = 1,..., N belong to L (R"), satisfy the symmetry condition a;j;(z) = a;;(z)
ae. ¢ € RN for all 4,5 = 1,..., N, satisfy the positivity property p(z) > p_ > 0 a.e. z € RN and also
satisfy the ellipticity property that for some a > 0 one has Z?fj:l aij(z)€:€; > al¢)? for all £ € RV, ae.
z € RN. Under these conditions the CAUCHY problem is well posed if one imposes u|;—g = up € H}(R") and

%_1; o= U1 € L?(RN), and one has conservation of total energy, sum of the kinetic energy 2 [ Ry P(T) %—’t‘ |2 dz

and the potential energy 3 [ (X0 aij(z) 2% o) de. It would seem natural to expect that with smooth
%y

coefficients, like for the simplified wave equation in a homogeneous isotropic material ;7 — c?Au =0, one
could take ug € WP(RYN) and u; = 0 for example and find the solution u(-,t) € W1P(RY) for ¢t > 0 (or for
t < 0 as the wave equation is invariant through time reversal), but Walter LITTMAN® has shown that this
only happens for p = 2.

Could the space Béé 2’2(RN ) be used then for nonlinear hyperbolic equations where one expects some
discontinuities to occur?

It is useful to compare BV (RY) with the BESOV space BYPP (RYN), which is the space of u € LP(RYN)
such that ||Tpu — ul|, < C|h|}/? for all h € RN.

The (scalar) wave equation in a general medium has the form p(x)% N2 (aij (:c)gT“J) =0,

Lemma: One has BV(RN) N L®(RN) C BYPP(RY), and more precisely (BV(RN), L>(RN))
BYPP(RY).
If u is a characteristic function, then u € BLP? (RYN) implies u € BV(RY) (and conversely).

Proof: The linear mapping u — Tpu — u is continuous from BV (RY) into L!(RY) with norm < C'|h|, and
from L>(R") into itself with norm < 2, and therefore it is continuous from (BV(R"), L>(R")) into

(L*(RN),L>(RN)) = LP(R") with norm < C|h|'/?.

1/p',p C

1/p',p

1/p'p

3 Paul R. GARABEDIAN, American mathematician. He works at the COURANT Institute of Mathematical
Sciences, New York University.

4 Cathleen SYNGE MORAWETZ, Canadian-born mathematician, 1923. She works at the COURANT Insti-
tute of Mathematical Sciences, New York University. Her father, John Lighton SYNGE, Irish mathematician,
1897-1995, was from 1946 to 1948 the Head of the Mathematics Department at the CARNEGIE Institute ot
Technology in Pittsburgh, later to become CARNEGIE MELLON University.

Andrew CARNEGIE, Scottish-born businessman and philanthropist, 1835 - 1919.
Andrew William MELLON, American financier and philanthropist, 1855-1937.
5 Walter LITTMAN, American mathematician. He works at University of Minnesota, Minneapolis.
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Ifu € Bcl,ép’p(RN) one has [,y [u(z — h) — u(x)|Pdz < C|h| for all b € RY; if moreover u is a
characteristic function, then u(z —h)—u(z) can only take the values —1, 0,1 and therefore |u(z—h) —u(z)|? =
|u(z — h) — u(z)|, from which one deduces that ||Thu — u||; < C|h| for every h € RY, and as one also has
|[ulls = ||u|[B, one deduces that u € BV (RN) (the first part implying the converse).m
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Luc TARTAR, WEAN Hall 6212, 268-5734, tartar@andrew.cmu.edu

19. Friday April 28, 2000.

Quasilinear hyperbolic equations have properties quite different from semilinear hyperbolic equations,

mostly because discontinuities may appear even when initial data are very smooth. For second order
. . . 2 .y .
equations modeled on the linear wave equation ?,Tg — ¢?Au = 0, semilinear equations are of the form

8%u 2 _ du du ou
—cAu=F (u’at’azl ) Bzy

o2 ) where the higher order part is linear with constant coefficients, while
for quasilinear equations the hlgher order part is still linear but with coefficients which depend upon lower
order derivatives; in the case N = 1 one has for example 2 W - f(g;‘) gm;‘ = 0. This equation was first
studied by POISSON in 1807, as a model for a compressible gas; the classical relation p = cp leads to an
incorrect value of the velocity of sound (which had been estimated by NEWTON), and LAPLACE seems to
have proposed to use the relation p = ¢p?; POISSON had found some special solutions (which are called
simple waves now), but he left them in an implicit form, so that it took fourty years before someone pointed
out that there was a problem, which STOKES explained in 1848 by the formation of discontinuities. STOKES
computed the correct jump conditions to impose for discontinuous solutions, by using the conservation of
mass and the conservation of momentum, and these conditions were rediscovered by RIEMANN in 1860, but
instead of being called the STOKES conditions or the STOKES-RIEMANN conditions, they are now known
as the RANKINE!-HUGONIOT? conditions. The defects of these (isentropic) models were not obvious then,
as Thermodynamics was barely in its infancy at the time, and even STOKES was wrongly convinced later
by THOMSON (who later became Lord KELVIN) and by RAYLEIGH?, who told him that his discontinuous
solutions were not physical because they did not conserve energy*.

The apparition of discontinuities is more easily seen on first order equations, for which a classical model®
is the BURGERS equation at +u 8:1: = 0. Using the method of characteristic curves, one finds easily the
critical time of existence of a smooth solution.

Lemma: Let ug be a smooth bounded function on R. If ug is nondecreasing, there exists a unique smooth
solution of 3“ +cu 6 =0 for t > 0 satisfying u(z,0) = up(z) for = € R. If inf,cr %2 (z) = —a < 0, there
is a unique smooth solution for 0 < ¢ < T, = X, and there is no smooth solution over an interval (0,T') with
T>T..

Proof. Assume that there exists a smooth solution for 0 < ¢t < T. For y € R one defines the charac-

terlstlc curve w1th initial point y by dz(t) = u(z(t),t) and 2(0) = y, and one deduces that W =
9u (2(t), ¢ )dz(t) + % (2(t),t) = 0, and therefore u(z(t),t) = u(2(0),0) = up(y) for 0 < t < T this gives
dfi(tt) = up(y), i.e. z( ) =y + tup(y). This shows that on the line z = y + tup(y) for 0 < ¢t < T the smooth
solution is given by u(z,t) = uo(y). If up is nondecreasing, the mapping y — y + tup(y) is a global diffeo-
morphism from R onto R for any ¢ > 0 (it is increasing), and therefore there exists a unique global smooth

! William John Macquorn RANKINE, Scottish engineer, 1820-1872. He worked in Glasgow.

2 Pierre Henri HUGONIOT, French engineer, 1851-1887.

3 John William STRUTT, Third Baron RAYLEIGH, English physicist, 1842-1919. He received the NOBEL
prize in Physics in 1904. He held the CAVENDISH Professorship at Cambridge, 1879-1884, after MAXWELL.

4 Tt shows that around 1880 (when STOKES was editing his work of 1848 and did not reproduce his
derivation of the jump condition in his complete works, and apologized for his “mistake”), RAYLEIGH,
STOKES and THOMSON (who became Lord KELVIN in 1892) did not understand that mechanical energy
could be transformed into heat. If one has learned Thermodynamics, one should not disparage these great
scientists of the 19" Century for their curious mistake, and one should recognize that there are things which
take time to understand (and one learns now also that Thermodynamics is not about dynamics.). Actually,
Thermodynamics is still a subject which is not so well understood, and mathematicians should pay more
attention to it; ignoring Thermodynamics, and publishing too much on isentropic equations, for example,
tends to make engineers and physicists believe that mathematicians do not know what they are talking
about.

5 The function « has the dimension LT ~! of a velocity; some physicists prefer to write %—;‘ +cu g—;‘ =0,
where c is a characteristic velocity and u has no dimension.

87



solution for all ¢ > 0. If there exist y; < y2 with ug(y1) > uo(y2), then the characteristic line with initial
point y; catches upon the characteristic line with initial point y» and a smooth solution cannot exist up to
the time of encounter of the two characteristic lines as it would have to take two different values at their
intersection; one can easily check that for any 7" > T, one can find two characteristic lines which intersect
before T. One can check directly that the solution is well defined for 0 < ¢ < T because the mapping
y = ¥+ tug(y) is a global diffeomorphism from R onto R for 0 < ¢ < T, and in order to show that there is

no solution on (0,T) with T > T, one defines v = 3% and one checks that [”(Z(tt)’t)] = [v(2(t),t)]?, so that

v(z(t),t) = 1—;075,”—21/), and therefore the smooth solution satisfies lim_, 7, sup,cp 5% = +o0.®
0
The analog of the implicit formula used by POISSON would be to say that the solution must satisfy
u(z,t) = uo(z — tu(z,t)), and seeing the limitation in time on this formula is less obvious.
After the critical time T, one cannot have smooth solutions, and the correctly defined solution will be

discontinuous at some points, and therefore the product of u by ’9;‘ is not defined, and it is important to
3(u /2)

write the equation in conservation form, 2 5 T = 0, and to consider the weak solutions, i.e. the
solutions in the sense of distributions. The jump condltions which STOKES had computed correspond to
saying that if a" + g; = 0 and u,v are continuous on each side of a curve with equation z = ¢(t) and
s =¢'(t) denotes the velocity of the (possible) discontinuity at time ¢, then one has jump(v) = s jump(u),
where jump(w) = w(p(t)4,t) — w(p(t)—,t) = w; — w_ (noticing that changing  into —z changes v into
—uv, changes the sign of jump(u) and of jump(v), but changes also the sign of s).

Unfortunately, there are too many weak solutions; for example for ug = 0 there is a global smooth
solution which is u = 0, but there are infinitely many weak solutions by taking x( arbitrary, a > 0 arbitrary,
and defining u(z,t) = 0 for z < zp — ta, u(z,t) = —2a for x — ta < zg, u(z,t) = 2a for 0 < z < ta, and
u(z,t) =0 for ta < z.

In order to reject all unphysical weak solutions, one decides then to keep only the discontinuities for
which u_ > uy; the method of characteristic curves gives a local LIPSCHITZ continuous solution when one
starts from a nondecreasing function and by continuity it gives such a LIPSCHITZ continuous solution in the
other case u_ < u,, i.e. when one starts from the discontinuous function jumping from u_ up to u (called
a rarefaction wave). This selection criterium, called an “entropy” condition®, extends to the more general
equation %—;‘ + 3’;(:) = 0 only if the nonlinearity f is a convex function; the case of a general (smooth) f
has been solved by Olga OLEINIK?, and OLEINIK’s criterium is that one accepts or rejects a discontinuity
according to the position of the chord joining (u_, f(u_)) and (u, f(u)) with respect to the graph of the
function f, accepting the discontinuity w_ > wu, if and only the chord is above the graph, and accepting the
discontinuity u_ < w4 if and only the chord is below the graph.

Under OLEINIK’s criterium there is a unique piecewise smooth solution, but in order to study weak
solutions without having to assume that they are piecewise smooth, Eberhard HOPF® derived the equivalent
formulation a"’(u) + &p(u) < 0 in the sense of distributions for all convex (“entropy”) functions® ¢, where
P is a correspondlng entropy flux”, defined by ¥’ = ¢'f’. Peter LAX extended the idea to systems of
conservation laws, 2 s Uy aF(U) =0, With U(z,t) € RP, but not all functions ¢ on RP are entropies, because if
one has VoV F =V then there are compatibilty conditions that ¢ must satisfy, i.e. curl(VoV F) =0,
and the trivial entropies ¢(U) = +U; for i = 1,...,p just correspond to the given system of equations'®.

One way to construct such admissible weak solutlons is to con31der a regularization by artificial viscosity
6U€ + BF(UE) —€ aaf ¢ = 0 for e > 0. The scalar case with f(u) = (also called the BURGERS-HOPF equation)
Was ﬁrst solved by Eberhard HOPF using a nonlinear change of functlon which transforms the equation into

6 By analogy with conditions imposed by Thermodynamics for the system of compressible gas dynamics.

7 Olga Arsen’evna OLEINIK, Russian mathematician, born in 1925. She works at Moscow State University.

8 Eberhard HOPF, German-born mathematician, 1902-1983. He emigrated to United States in 1949, and
worked at Indiana University, Bloomington, where I met him in 1980.

9 Again, this is only by analogy with Thermodynamics, and these “entropies” are rarely related with the
thermodynamic entropy.

10 Tt is not clear if the right notion of solution has been found, but all the physical examples seem to be
endowed with a strictly convex “entropy”, which sometimes is the total energy!

88



the linear heat equation, and this transformation was also found by Julian COLE!!, and is now known as
the HOPF-COLE transform. The scalar case with a general f was solved by Olga OLEINIK, and the scalar

case with more than one space variable!?, 2% 4+ Zjvzl a’;jm(;‘) = (0 was obtained by KRUZHKOV!3.

» Bt

The important difference between the scalar case and the vectorial case (regularized by artificial vis-
cosity), is that there are simple BV estimates for the scalar case, which are unknown for the vector case;
the BV estimates are used to prove convergence by a compactness argument, but any uniform estimate in a
BESOV space (By? )ioc(RY) with s > 0 would be sufficient. Unfortunately, the estimates for the scalar case
are based on the maximum principle, and the same argument cannot be extended to systems.

There is another method due to James GLIMM'4, which proves existence for some systems if the total
variation is small enough.

I have introduced another approach, based on the Compensated Compactness Method which I had partly
developed with Frangois MURAT!®, which does not need estimates in BESOV spaces, but which requires a
special understanding of how to use entropies to generate a kind of compactness; Ron DIPERNA'® was the
first to find a way to apply my method to systems.

Of course, the preceding list of methods is not exhaustive, and there has been other partially succesful
approaches.

The BV estimate in the scalar case can be linked to a L'(R) contraction property, which was noticed
by Barbara KEYFITZ!? in one dimension and by KRUZHKOV in dimension N. This property is strongly
related to the maximum principle, and I have noticed with Michael CRANDALL'® that if a map S from
L'(Q) into itself satisfies [, S(f)dz = [, fdx for all f, then S is a L' contraction if and only if § is
order preserving; as order preserving properties do not occur for realistic systems, one cannot expect L'
contraction properties for systems; Michael CRANDALL and Andrew MAJDA'® have later applied the same
idea for discrete approximations.

The simplest discrete approximation of %1: + 6{9(;) = 0 is the LAX-FRIEDRICHS scheme, Ait(Ui""’1 -
LUP L+ UNY) + 525 (F(UR,) — f(UP,)) = 0, where U is expected to approximate U(i Az,nAt);
starting with a bounded initial data uo, satisfying o < ug(z) < B a.e. = € R, one chooses for example U =
ﬁ fz.(lAerl)Am up(y) dy for all 4, and the explicit scheme generates the numbers U* for n > 0, but one must

impose the COURANT-FRIEDRICHS-LEWY?? condition (known as the CFL condition) ££ sup,,cr g | (v)] <
1, which imposes that the numerical velocity of propagation % is at least equal to the real velocity of
propagation; under this condition one has a < U* < 8 for all ¢ and all n > 0, and it is exactly the condition
which imposes that U™ is a nondecreasing function of U} ; and of U}".;, and the I'(Z) contraction property
follows. Of course this approach creates solutions such that ||Thu(:,t) —u(:, t)||1 < ||Thuo —uo||1, which gives
a BV estimate if ug € BV (R). This scheme is only of order 1 and tends to smooth out the discontinuities too
much, but higher order schemes are not order preserving; there is however a class of higher order schemes,

called TVD schemes (total variation diminishing), for which the total variation is not increasing.

11 Julian D. COLE, American mathematician. He works at Rensselaer Polytechnic Institute, Troy, NY.

12 A scalar equation in N variables is not a good physical model for N > 1, because it implies a very
strong anisotropy of the space (due to a particular direction of propagation).

13 Stanislav Nikolaevich KRUZHKOV, Russian mathematician, 1936-1997. He worked at Moscow State
University.

4 James G. GLIMM, American mathematician, born in 1934. He works at State University of New York,
Stony Brook.

15 Frangois MURAT, French mathematician, born in 1947. He works at University of Paris VI (Pierre et
Marie CURIE).

16 Ronald J. DIPERNA, American mathematician, -1989. He worked at University of California in Berkeley.

17 Barbara Lee QUINN KEYFITZ, American mathematician. She works at University of Houston.

18 Michael G. CRANDALL, American mathematician, born in 1940. He works at University of California,
Santa Barbara.

19 Andrew J. MAJDA, American mathematician. He works at the COURANT Institute for Mathematical
Sciences, New York University.

20 Hans LEWY, German-born mathematician, 1904-1988. He received the WOLF prize in 1984. He emi-
grated to United States in the 30s and worked at University of California, Berkeley.
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Obtaining BV estimates for general systems of conservation laws, or more generally obtaining some
estimates on fractional derivatives using Interpolation spaces is certainly a difficult open question, and some
new ideas or some new functional spaces may be needed for that important question.
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21-724. Interpolation spaces
Luc TARTAR, WEAN Hall 6212, 268-5734, tartar@andrew.cmu.edu

20. Monday May 1, 2000.

The possibility of defining the spaces (Ey, E1)gp for 0 < 6 < 1 and 1 < p < oo as spaces of traces has
been mentioned, and it is time to explain the proof. One notices that if t K (t,a) is bounded then one can
decompose a = ag(t) + a1 (t) with ||ag(t)||o + t]|a1(t)||1 < 2K (t,a) < Ct® and therefore a;(t) — 0 in E; as

t — o0, and because the traces are taken as t — 0, there will be a change of ¢ into %

Proposition: Let 0 < 6 <1land1<p<oo. Ifv(t) € Eyg and v'(t) € E; with t°||v(t)||o € LP(0, 00; %) and
t?||v'(t)|]1 € LP(0,00; %), then v(0) € (Eo, E1)p,p. Conversely, every element of (Eo, E1)s,, can be written
as v(0) with v satlsfylng the preceding properties.

Proof: Let a € (Ey, E1)pp, i.e. e "?K(e",a) € IP(Z). For n € Z one chooses a decomposition a =
aon + a1, With ag, € Eg,a1, € Eq such that ||ag.n|lo + €*||a1n]]1 < 2K(e™,a), and one notices that
l|ao.nt1 — @onlls = ||a1,nt1 — a1nl]1 < 26~ FVK(e"t1 a) + 2e " K (e, a) < 4e " K (e", a). One defines the
function u with values in Ey by u(e™) = ao,n, and one extends u to be affine in each interval (e™,e™*!);
this gives ||u(t)]|o < max{||aonllo,||@on+1ll0} < 2K(e",a) < 2e K(e™,a) on the interval (e™,e™*!); in
the case p = oo, one deduces that t~?||u(t)|lp < e "%2e K(e",a) on the interval (e",e"*!) and there-

fore t~°||u(t)|lo € L>(0,00; %), while if 1 < p < 0o one has fenH t 0P u(t)|[f & < e 0P (2e)PK (e, a)?

en
and therefore ¢~ 9||u(t)||o € LP(0,00; %). On the interval (e",e"*!) one has u/ = “%2£1-20=  and there-
fore ||u/(t)]]1 < % = o 16_2"K(e ,a); in the case p = oo, one deduces that t2~9||u'()||; <

e2=0(nt1) _L_e=2n[(en q) = 4: - Le~OnK (e a) on the interval (e”,e™*!) and therefore t2~%||u'(t)||; €
meu%tywmmﬂ1<p<unomh%f" <%Wﬂw(mpﬂ<e@ﬂW“W@§T*%naw,V:
Ce ?"PK(e",a)P and therefore t2~°||u/(t)||; € LP(0, 00; %). Deﬁnmg v(s) = u(L) gives v(s) > aas s —0
and moreover t°||v(t)||o € LP(0,00; %) and ¢°||v'(t)|; € LP(O oo; &),

Conversely, assume that t||v(t)||o and t°||v/(¢)||; belong to L’fJ (0,00; 9). Then for t > ¢ > 0 one
has ||v(t) — v(e)|l1 < f; [[v/(s)||1ds < Ct'7%, so that v(t) tends to a limit in Ey + E; as s tends to 0.
Using then the decomposition v(0) = v(t) + (v(0) — v(t)), one has t?||v(t)|[o € LP(0,00;%), and from
IO —v@ll < L [*[v'(s)||: ds one deduces by HARDY’s inequality that t°~*|[v(0) — v(t)||; € L?(0, c0; %);
then one changes ¢ into 1, or one notices that it says that v(0) € (E1, Eg)1—g,p, which is (Eo, E1)g,,®

The initial definition of trace spaces by Jacques-Louis LIONS and Jaak PEETRE used four parameters
and considered functions satisfying t*°u € LP9(0, co; Ey) with t**u’ € LP*(0, oco; E1), for suitable parameters
ag, a1, po, p1; they had noticed that the family depended on at most three parameters by changing ¢ into ¢*,
but they had also introduced the important parameter #; it was Jaak PEETRE who later! found that the
family depended only upon two parameters, and developed the simpler K and J methods that have been
followed in this course.

With the same arguments used in the preceding proposition, the characterization of trace spaces is
similar to studying the following variant, where one defines Ly, p, (t a) = infg—gg+ta; ||aol[h° + t||a1|[5*, and
one defines (Eo, E1)g ;1. as the space of a € Eq + Ey such that t %Ly, ,, (t,a) € LP(0,00; %). The lack of
homogeneity may look strange, and if trace spaces had not been defined before it would not even be obvious
that (Eo, E1)sp;L is a vector subspace, and it is actually a space already defined.

! Jacques-Louis LIONS’s interests had switched to other questions concerning the use of Functional Anal-
ysis in linear and then nonlinear partial differential equations, in optimization and control problems and in
their numerical approximations. After writing his books with Enrico MAGENES, his interest in interpolation
spaces became marginal, but he used the ideas when necessary; after finding a nonlinear framework for
interpolating regularity for variational inequalities, he thought of a generalization and he probably found
that it was a good problem for a student instead of investigating the question himself. Developping this
idea made the first part of my thesis, and the second part answered another (slightly academic) question
that he had thought of, and I characterized the traces of functions satisfying u® € L2 (O,T; ! (Q)) and
gu ¢ 12(0,T; L2(Q)).
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Lemma: For 0 < §# < 1 and 1 < pg,p1,p < o0, one has (Eo, E1)opr = (EO,El)gﬁ, with @ defined by
% = 1582 and p = ((1 - 0)po + 6 p1)p.

Proof: If one defines K,(t,a) = (infa—qg+a, ||aoll§ + tq||a1||‘{)1/p and one lets ¢ tend to oo, one obtains
K (t,a) = infagyta, max{||aol|o,?||a1]|}, and one has Koo (t,a) < K(t,a) < 2K(t,a) for all a € Ey + E;.
Geometrically, for the GAGLIARDO set associated to a, i.e. {(zo, 1), there exists a decomposition a = ag+a;
with ||ao||o < o, ||a1]]1 < z1}, the line g = tz; intersects it at zg = Koo(t,a), 21 = M Similarly one
defines Lo (s,a) = infa—qq+q, max{||ao|[5°, s ||a1|[}*}, and one has Ly (s,a) < Ly p, (s,a) < 2Loo(s,a) for
all a € Ey+ F1, and in order to find the same point of the GAGLIARDO set one chooses s = tP* K, (¢, a)P° P,
so that Koo (t,a)P0 = g Keolt:a)™

tP1
tP* Koo (t,a)P° P! is a good change of variable, because ¢t — K (t,a) is nondecreasing and ¢

nonincreasing, and one deduces that % = C(t)% with min{pg,p1} < C(t) < max{pg,p:1} for all t > 0,

and therefore [[° s %PLo(s,a)P % < oo is equivalent to [~ t OPP1K (s,a)PPo 0P(Po—P) dt < o5 This
gives the condition p = ppo — 6 p(po — p1) = (1 — 0)pop + 6 p1 p, and 0p=0pip=p— (1—0)pop, so that
(1—60)p = (1 - 6)pop and eliminating p between these last two formulas gives the desired formula for 6.8

, and one deduces Loo(s,a) = Kuo(t,a)P?; then one notices that ¢ — s =
Koo(tya) iS
t

Corollary: If w € W?(RY), then its trace on =y = 0 satisfies you € W/?'»(RN-1) = BL/P'P(RN-1) =
(Wl,p(RNfl)’ Lp(RNfl)) Vo

Proof: Using zy as the variable ¢ (and using only the fact that u € W'?(RY)), one finds that u € W"P(R")
implies u € LP (0, 00; W'?(RN~1)) and u' € L?(0,00; LP(RN~')), and this corresponds to § = % for By =
WiP(RN-1) and E; = LP(RN~1)m

In defining interpolation spaces, one has not really used the fact that Ey and F; are normed vector
spaces, and one can extend the theory to the case of commutative (Abelian) groups, and moreover the norm
can be replaced by a quasi-norm, satisfying [a] > 0,[—a] = [a] for all a, [a] = 0 if and only if a = 0, and the
c-triangle inequality [a + b] < ¢([a] + [b]) for all a,b (one calls then [] a c-norm). One notices that if one
defines p by (2¢)? = 2 then there is a 1-norm || - || such that ||a|| < [a]? < 2||a|| for all a, and such a norm is
defined by ||a|| = infa:Z" a;]?, where the infimum is taken over all n and all decompositions of a.

One can define the sf);mlce (Eo, E1)p,p if Eg, By are quasi-normed Abelian groups, and with 0 < § < 1 as
usual, but for a larger family of p, as one may take 0 < p < oo, obtaining a quasi-normed space in the case
0 < p < 1,even if Ey and FE; are normed spaces.

If ||-]| is a 1-norm and for & > 0 one defines [u] = ||u||*, then [-] is a c-norm if one has (a+b)* < c(a*+b%)
for all a,b > 0, and one checks easily that one may take c = 1 if & < 1 and ¢ = 2! if @ > 1. One may then
consider the variant Ly, p, (¢,a) for 0 < pg,p1 < 00, as a particular case of using quasi-norms.

ai[
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21. Wednesday May 3, 2000

For characterizing the dual of (Eo, E1)sp for 0 < § < 1 and 1 < p < o0, one needs a few technical
results.

First of all there is a new hypothesis, that Eg N E; is dense in Ey and dense in Ey; this implies that E{
and E are subspaces of (EqN E;)’, because if jy is the injection of Ey N E; into Eo, then jI is a continuous
mapping from Ej into (Ep N E1)" whose range is dense, while the hypothesis that the range of jy is dense
implies that j{ is injective. Therefore Ej N E} and Ej + E{ are well defined. One denotes || - ||, the norm
on Ej and by || - ||«% the norm on Ej, for k£ =1, 2.

Lemma: Assume that FgNE; is dense in Ey and dense in E;. For t > 0, the dual space of EqN E; equipped
with the norm J(t,a; Eo, E1) = max{]|allo,t|al|1} is Ej + E{ equipped with the norm K (1,b; E}, E}) =
infyy 14, = (|[box0 + 7 |b1]s1)-
Proof: If a € EyNE; and b € Ej+E] with a decomposition b = by+b1,b9 € Ej,b; € E7, then one has |[(b,a)| <
|{bo, a)| + |(b1, a)| < |lbol+ollallo + Z|lballsat]lalls < (llboll+o + 1||bl||»=1)mé\X{llalloﬂf||a|| }, and therefore by
minimizing among all the decompositions of b one deduces that |(b,a)| < K (},b; Ej, E})J(t,a; Eo, E1) for
allaEEgﬂEl,b€E0+E t>0

Conversely, let L be a linear continuous form on Ey N E; equipped with the norm J(t,a; Ey, E1),
and let M = ||L||, so that |L(a)] < M max{||allo,t||a|l1} for all @ € Ey N E;; one uses HAHN-BANACH
theorem in order to find a linear continuous form L, on Ey X E;, equipped with the norm ||(ag,a1)|| =
max{||ao|lo, ¢ ||a1]1}, which extends the linear form L defined on the diagonal of (Eq N E;) x (Ep N 1 Ey) by
L(a,a) = L(a), for which one has |L(a,a)| = |L(a)| < M max{||allo,t||a|:} = M ||(a,a)||, so that ||L|| < M
and therefore there exists an extension L, on Ey X E; satisfying ||L«|| < M. Any linear continuous form
on Ey x E; can be written as (ag,a1) — (bo,ao) + (b1,a1) with by € Ej and b; € Ej, and the norm
of that linear continuous form is obviously < ||bo||x0 + $||b1||«1, but it is actually equal to that quantity
because one can choose ag € Ey with ||ag|lo = 1 and (bg,ao) = ||bo||«x0 and a1 € E; with ||a;||; = 1 and

¢
(b1,a1) = 7|[b1|l+1 (again by an application of HAHN-BANACH theorem); one deduces then that L(a) =

E(a,a) = <b0,a> + <b1,a> = <b0 +b1,a) for all a € Fg N Ey, and ||b0||*0 + %”bl”*l < M, so that L is given
by the element b = by + by € E} + E}, which satisfies K (},b; E), B}) < M.

It remains to show that b is defined in a unique way, i.e. that (b,a) = 0 for all a € EyN E; implies b = 0
indeed, because |{by,a)| = |(b1,a)| < C|la||1 for all a € Ey N E; and Eg N E; is dense in Ey, by extends in
a unique way to an element of E], which then coincides with —b; on the dense subspace Ey N E; of E, so
that one has by, b; € EjN E{ and by + b; = 0.

Lemma: Assume that Eq N E; is dense in Eg and dense in E;. For s > 0, the dual space of Ey + E;
equipped with the norm K(s,a; Ey, E1) = infs4,-a(]|ao]lo + s]|a1||1) is E{ N E] equipped with the norm
J (36 By, By) = max{|[bllso 5 [[bll+1 }-

Proof If a € Eg + E; and b € Ej N E] with a decomposition a = ag + ai, then one has |(b,a)| <
(b, a0)| + (b, a1)| < [[Bllsollaollo + § [[bll«1slaslls < max{|[b]l.o, 5 ||b||*1} |lallo + s|lall1), and therefore by
minimizing among all the decompositions of a one deduces that |(b,a)| < J(2,b; E}, E{) K (s, a; Eo, E1) for
alla € Ey+ Eq,b € EjN Ef,s > 0.

Conversely, if L is a linear continuous form on Ey + E; equipped with the norm K(s,a; Ey, E1), then
it is a linear continuous form on Fj and also a linear continuous form on F; and therefore L is given by an
element b € EyN E7.

For computing the norm of L, for 0 < € < 1, =,y > 0 one chooses ag € Ey with ||ag|lo = z and
(b,ap) > (L—¢€)z||b||+0 and a1 € E; with ||a1||1 = y and (b,a1) > (1 —¢€)y||b]|+1, so that a = ap + a; satisfies
K(s,a; By, Ex) < o+ sy and [(b,a)| > (1 —¢&)(z ||b|«o + ¥ ||bl|+1), and therefore ||L|| > (1 — ) &lel=otulitlles
and letting ¢ tend to 0 and either z or y tend to 0, one finds ||L|| > max{||b||x0, L ||]|+1 } ™

The main result about duality for interpolation spaces, which has already been mentioned for LORENTZ
spaces, is the following.
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Proposition: Assume that Eq N E; is dense in Ey and dense in F;. Then, for 0 < 8§ < 1and 1 < ¢ < oo,

one has ((E(],El)g’q)l = (E{, E1)s,q With equivalent norms, where % + % =1

Proof. We shall prove that ((Eo,E1)s.g:7) C (Eb, E})e.q:x and (Ep, E})o g7 C ((Eo, Er)o,gx) s and the
result will follow from the identity (with equivalent norms) between the interpolation spaces defined by the
J-method and the K-method.

In order to prove the first inclusion, one takes a’ € ((Eo, E1),q.s) , and as o’ defines a linear continuous
form on Ey N E;, a preceding lemma asserts that for every € > 0 there exists a sequence b, € EyN E;
such that J(2",b,; Eo, E1) = 1 and K(27",d'; Ej), E1) — € min{1,2""} < (d/,b,). For a sequence a,, such
that 2-9"a,, € 19(Z), one defines a(a) = Y, ; o bn, and one has a(a) € (Ey, E1)g,q,7 with |la(@)]|s,g0 <
12"y, ||, because of the normalization choosen for the sequence b,,; the particular choice for the sequence
b, implies 3, 7 o (K (27", a'; By, By) — e min{1,27"}) < (a’,a(e)) < [la'|] lla(@)llo,q:7 < lla'[] |12~ anllq
(notice that oy, min{1,27"} € I'); by letting & tend to 0 one deduces that ), ., a,K(27",a'; Ey, E]) <
|la’[|]|27¢"a,||q for all such sequences a,. Because Y, ., 0 B, < M|[27%"a,]||, for all sequences ay, is
equivalent to |[2"3,||;, < M, one deduces that |[2°"K (27", a’; B}, E})||¢ < ||@|], i-e. a’ € (E}, E})o.q:k-

In order to prove the second inclusion, one takes a’ € (Eg, E1)g,q;7, and one writes a’ = ) a;, with
al, € E)NE; and 279" J (2", al,; By, E}) € 19 (Z); then for a € (Ey, E1)g,q,x one has |(a’,a)| <Y |(al,,a)| <
> J (2% ap; Eg, YK (27", a5 Bo, By) < M ||2°"K(277, a; Eo, E1)|lq < M [|allg,q;c.®

When I was a student I had noticed that for 0 < 6 < 1 the space (Ej, E{)¢,1 is actually a dual,
although not the dual of (Ey, F1)g,00; I had mentioned that to my advisor, Jacques-Louis LIONS, and he
had told me that Jaak PEETRE had already made that observation'. The idea is to observe that I! is the
dual of ¢, and that one can define a new? interpolation space modeled on cg, considering that the usual
interpolation space indexed by 6,p is actually modeled on [?(Z). For 0 < § < 1 and two BANACH spaces
Ey, E; continuously imbedded into a common topological vector space, one defines the space (Eg, E1)g;c, as
the space of a € Ey + E; such that 279" K(2",a) € cy(Z), equipped with same norm as (Ey, E1)s,00 (this
space is the closure of EqgN E; in (Eg, E1)g,00). The proof of the previous Proposition easily extends to show
that the dual of (Eo, E1)e,c, is (Eg, E1)s,1 With an equivalent norm.

Another useful result concerning interpolation spaces is the question of compactness.

Proposition: If A is a linear mapping from a normed space F' into EgN E1, such that A is linear continuous
from F into Ey and compact from F' into E;, then for 0 < 8 < 1 the mapping A is compact from F' into
(Eo, Eh)s,1 (and therefore compact from F into (Eg, E1)s,p for 1 < p < 00).

If B is a linear mapping from Ej + F; into a normed space G, such that B is linear continuous from Fj,

into G and compact from FE; into G, then for 0 < 6 < 1 the mapping B is compact from (Ey, E1)g 0 into G
(and therefore compact from (Eg, E1)g, into G for 1 < p < c0).
Proof: If ||fnllFr < 1, then A f, is bounded in E, and belongs to a compact subset of E;, so that a
subsequence f,, converges in E; and therefore is a CAUCHY sequence; one has ||z|[o1 < C ||z|[s7°||z||¢ for
all z € (Ey, E1)s,1, and applying this inequality to # = f,, — fm’ one deduces that A f,, is a CAUCHY
sequence in (Ey, E1)s,1, and therefore A is compact from F' into (Eo, E1)g,1-

Let ||en||s,00 < 1 so that for each ¢ > 0 there exists a decomposition e, = €2 +e} with ||€2||o+¢lel||1 <
2K (e,e,) < 2¢% then ||Bel|lc < 2||B||z(r,,c)e%, and Be;, belongs to a compact subset of G so that
a subsequence Be}, converges in G, and therefore for this subsequence one has limsup,, .,/ o, [|Bes, —
Bey,|le < 4]|B||(g,,c)€’; using CANTOR’s diagonal subsequence argument one finds that Be, contains a
converging subsequence in G, and therefore B is compact from (Ey, E1)g, 00 into G.W

1 Tt is quite natural that in the process of doing research one finds results which have already been found
before, and Ennio DE GIORGI had once said “chi cerca trova, chi ricerca ritrova” (the first part reminds
of the “seek and you will find” from the gospels, but the play on the prefix does not work well in English,
although one could replace seek and find by search and discover in order to use research and rediscover).
Sometimes, one may find the result by a different method and it may be worth publishing if the new proof
is simpler than the previous one, or if it contains ideas which could be useful for other problems; of course,
one should mention the author of the first proof, even if he/she has not published it.

2 Obviously, one can describe more general classes of interpolation spaces, and Jaak PEETRE has actually
developed a quite general framework for doing that.

94



21-724. Interpolation spaces
Luc TARTAR, WEAN Hall 6212, 268-5734, tartar@andrew.cmu.edu

22. Friday May 5, 2000.

In 1974/75, I spent the year at University of Wisconsin, Madison, and I often discussed with Michael
CRANDALL; among our joint results that we did not publish there was a question related to interpolation.
The motivation for looking at the problem was some kind of generalization which had been published, for
which it was not clear if there was any example showing that it was indeed a genuine! generalization, and
as our result did not cover the same situations than the published theorem, it might well have been more
general than the previous ones in some cases. Although we started by proving some observations for linear
mappings, and then extended the method to a nonlinear setting, I present the results in reverse order.

Proposition: Let Q be a bounded (LEBESGUE) measurable subset of RY and let F be a nonlinear mapping
from L*°(Q) into itself satisfying the following properties:

i) F is LIPSCHITZ continuous from L*°(f2) into itself,

ii) F is monotone (in the L? sense), i.e. [i,(F(u2) — F(u1))(uz —u1) dz > 0 for all uy,us € L=(R),
then for every p > 2, F is LIPSCHITZ continuous from LP(?) into itself (i.e. F is LIPSCHITZ continuous with
respect to the L? distance, and hence it extends in a unique way as a LIPSCHITZ continuous mapping from
L?(Q) into itself).

Proof: Let M, be the LIPSCHITZ constant for F' with respect to the L distance. For 0 < ¢ < MLW and
v € L*°(Q) there is a unique u € L*° () solution of the equation u+¢ F'(u) = v, as it is the unique fixed point
of the mapping u — v — & F(u), which is a strict contraction; moreover the mapping v — u is LIPSCHITZ
continuous with a constant < # and if one deﬁnes the mapping G by G¢(v) = v — u = ¢ F(u) then

G is LIPSCHITZ continuous with a constant < =2 M

For vi,v, € L*®((), one subtracts u; + EF(ul) = vy from ug + € F(u2) = vz and one multiplies by
F(uz)—F(w), giving e [, |F(u2) —F(w1)|? do < e [ |F(u2)—F(u1)|? do+ [ (F(u2) — F(u1))(uz —u1) dz =
Jo (F(uz) = F(u1)) (v2 —v1) dz, and therefore || G, (v2) — Ge(v1)||2 < |[vz —v1]|2. In particular G, has a unique
extension to L?(2) (which is a contraction).

Having shown that G, is LIPSCHITZ continuous on L* () with a constant < 1i£’1ﬁm and LIPSCHITZ
continuous on L?(Q) with a constant < 1, one deduces by nonlinear interpolation that G, is LIPSCHITZ

continuous on LP(Q2) with a constant < (; EMM ) if 0 is defined by i1-6 4150 2 , and as one has § = T >0

one deduces that the constant may be made small by taking e small Assumlng then that € has been choosen
small enough so that the LIPSCHITZ constant of G, in LP(Q) is < K < 1, then for every ui,us € L>(Q),
one defines v; = u; + € F(u;) for j = 1,2, and one deduces that ¢ ||F(u2) — F(u1)l||p = ||G(v2) — G(v1)|]p <

K |[|vs — Ul||p z K (|luz —wallp + € ||F(u2) F(u1)llp), and therefore ||F(uz) — F(u1)|lp < Mp|luz — walp

with M, 5(1 By L]

In the case of linear mappings, the idea is that one may use unbounded (densely defined) closed operators
by considering their resolvents, i.e. the bounded operators (A — AI)~! for some A\ € C. In particular, if for
a real HILBERT space H a closed unbounded operator A has a dense domain and satisfies (A u,u) > 0 for
all u € D(A), then for A < 0 the resolvent exists and is a contraction. Then for £ > 0 the bounded operator
I—(I+¢eA)™!is also a contraction, while if 4 is bounded its norm is O(¢), and by interpolation it will have
a small norm in an interpolation space and it will show that the operator is bounded in that space. The

! My advisor had once mentioned that when reading a too abstract article one should first look at the
examples. On a preceding occasion, I had applied his advice and shown that a generalization of the LAX-
MILGRAM lemma was not a genuine one, and that all the examples of the proposed new theory could be
dealt with in a classical way, once a particular observation had been made; a friend insisted that I publish the
observation, and it became my shortest article. Of course, in such situations, it is better to avoid mentioning
names, and one should remember that even the best mathematicians have made mistakes (I was told that
a great mathematician had his ego a little bruised after publishing a perfectly good proof, when he realized
that no object satisfied all the hypotheses of his theorem, which therefore was a quite useless one).
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preceding Proposition has followed the same scenario in a nonlinear setting, but one can deduce more in a
linear setting by using the spectral radius of an operator?.

Lemma: Let A be a linear mapping from Ej + E; into itself satisfying A € L(Ey, E¢) with spectral radius
po and A € L(Ey, E;) with spectral radius p; (where Ey and E; are BANACH spaces). Then for 0 < 6 <1
and 1 < p < oo, the spectral radius p(8,p) of A on (Ey, E1)g,, satisfies the inequality p(8,p) < pg °pf.

Proof: One uses the fact that p(A) = lim, o, ||A"||*/™, and the fact that I[A™ | £((Bo,B1)0.p,(Fo,Er)e.p) <

C ||A"||1£zgo E0)||A"||%( F:,5;) With C depending upon which equivalent norm is used for (Eo, E1)s,p (but not
on n); taking the power % and letting n tend to co gives the result.®

If f is holomorphic, then the spectrum of f(A) is the image by f of the spectrum of A, and using the
preceding lemma one deduces that if Ky is the spectrum of A in Ey, K; is the spectrum of A in E;, and
Ky p is the spectrum of A in (Ey, E1)g,p, then for every holomorphic function f one has max.ck, , [f(2)| <
(max ek, |f(2)])} % (max.ck, |f(2)])?. I once asked Ciprian FOIAS? if he knew some situation where the
spectrum strongly depends upon the space used, but I did not understand his answer.

I do not know any good example of applications of these results obtained with Michael CRANDALL,
which is one reason why I never wrote that proof before, but I find interesting the fact that with respect
to interpolation a monotonicity property is almost like a LIPSCHITZ condition. Actually, the last inequality
giving a localization of the spectrum suggests that one could develop notions of interpolation of sets.

Finally, I want to mention a result which I found a few years ago, while I was teaching a graduate course
on mathematical methods in control, because I wanted to explain the following result of Yves MEYER?,
which he had used in connection with a control problem?®.

Lemma: Let du be a RADON measure on R and 7' > 0. A necessary and sufficient condition that there
exists a constant C(T) such that [ |Ff(£)[>du < C(T) fOT |f(z)|? dz for all function f € L?(R) which
vanish outside (0, T) is that supyc, p([k, k +1]) < C' < co.B

After looking at his proof, I found that with very little change one could prove the following variant.

Lemma. Let du be a RADON measure on R. The condition supy¢, p([k, k + 1]) < C' < oo is equivalent to

) 1/2 1/2
the existence of a constant C such that [ |Ff(¢)]*du < C (fR |f(z)|? dm) (fR(l +z?)|f(z)|? dx) for
all functions f such that [(1+ 2?)|f(z)|? dz < co.m

Using the caracterisation of the space (Ey, E1); /2,1 of Jacques-Louis LIONS and Jaak PEETRE, it
means that one can replace the right side of the inequality by the norm of f in a corresponding inter-
polation space; here E; is L?(R) for the LEBESGUE measure dzr while Ey is L? for the measure (1 +
#?)dz, and it is not difficult to characterize (Eo, E1)/2,1 as the space of functions f € L?(R) such that
D k1 (f2k§|w|§2k+1 2k|f(cc)|2)1/2 dz < 0o. For proving that the condition is necessary, Yves MEYER consid-

ers a function ¢ € L?(R) whose FOURIER transform does not vanish on (0,1) (if ¢, converges to dp then
F o, converges to 1), and applies the inequality to f defined by f(z) = e*"*2¢(z) so that for ¢ € [k, k + 1]

2 If A€ L(E,E) for a BANACH space E, the spectrum of A is the nonempty closed set of A\ € C for which
A — AT is not invertible, and the spectral radius p(A) is the maximum of |A| for A in the spectrum of A.

3 Ciprian FOI1AS, Rumanian-born mathematician. He was my colleague in Orsay in 1978/79. He works
at Indiana University, Bloomington.

4 Yves F. MEYER, French mathematician, born in 1939. He was my colleague in Orsay from 1975 to 1979.
He works at Ecole Normale Supérieure, Cachan, France.

5 The title of his article mentioned the control of deformable structures in space, but only contained
a result of control for the scalar wave equation, although a little idealistic, as the control was applied at
a point inside the domain. I guess that Jacques-Louis LIONS had understood that the control of flexible
structures in space is an important question, but because Elasticity with large displacement is a too difficult
subject, and even the linearized version of Elasticity is a complicated hyperbolic system, he had started by
considering questions related to a scalar wave equation, but he had probably forgotten to point out how far
these questions really are from controlling large deformable structures.
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one has |Ff(£)| > v = min,¢(o,1) |[Fe(n)|. That the condition is sufficient is a consequence of the following
lemma.

Lemma: There exists a constant C” such that Y, ., supecpy g1 [FF(E)1? < C" ([ |f(2)? da:)l/2 (Jr(1+
z?)|f(z)|? d:c)l/2 for all functions f € L?(R) such that [(1+ z?)|f(z)*> dz < oo.

1/2 2 \1/2
Proof. Let a, = (fi pq) [FF(€)1d€)"" and b = (., +1]|0’fa{5<5>| d¢)
functions of the SOBOLEV space H'((0,1)) gives supg ek k1] [FF(E)? < Kax(af + b2)1/2, and summing in

. . 1/2

k and using CAUCHY-SCHWARZ gives )., _, SUDge [k o+1] |Ff(é))? < K? (fR |.7-"f(§)|2d§) / (‘]‘R(|f'f(§)|2 +
|dfoE(5) |2 d{)l/ 2, which is essentially the desired result.m

; the usual proof of continuity of

With the remark concerning interpolation, and exchanging the roles of f and Ff, this lemma says a
little more that the fact that the functions from (H'(R), L*(R)), /2,1 are continuous and tend to 0 at oo, as it
gives some precise way how the functions tend to 0 at oo, as it implies that Y, SUp,¢(n.ni1) [u(2)]? < 0.

In the case of functions with support in (0,7"), my variant gives the same growth in 1 + T found by
Yves MEYER, who notices that the growth is optimal for large values of T, because if f is the characteristic
function of (0,T), then [, |Ff(£)|*dé = c¢T. In the case of RN one can easily generalize the proof and
consider RADON measures dy > 0 for which there exists a constant C' such that u(Q) < C for every cube

of size 1, and consider functions f such that 3= (for|zj<orss 2’”\’|f(av)|2)1/2 dz < oo; for functions with

support in a bounded set K, one obtains a constant growing like (1 + diameter(K )) , but it is not clear to
me if the diameter of K is the correct geometric quantity to use in such an inequality.
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