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0. Introduction

This course describes Optimization/Optimal Design problems which lead to Homogenization questions,
together with the method to treat them that Frangois MURAT and I had developed, mostly in the 70s. I
adopt a chronological point of view, which I find best for describing how some new techniques (which are
often misattributed nowadays) were introduced for overcoming some difficulties that we had encountered, or
for generalizing a particular result that we had found useful in our search.

There are many ways to practice research in Mathematics, and I hope that the description of the way
we thought in front of new questions could help some to experience for themselves the extraordinary feeling
of discovery; it must be said, however, that one rarely finds oneself in exactly the same situations that others
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had experienced before. What one finds may also have been known to others, a fact that Ennio DE GIORGI
had resumed in “Chi cerca trova, chi ricerca ritrova”?.

In a few occasions it had probably been useful that I did not know the approach that others had followed
before, as the one that I created appeared to be different and to offer new possibilities: the knowledge of an
old method often makes it difficult to invent a new one, and this is an important obstacle in research.

Although the difference between exploration and exploitation is quite obvious for any oil engineer, many
researchers in Mathematics spend their life exploiting methods invented by others, mimicking what they have
read or heard. There is nothing really wrong about that behaviour for those who understand their role in the
scientific community as that of soldiers of an army working for the benefit of the whole community. However,
it is a potentially destructive behaviour that some pretend to have invented the ideas that they have read or
that they have been taught directly by more creative people, even if they simply misattribute them to some
of their friends instead, because too often they have not completely understood the whole potential of the
ideas that they use, and they may transmit twisted informations with the main effect of misleading part of
the army, and playing therefore the same role as traitors.

Having been raised in a religious background, I do not attribute my mathematical ability to my own
efforts and therefore I consider it a duty to put the gift that I was given to the service of others. I have
noticed that religious teachers from the past seem to have liked using parables, stories so simple that their
students asked about their meaning, and oral tradition then transmitted us the initial story, the questions of
the students, and one “example” given by the master; because it was so easy to remember, the teaching had
therefore been transmitted intact by people who did not even understand it, unaware of the innumerable
applications that the little story contained. Some mathematicians behave in this way too, writing general
theorems but giving only one or two examples, or they may simply teach a general theory by explaining one
example in detail, thinking that every trained mathematician will automatically see what the general idea
is. I have done that “mistake” often, and after inventing a method applicable to all variational problems,
I had been quite upset when I had found written that I had only solved the case of a diffusion equation,
wondering how someone writing such a stupid statement could consider himself a mathematician, and why
his coauthors had not jumped out of their seat at such an idiotic remark that could well be attributed to
them too. Jealousy, the observation that mathematical ability is too sparsely distributed, or the saying “au
pays des aveugles les borgnes sont rois”,? come to my mind for explaining the behaviour of those who try
to mislead students out of the right path, but it may well be the result of their complete lack of moral
education.

For some mysterious reason, Frangois MURAT and I were the first who put together the various pieces of
the theory that I will describe, and I will explain what other people had done according to my information. I
had taught similar lectures in 1983, before some people embarked in a systematic campaign of misattribution
of ideas and results: everyone with a minimal mathematical ability may quickly identify the names of those
who have indulged in intentional misleading, but this does not mean that they have not themselves had some
genuine idea, in which case I will mention their name for that.

1. A counter-example of Francois MURAT

In 1970, Frangois MURAT worked on an academic problem of optimization that had been proposed by
Jacques-Louis L1IONS [Lil], and he found that it had no solution [Mul]. His result was unexpected,® and
as we were sharing an office in Jussieu, we started a long and fruitful collaboration, first discussing some

! From the sentence “Ask and it will be given to you; seek and you will find; knock and the door will be
opened to you.” in the gospels (Matthew 7:7, Luke 11:9), the middle part has given rise to the French saying
“Qui cherche trouve”, equivalent to the Italian “Chi cerca trova”. The play on the prefix, “re” in French,
“ri” in Italian, does not work as well in English (one could replace seek and find by search and discover in
order to use research and rediscover).

2 In the land of the blind, a one-eyed man is king.

3 We had not heard about the work that Laurence C. YOUNG had done in the 40s [Yo]. I had first met
him in 1971 in Madison, but I only learned many years after that he was the inventor of the objects which
I was still using under the name of parametrized measures in my HERIOT-WATT lectures in 1978 [Ta8]; it
was Ronald DIPERNA who then insisted that they should be called YOUNG measures.
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generalizations of his first idea [Mu2], and then embarking on the exploration that led us to (re)discover* the
general theory of “Homogenization”5 [Tal], [Ta2], [Ta3], [Mu3]. The initial problem that Frangois MURAT
considered was to minimize the cost function

1
J(a) = / ly(z) — 1 — 2 dz, (1.1)
0
when the state y solves the equation of state

d/ dy P _ o 1
———(a52) +ay=0in (0,1), y(0) = 1, y(1) = 2 y € H'(0, 1), (1.2)

and the control a lies in the following admissible control set
A={ala € L*(0,1),a <a < Bae. in (0,1)}, (1.3)

and as he tried to apply the direct method of the Calculus of Variations, he noticed that for a sequence
a™ € A such that

1 1
a"™ — a4 and P in L*°(0,1) weak x, (1.4)

then the corresponding sequence of solutions y,, of (1.2) converges in H'(0, 1) weak to the solution y,, of

d dYoo A B s 1
—%(a_ﬂ) Fay Yoo = 00 (0,1), ¥oo(0) = 1, yoo(1) = 2; oo € H(0, 1), (1.5)
with P P
a"% —a_ g;o in L*(0,1) strong, (1.6)
and )
J(@") = J(a_,az) :/ oo (2) — 1 — 2|2 da. (1.7)
0

Indeed, y,, is bounded in H'(0,1) and v,, = a™ ‘3’—; is bounded in L?(0, 1), but as its derivative is a” y,, which
is bounded in L?(0,1), v, is actually bounded in H'(0,1). Therefore one can extract a subsequence such
that y,, converges in H*(0,1) weak and in L?(0, 1) strong to ¥, and v,, converges in L2(0,1) strong t0 veo-
Then a™ y,, and df;—;" = aimvm converge in L?(0, 1) weak, respectively to a Y. and to dg—f = a%vw, showing
(1.6), and therefore (1.5); the fact that yo is uniquely determined by (1.5) shows that the extraction of a
subsequence is not necessary.

For a = ‘/\2_/%1 , 0= ‘/\5/"2:1, Frangois MURAT used the particular sequence

1—4/ — 22 when z € (%,2’“—“),]‘::0,...,77,—1
a”(w) 6 2n? 2n (18)

1+ Whenwe(M 2ki‘w),k:O,...,n—l,

2n ' 2n

DN | =

N[
o8,

4 We were not aware of the earlier work on G-convergence of Sergio SPAGNOLO [Sp1], [Sp2], and his work
with Antonio MARINO [Ma&Sp], or the work of Tullio ZOLEZZI [Zo]. It was only after having developed our
own approach, which Francois MURAT named H-convergence in [Mu3], that we became aware of these works
and that of Ennio DE GIORGI and Sergio SPAGNOLO [DG&Sp].

5 As in the title of my PECCOT lectures in 1977, I have adopted the term Homogenization, first introduced
by Ivo BABUSKA [Ba], for describing our general approach of H-convergence; of course, no constraints of
periodicity are considered. Some authors automatically associate the term with periodic structures, probably
because they have not understood the general framework introduced by Sergio SPAGNOLO or by Francois
MURAT and me!



corresponding to

1 z? 2.
a7:§ F’ a+:1; yoo:1+‘,1’. 111(0,1), (19)

showing that inf,c 4 J(a) = 0. He checked then that it was not possible to have y = 1 + z? in (1.2) for
some a € A, by considering (1.2) as a differential equation for a, and noticing that all nonzero solutions are

unbounded, as they are a = %ewp(%).

We were naturally led to characterize all the possible pairs (a_,ay) which could appear in (1.4) and we

found
a<a_(z) <ay(z) < a_(w)(:tg) —ab <Bae. z€(0,1), (1.10)
or equivalently
1 _
a:(m) <o S °‘+ﬂaﬁa+(m) ae. z € (0,1). (1.11)

Our proof of (1.11) easily extended to the following more general situation,® and the characterization (1.11)
corresponds to using the following Lemma, with a and % being the components of U, K being the piece of
hyperbola U; U; =1 with a < U; < .

Lemma 1: Let U™ be a sequence of measurable functions from an open set Q C RY into RP satisfying
UM — U(*®) in L>®(Q; RP) weak x and U™ (z) € K a.e. = € Q. For a bounded set K,” the characterization
of all the possible limits U(>) is U(*)(z) € conv(K), the closed convex hull of K, a.e. z € Q.

Proof. The closed convex hull of K is the intersection of all the closed half spaces which contain K, and a
closed half space H, has an equation {\|A € RP,L(\) > 0} for some nonconstant affine function L, and if
H, contains K one has L(U™) > 0 a.e. z €  and therefore L(U®) > 0 a.e. z € Q, i.e. U®(z) € H; a.e.
z € Q; the conclusion follows, if one is careful to write the closed convex hull as a countable intersection of
closed half spaces containing K.

Let V € L*°(Q; RP) be such that V(z) € clconv(K) a.e. z € Q. For each m, one can cut R? into small
cubes of size # and choose a point of conv(K), the convex hull of K, in each cube intersecting clconv(K)
and that helps creating a function W(™) € L°°(Q; RP) such that [V — W(™| < L ae. z € Q and W™
takes only a finite number of values in conv(K). On a measurable subset w of Q where W (™) is constant, we
want to construct a sequence of functions converging in L*°(w; RP) weak * to W (™) and taking their values
in K, and putting these functions together will create a sequence converging in L™ (Q; RP) weak * to wm),
and then, as the weak x topology of L (€; RP) is metrizable on bounded sets, this will ensure that one can
approach V in that topology.

Let W(™) = X € conv(K) on w, so that A = 3, 8° k%, with k* € K and the sum is finite (with all §° > 0,
> 6* = 1). We cut now w into measurab}e pieces of diameter at most %, then partition each of such pieces E
into measurable subsets E* with meas(E*) = 8*meas(E) and define the function Z™ to be equal to k* on each
such E¢. The claim is then that as n tends to oo, the sequence Z™ converges in L™ (w; RP) weak % to \; as Z™
only takes a finite number of values in K it is bounded, and it is enough to check that for every continuous
function ¢ with compact support [ ¢ Z"dx — [ ¢ Adz. As ¢ is uniformly continuous |p(z) — ¢(y)| < €
when |z —y| < 1, so if e € E one has |p(e) [y Z"dz — [, ¢ Z™dz| < e M meas(E) and |p(e) [z Adw —

6 As we had learned that weak convergence is not adapted to nonlinear problems, we were surprised to
have found such a simple characterization, and I called our common thesis advisor, Jacques-Louis LIONS,
to ask him if this was not known already. He suggested that I ask Ivar EKELAND, who told me that it had
been implicitely used in some work of CASTAING and was related to a classical result of LYAPUNOV, valid
for a set endowed with a nonnegative measure without atoms; indeed our proof extended easily to such a
general case. I only learned in 1975 from Zvi ARTSTEIN about his simple proof of LYAPUNOV’s result [Ar].

7 If K is unbounded, one denotes Kjs the elements of K of norm < M, and the characterization is that
there exists M with U®(z) € conv(Ky) a.e. = € Q. The functions U(*) such that U(*®)(z) € conv(K)
correspond to the weak x closure in L (€; RP) of the functions taking (a.e.) their values in K, and one
can easily find cases where these two sets of functions are different, showing that the weak * topology is not
metrizable on these unbounded sets.



Jg ¢ Adz| < e Mmeas(E) where M is a bound of the norm of R? on K, but as [, Z"dz =}, [ k'dz =
> 0P meas(E)k' = meas(E)X = [ Adz, one deduces | [ ¢ Z"dx — [ ¢ Mdz| < 26 M meas(w).

We left aside the construction of the E* from F, which is easy for sets in RN. L being a nonzero linear
function on RY, the measure of E (\{z|z € RY,L(z) > t} is a continuous function of ¢t which grows from 0
to meas(E) and one obtains the desired partition of E by cutting E by suitable hyperplanes ffl(ti). The
construction can be generalized when € is any set equipped with a measure without atoms, as stated by a
classical result of LYAPUNOV (in 1975, I learned from Zvi ARTSTEIN a method of his giving a simple proof
of that result as well as bang-bang results in control theory [Ar]).®

2. The independent discoveries of others

Jean-Louis ARMAND had studied at Ecole Polytechnique in Paris a year ahead of me, but we only
met almost fifteen years after graduating, not so much because we were then part time lecturers at Ecole
Polytechnique in Palaiseau (he in Mechanics, I in Mathematics), but because he had learned about my work
by going to visit Konstantin LUR’IE, in Leningrad. Jean-Louis ARMAND had been computing some Optimal
Design problems and he had been puzzled by the fact that in the meetings that he attended, various engineers
were showing results which were quite different, although they were supposed to solve the same problem;
however, he seemed to have been alone in thinking that this was the sign of a serious theoretical difficulty.
He had tried to find explanations in the litterature, and he had discovered an article by K. LUR’IE which
seemed relevant; he had then traveled to visit him in Leningrad and, having been told about my work there,
he had contacted me after his return to Paris and he had mentioned to me what K. LUR'IE had done and
what he had told him.

K. LUR’IE had extended some ideas of PONTRYAGUIN to partial differential equations, and he had been
able to obtain better necessary conditions of optimality than those given by a classical method.®? However,
he had been quite puzzled when he had discovered a situation with no function satisfying his necessary
conditions [Lu]. I do not know if K. LUR’IE had already obtained the right intuition about what was going
on before finding my article [Ta2], but he had mentioned to Jean-Louis ARMAND that it was in [Ta2] that
he had found the missing ideas that he needed. I had not given the detail of my work with Frangois MURAT
in [Ta2], but I had mentioned the work on G-convergence of Sergio SPAGNOLO [Spl], [Sp2], as well as the
work of Henri SANCHEZ-PALENCIA [S-P1], [S-P2] , which had helped us understand that our work had
something to do with the question of effective properties of mixtures; K. LUR'IE had then coined the term
G-closure for describing the set of all possible effective tensors of admissible mixtures. I will describe later
the intuitive ideas behind the necessary conditions of optimality obtained by K. LUR’IE, but it is important
to understand that the reason why we were able to go further was that we were rediscovering and extending
the ideas of Laurence C. YOUNG, while K. LUR’IE was following the ideas of PONTRYAGUIN and he could
hardly have realized that he had taken the wrong track. As pointed out by Laurence C. YOUNG [Yo], if one
has obtained some necessary conditions of optimality for an optimization problem, and one finds that only
one function satisfies them, one cannot even assert that it is the solution of the problem, unless of course one
has already proved that there exists at least one solution of the problem. PERRON’s paradox seems too naive
an example,® but the point of view of PONTRYAGUIN becomes indeed useless if the problem at hand has no
solution. On the contrary, the point of view of Laurence C. YOUNG is adapted to that kind of situation, and
it creates a relaxed problem which answers two questions: first it explains how the minimizing sequences
may have their limit outside the initial space in the case of nonexistence of solutions, then it does give the
necessary conditions obtained by following the point of view of PONTRYAGUIN, as they are just part of the
necessary conditions of optimality for the relaxed problem. I will describe these questions on an elementary

8 Tt is an idea going back to HADAMARD to push an interface along its normal for computing derivatives of
functionals, in order to obtain necessary conditions of optimality for example. Although many applications
of that idea may be formal, Frangois MURAT and Jacques SIMON have spent some time giving the method a
rigourous framework [Mu&Si]. However, the classical approach only gives conditions that must be satisfied
along the interface, while K. LUR'IE’s approach as well as ours give conditions which must be satisfied
everywhere.

9 The paradox quoted in [Yo] is as follows: let n be the largest integer; a necessary condition of optimality
is n > n?, which leaves only two candidates, 0 or 1; therefore the largest integer must be 1!
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model.

Once we had become aware of the work of Sergio SPAGNOLO, we did find there some ideas which we
had not thought about, and we checked that we could handle them with our methods, but for the question
of Optimal Design which was our initial motivation we needed more precise results. For example, Antonio
MARINO and Sergio SPAGNOLO had shown that in order to obtain all the materials with an effective tensor
equal to a general symmetric tensor having its eigenvalues between « and (3, it was sufficient to mix isotropic
materials with tensor v I with v € [@/, 8'] for some o' > 0 and 8’ < co [Ma&Sp], but in order to compute
necessary conditions of optimality for questions of Optimal Design we needed a more precise characterization,
and we were able to obtain one in dimension 2. As we will see the question of optimal bounds has two sides,
one where one must prove inequalities that must be satisfied by every mixture using given proportions, and
we had found a method for doing that, and one where one must build particular mixtures and compute their
effective tensors, and we used repeated layering for that, as Antonio MARINO and Sergio SPAGNOLO had
done, but they had not addressed the first question.

I am not sure if we had found reference to the work of Sergio SPAGNOLO before reading some work of
Tullio ZOLEZZ1, and one of his articles had puzzled us for a while, as we thought that one of his theorems
contradicted some of ours [Zo]. The puzzling theorem stated that if a sequence a™ converges weakly to a
in L°°(€Q) then the corresponding sequence of solutions u, converges weakly to the solution associated to
a+. Francois MURAT thought that some nuance in Italian might have tricked us in mistranslating what
was meant, but as we were pondering if “debolmente” could mean anything else than weakly, it suddenly
appeared that our mistake had been to read correctly weakly and to interpret it incorrectly as weakly x, as
indeed it was the first time that we had seen any use of the weak topology of L () in a concrete situation;
we understood then why there was a reference to an article of Alexandre GROTHENDIECK, who had shown

that convergence in L () weak implies strong convergence in L} () for every finite p.

In the early 70s, Jean CEA and his team in Nice had been performing some numerical computations for
similar problems of Optimal Design than the ones which I had been studying with Frangois MURAT. We had
been aware of some work by Denise CHENAIS [Ch], which means that if one imposes some kind of regularity
condition on an interface between two materials then the set of corresponding characteristic functions belongs
to a compact subset of LP(f2) for p < oo, and therefore a classical optimal solution exists; our work had
suggested that if one does not impose such a condition there may not exist any classical solution, in which
case one has to use the generalized solutions that we had been studying, corresponding to mixtures.

In 1974, after my talk containing the necessary conditions of optimality described in [Ta2], I had not
been able to convince Jean CEA that the apparition of mixtures was a real possibility that one had to
consider, and he might have been mistaken because of a result which he had obtained a few years before
with K. MALANOWSKI [Cé&Mal, corresponding to (4.1)/(4.3) with g(z,u,a) = f(z)u, for which a special
simplification occurs and a classical solution exists. For a given triangulation, one of the numerical methods
that Jean CEA had tested consists in choosing each triangle to be entirely made of only one material, and I
could not convince him that if one refines triangulations enough one may start to see oscillations and that
our analysis is important for that reason. Had the computers been more powerful in those days, he might
indeed have discovered numerical oscillations in refining his triangulations, but the cost would have been
prohibitive at the time and only coarse triangulations were used. The classical way for obtaining necessary
conditions of optimality by pushing the interface in the direction of its normal, an idea of J. HADAMARD
that is often only used at a formal level but which Frangois MURAT and Jacques SIMON have put into a
rigourous framework [Mu&Si], gives conditions that must be satisfied on the interface, while I was obtaining
necessary conditions which are valid everywhere; in his method J. CEA could switch any triangle from one
material to another, and therefore there was no real interface in his approach and this led him to some kind
of discretized necessary condition valid everywhere, and he might have been mistaken by what he may have
seen as a similarity between our results.

After some discussions with Guy CHAVENT, who was studying the related problem of identifying the
local permeability of an oil field from measurements at various points, I had proposed a numerical approach
for solving numerically the type of optimization problem that we had been studying, but the numerical
method that I had proposed, and that one of his students had implemented, did not work well at all. As we
knew that the optimal mixture that we were looking for could be obtained locally as a layered medium, I had
chosen to parametrize the various possible mixtures with a proportion 6 € [0, 1] and with an angle describing
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the orientation of layers (as I was considering a 2-dimensional problem), but that method appeared to be
quite unstable because when 6 is 0 or 1, i.e. the material is isotropic, the orientation of the layers is not
well defined. I did not try another numerical method, but I had learned that even when the solution of
an optimization problem is on the boundary of a set, it might not be a good idea to move only along the
boundary of this set in order to find the solution, and a better approach could be to cut through the set in
order to arrive more quickly at the interesting points on the boundary.

In June 1980 in New York, Robert V. KOHN had told me that he had been to a meeting organized by
Jean CEA and E.J. HAUG, and as I knew that the approach of my work with Frangois MURAT had probably
not been mentioned at this meeting, I taught him our ideas about how Homogenization problems appear in
Optimal Design problems.

3. An elementary model problem

This model problem was mentioned to me by Ivar EKELAND, and I believe that his answer involved
huge abstract compactified spaces, while my solution is entirely based on our Lemma 1 (which corresponds
to a small compactification).

We want to minimize the cost function

T
7@ = [ (ol = ), (3.1)

where the control u belongs to
Ugag = {uju € L>(0,T), -1 <wu(t) <1, ae. t€(0,T)}, (3.2)

and the state y is defined by the equation of state

‘;_?Z — wae. on (0,T); y(0) = 0. (3.3)

We can consider here classical necessary conditions of optimality because U,4 is convex; the map u — y is
affine continuous and therefore the map u — J is quadratic continuous, and therefore FRECHET differentiable,
but the following arguments are valid in cases where only GATEAUX differentiability holds. Let u, € Ugg,

corresponding to a state y,, and let u € L>(0,T) be an admissible direction at u, i.e. u = u, +edu € Uyg
for £ > 0 small. Then y = y, + £dy and J(u) = J(u*) + €8J + o(g), where

d(%y) = du; dy(0) =0, (3.4)
dt
and
T
0J = 2/ (y« 0y — us du) dt (3.5)
0

and the classical necessary conditions of optimality consist in writing that §J > 0 for all admissible ju. In
order to eliminate dy so that §J is expressed only in terms of du, one introduces the adjoint state'® p, by

dp.
— =y p«(T) =0, 3.6
g = Yo o) (3.6)
and a simple integration by parts gives
T T T T
dpx dé
/ Y. Oy dt = — P Jydt:/ p*—ydt:/ P« dudt, (3.7)

10 T do not know who introduced that notion. It does play an important role in PONTRYAGUIN’s approach,
and he may have introduced it.



and therefore

T
57 =2 / (pa — wa)Sudt. (3.8)
0

The admissibility of u means that du > 0 where u, = —1, du < 0 where u, = +1, and du arbitrary where
—1 < uy < 1 (one first works on the set of points where —1+7n < u < 1—7 for n > 0 and then one takes the
union of these sets for all n > 0), and therefore one immediately deduces the classical necessary conditions
of optimality

—1 < uy < +1 implies p, — u, = 0, i.e. p, = u, (3.9)

{u* = —1 implies p, —u, >0, ie. p, > —1
Uy = +1 implies p, — u, <0, ie. p, < +1,

which can be read as giving u, as the following multivalued function of p,

—1 < px < +1 implies u, € {—1,ps, +1} (3.10)

{p* < —1 implies u, = +1
ps > +1 implies u, = —1.

One can notice that the system of these classical necessary conditions of optimality, i.e. (3.3), (3.6) and
(3.9)/(3.10), has at least the solution u, = 0 on (0, T), corresponding to y. = p. = 0 on (0, T).

The point of view of PONTRYAGUIN for obtaining necessary conditions of optimality consists in com-
paring u, to another control w € U,q by noticing that any control which jumps from u, to w is admissible.
In the language of Functional Analysis it means

u=(1— x)ur + xw € Uyq for every characteristic function x of a measurable subset of (0,7), (3.11)
and it is then natural to consider a sequence X, of characteristic functions such that

Xn — 6 in L*°(0,T) weak *, (3.12)

with 0 < 6 < 1 a.e. in (0,T); Lemma 1 also tells us that any such 6 can be obtained in this way, as can

be checked easily directly. One notices then that the corresponding functions y,, which satisfy a uniform

LIPSCHITZ condition, converge uniformly to yo, solution of

Yoo

e (1—0)us+0win (0,T); yoo(0) =0, (3.13)

and, using the fact that F((1 — x)us + xw) = (1 — x)F(us) + x F(w) for every function F and every

characteristic function x, one deduces that J(u,) converges to J(6) given by
_ T
J(6) = / (lyool® = (1 = O)us]? — Olw|*) dt. (3.14)
0

If J attains its minimum on U,g at u,, one deduces that J(0) = J(u,) < lim, J(u,) = J(0), and therefore
J attains its minimum at 0. One writes then the classical necessary conditions of optimality for J, noticing
that admissibility for §6 means 60 > 0, that dy solves

dj—ty = (w — u)d6; dy(0) =0, (3.15)
and, as 6§ = 0 corresponds to Yoo = ¥, that
_ T
57 = / (24 6y + (Jus|? — [w]?)56) dt. (3.16)
0
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Using the same p, as defined in (3.6), the integration by parts gives a different result because the equation
for dy is different

T T T T
/ 2y, Sy dt = —2/ Pr 50 dt = / op, 309 41— / 2. (w — u, )08 dt, (3.17)
and therefore
_ T
(5J:/ (220w — ) + (sl  [w]?)) 86 i, (3.18)
0

and the necessary conditions of optimality for J become
204 (w — u) + (Jus|* — |w|?) > 0 a.e. on (0,T). (3.19)

It is only now that one lets w vary in U,4 and, taking advantage of the fact that p, is independent of the
choice of w, (3.19) means

T R o2
2Dy s — |y ] _11Sn£S1(2p* w — |w|*) a.e. on (0,7) (3.20)
= —2|p«| — 1 a.e. on (0,T),

and therefore

uy, = —1 implies p, >0
{ —1 < uy < +1 does not occur (3.21)
uy = +1 implies p, < 0,

or

p« = 0 implies u, = +1 (3.22)

{p,k < 0 implies uy, = +1
ps > 0 implies u, = —1,

which are obviously more restrictive than (3.9)/(3.10).

The choice of the model problem comes from the simple direct observation that it has no solution, as
I will show later. This fact by itself does not tell much about the existence of solutions for the system of
necessary conditions of optimality, but the analysis of the relaxed problem that I will also introduce later
will have as a consequence that no such solution exists.

However, one can see by a direct computation that there is no function u, € Uyq for which the necessary
conditions of optimality (3.21)/(3.22) hold, with y,. defined by (3.3) and p. defined by (3.6). Indeed

T T T
d * *
0= / dyepe) gy / (e po — |ga]?) dt = — / (Ipu + [y [?) dt, (3.23)
0 dt 0 0

shows that one must have y, = p,. = 0 a.e. in (0,7'), but y, = 0 is incompatible with the condition u, = +1
a.e. in (0,T).

The point of view of PONTRYAGUIN usually gives stronger necessary conditions of optimality than the
classical ones.!! If the necessary conditions of optimality (either the classical ones or those of PONTRYAGUIN)
have no solution, then the minimization problem cannot have any solution, but there is then no obvious
explanation of what minimizing sequences are doing, for example. Of course, the proof of the necessary

11 1f the problem is convex, it gives the same conditions as the classical ones. If the controls are imposed
to take values in a discrete set, there is no natural differentiable path from one control to another and
therefore one cannot obtain any classical necessary conditions of optimality. However, even for a convex set
of admissible functions, if the equation of state has the form y' = A(y, ) and the cost function has the form
J(u) = fOT B(y,u) dt, one requires differentiability of A and B in both y and « in order to obtain the classical
necessary conditions of optimality, while one only requires differentiability of A and B in y for obtaining the
necessary conditions of optimality of PONTRYAGUIN.



conditions contains a hint about oscillating sequences,'? and it is Laurence C. YOUNG’s point of view to
study directly such oscillating sequences, in order to create a relaxed problem.!3

In order to show directly that our minimization problem has no solution, one first notices that
J(u) > =T for all u € Uy,gq, (3.24)

because |y|? — |u|? > —1 a.e. on (0,7 for every u € U,q implies J(u) > —7T, and because one cannot have
J(u) = =T, which would require both y = 0 and |u| =1 a.e. on (0,T), in contradiction with the fact that
y=0a.e. on (0,7) implies u = 0 a.e. on (0,7). Then one notices that

Up — 0in L*°(0,T) weak % and |u,| =1 a.e. in (0,T) imply J(u,) — —T, (3.25)

as u, — 0 in L*°(0,T) weak % implies that y, converges uniformly to 0; an example of such a sequence u,,
belonging to Uy,g is defined by w,(t) = sign(cos nt) on (0,T).

One sees also that any minimizing sequence, i.e. any sequence u, € U,q such that J(u,) — —T =
inf,cp,, J(u), must be such that y, — 0 in L?(0,T) strong and u2 — 1 in L!(0,T) strong . Because U,q is
bounded in L*°(0,T), yn, — 0 in L?(0,T) strong is equivalent to u, — 0 in L>(0,7) weak *, and because
|un| <1 ae. in (0,7T), u2 — 1in L!(0,7T) strong is equivalent to u2 — 1 in L°°(0,T') weak *.

The same analysis shows that if a sequence u,, € U,q4 converges in L*°(0,7) weak x to u, one can deduce
that y,, converges uniformly to y given by (3.3), but one cannot deduce what the limit of J(u,) is. However,
if one knows that

U, — uw in L*°(0,T) weak x

u2 — v in L*®(0,T) weak x,

(3.26)

then,
T(un) = T (u,v) = /0 (vl — v) dt. (3.27)

Lemma 1 characterizes the pairs (u, v) that one can obtain by (3.26) for a sequence u,, € U,q, choosing for
K the piece of parabola Us = U12 with —1 < U; < 1, and one can therefore introduce a relaxed problem
defined on 5

Usa = {(w,v)| —1<u<1;u* <v<1lae. in (0,7)}, (3.28)

the state y still being given by (3.3), and the cost function J being given by the formula in (3.27). The
original problem is a subset of the new one as
u € U,q if and only if (u,u?) € Uyq

_ (3.29)
J(u) = T (u,u?) for all u € Uyq.

By Lemma 1, for every (u,v) € U,q there exists a sequence u, with u, — u and u2 — v in L®(0,T) weak
*, which imply J(u,) = J(u,v), and using (3.29) one deduces that

inf J(u)= inf_ J(u,v) (3.30)
u€Uqq (u,0)EV,q

12 The original proof of PONTRYAGUIN’s principle, which Jacques-Louis LIONS had asked me to read in
the late 60s, contains no Functional Analysis at all, but the idea of switching quickly from u, to w is explicit
there. I found the proof shown above much later, probably in the late 70s or early 80s, and it might have
been used in this way before.

13 Again, T am not really sure about who introduced the term relaxation, but I have probably heard it
first in the seminar PALLU DE LA BARRIERE at IRIA in the late 60s, when I also heard about parametrized
measures, now named YOUNG measures.
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and
u, minimizes J on U,q if and only if (u*,uf) minimizes J on Uy,q. (3.31)

Let us look for the classical necessary conditions of optimality for (u.,v) € ﬁad. Actually these conditions
will be sufficient conditions of optimality as ﬁad is convex and J is a convex function; as Jis strictly convex
in u, us is known in advance to be unique, but although J is affine in v, one deduces that v, = 1 a.e. on
(0,T) from the observation that

I (u,v) < T (u,1) = K(u) — T with K(u) = / ) ly|? dt, (3.32)

with equality if and only if v = 1 a.e. on (0,T). Obviously K attains its minimum at u, = 0, but let us forget
for a moment that J attains its minimum only at (0, 1) and let us check what the necessary conditions of

optimality for J are at an arbitrary point (ux,vs) € U,q. For an admissible direction (du, 6v), dy is still
given by (3.4), but

T
67 = / (25, Sy — 6v) dt, (3.33)
0

which, using p, defined by (3.6) and the integration by parts (3.7) gives
_ T
57 = / (2p. Su — 6v) dt. (3.34)
0

As U, is convex, it is equivalent to restrict attention to the admissible directions of the form (du,dv) =
(w — g, w? — v,)dn with w € U,q and 6n € L®(0,T) with 6n > 0 a.e. in (0,7, and therefore the necessary
conditions of optimality can be read as

2p.(w — uy) — (w? —v,) >0 a.e. on (0,7), (3.35)
which in the case v, = ux® coincide with the PONTRYAGUIN necessary conditions of optimality (3.19).
Instead of (3.20), (3.35) implies

2D+ Us — Vs = —2|px| — 1 a.e. on (0,7), (3.36)

and therefore
ux € —sign(ps); v« =1 a.e. on (0,T), (3.37)

and the system of necessary conditions (3.3), (3.6), (3.37) gives then u, = 0.

Instead of the above relaxed problem, I could have used a set much bigger than ﬁad by introducing
the set of YOUNG measures, which describe the possible weak % limits of sequences F'(u,,) for all continuous
functions F. It would have appeared then that only the limits in L>(0,7) weak x of u, and u? were
important, i.e. the only useful functions F are the identity id, together with id?. Therefore starting with
a relaxed problem which is too big for the problem at hand, one has not lost information but one carries
some unnecessary information; one can reduce the size of the relaxed problem by getting rid of a part of
that unnecessary information.

The preceding analysis has identified a topology which is adapted to the initial problem, namely that
defined by (3.26). As the weak x topology of L*°(0,T) is metrizable on bounded sets, one can define it using
a distance dy for the set Uyq, and (3.26) corresponds to using the new topology associated to the distance
d; defined by di(f,g) = do(f,g) + do(f?,g%). The set Uy,q is not complete for the metric di, but Lemma 1
describes the completion of U,q which is ﬁad, and it also shows that ﬁad is compact for the metric d;. The
function J is uniformly continuous for d;, and therefore it extends in a unique way to the completion, and
this extension is the function J defined in (3.27).

The preceding construction also fulfills the following requirements for a relaxed problem.
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An initial problem is to minimize a function F' on a set X, 14 3 relaxed _problem of it is a topological
space X a mapping j from X into X and a lower semicontinuous function F defined on X satisfying the
followmg properties

i) F(](.’l:)) = F(z) for all z in X,

ii) j(X) is dense in X,

iii) For every y € X there exists a sequence z,, in X such that J(zy) converges in X to y, and F(y)
lim,, F'(z,) in the case where the topology of X is metrizable. If the topology of X is not metrizable, for
every € > 0 and every neighbourhood V of y in X there exists z € X with j(z) € V and |F(y) — F(z)| <e.

By i) the relaxed problem contains a copy of the initial one; if ii) was not satisfied one would restrict
oneself to the closure of j(X); if iii) was not satisfied, one would replace F by a larger function by taking the
lower semi-continuous envelope of the function equal to F o j=! on j(X) and +o0o0 on X \ j(X), eventually
removing the point where this envelope is 4+00 if one wants to work with functions which are finite everywhere.

I could have used a smaller set than ﬁad by working on U,q but minimizing the function K(u) — T, and
this would be consistent with the observation (3.32), and although one can still compute inf,cy,, J(u) from
this new problem, it cannot help discover what is the adequate topology for the initial problem, as defined
by (3.26). This new problem is not a relaxed problem of the initial one, as i) is not satisfied, but the function
u+— K(u) — T is the I'-limit of J, i.e. the lower semi-continuous envelope of J, for a particular topology, the
L*>(0,T) weak % topology. Indeed, u, — w in L*°(0,T) weak * implies lim inf, J(u,) > K(u) — T and for
every u € Uy,q there exists a sequence u,, € Uyg with u, — u and u2 — 1 in L°°(0,7T) weak %, and therefore
J(up) = J(u,1) = K(u) —

This last point suggests to be careful with the use of I'-limits, which are not always the right objects
to characterize if one has not choosen the right topology, which might not belong to the list of usual
topologies that one is accustomed to use. Another reason to be careful lies in the difference between G-
convergence and H-convergence,' the latter being more general and adapted to most of the situations
occuring in Continuum Mechanics/Physics. As many problems of Optimal Design come from engineering,
and often involve Elasticity, it is worth mentioning not only the inadequacy of linearized Elasticity, but
the inadequacy of the I'-convergence approach, which is not the same as Homogenization, to questions of
Elasticity. Although an intensive propaganda has made many mathematicians believe that Nature minimizes
Energy, it is obviously not so, and one must remember that “conservation of Energy” is the First Principle
of Thermodynamics, which no one doubts (of course, one has to include all forms of Energy, including Heat,
but in cases where some energy can be stored and released later, one might have to be careful in writing
the balance of Energy). Unfortunately Thermodynamics should be called Thermostatics as it only deals
with questions at equilibrium, and its Second Principle does not explain what are the possible exchanges
of Energy under its different forms and only postulates the result of these exchanges, but it would be quite
naive to believe that in an elastic material equilibrium is obtained instantaneously.'®

14 If X has already a topology, one may forget about it, as j is usually not continuous from X into X.

15 When I first heard Ennio DE GIORGI talk about I'-convergence at the seminar of Jacques-Louis LIONS
at College de France around 1977, I understood it as a natural generalization of his earlier work on G-
convergence with Sergio SPAGNOLO [DG&Sp]|, but I had been impressed by the application that he had
mentioned that energy localized on a surface could appear as the I'-limit of a three-dimensional problem.
The natural association which immediately came to my mind was that surface tension in liquids should be
determined from three-dimensional laws, and that one should extend the idea of I'-convergence to evolution
problems in order to study that question.

16 T heard a talk of Joseph KELLER at a meeting of the Institute for Mathematics and its Applications
in Minneapolis in 1985, in which he explained damping in real elastic materials by the presence of inho-
mogeneities together with the effect of geometric nonlinearity. Elastic waves are scattered by the various
inclusions in the material, or by the grain boundaries in the case of a polycrystal, but without the nonlin-
earity of geometric origin in the strain-stress relation there would be no coupling between different modes,
and no possible explanation about why Energy gets trapped in higher and higher frequencies, which is the
reason why one thinks that one has attained a macroscopic equilibrium.
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4. H-convergence
After his one-dimensional counter-example, Frangois MURAT had looked at the more general situation
where u is the solution of
Au = —div (a grad(u)) =finQ, ue Hy(Q), (4.1)

) being a bounded open set of RY, with f € L%(Q),!” and
a € Agg={ala€e L*(N),a<a <P ae. in ()}, (4.2)

with @ > 0 (so that by LAX-MILGRAM lemma, the operator A is an isomorphism from H}(Q) onto its dual
H~1(Q)), with the intention of minimizing a functional J of the form

J(a) = /Qg(z, u(z),a(m)) dz, (4.3)

and it is important in the sequel that grad(u) does not enter explicitly in the functional, although some
special dependence in grad(u) can be allowed, like g(u)grad(v), g(u)agrad(u) or g(u)(a grad(u).grad(u)),
with some smoothness and growth properties imposed on g. He had noticed that he could solve explicitly
the special case of “layered” media, involving sequences a™ € A,q depending on z; alone for example, and
as for (1.4) he assumed that for an interval I such that @ C I x RN~!

1 1
a" — ag; i in L*(I) weak «, (4.4)

and he had deduced that

Up — U in Hy(Q) weak and L?(Q) strong

6un 6“00 . 2
n - 7T N _ k

2, O 5g, L*(Q) wea (4.5)
nOUn Ouoo

® in L*(Q) weak for j = 2,..., N,

and therefore that u, is the solution of

0 O .
Afuge == 3 = (A;ff%) = fin Q ue € HL(S), (4.6)
i,j=1,...,N * J
with
Ai{f =a_
Aeff — =2 N 4.7
33 ai,] IR ( . )

AdE=0,i#.

Of course, one first extracts a subsequence for which u,, — uc in H} () weak and L?(f2) strong, and as (4.5)

has a unique solution, all the sequence converges. For j # 1 one has an% = % and a” u, — a4 Uso
J J

17 More generally f € H~1(f2), the dual of H}(2). H}(f) is the closure of smooth functions with compact
support in {2 in the SOBOLEV space H({2), consisting of functions in L?((2) having each of their partial deriva-
tives in L?(£2). As € is bounded, POINCARE inequality holds on Hj (), i.e. [, |ul?dz < C [, |grad(u)|?| dz.
H}(Q) is compactly imbedded in L?*(2) and L?(Q2) is compactly imbedded in H~1(Q2). H~!(Q) consists of
distributions in Q which are sums of derivatives of functions in L?(2). If the boundary 09 of Q is smooth,
there is a notion of trace on the boundary for functions in H(Q), and H} (Q2) consists then of those functions
in H'(f2) having trace 0 on the boundary.
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in L2(Q) weak because u, — us, in L%(Q) strong. For computing the limit of a™ ‘31;" ,'8 Frangois MURAT

used a compactness argument that we had learned from Jacques-Louis LIONS [Li2]: writing D = a™ ‘?9"" he
assumed that f € L?({), and for an interval [ in z; and a cube w in (z2,...,zy) such that I x w C € he ob-
served that div D™ = f implies that %Zf is bounded in L?(I; H !(w)), and as DY is bounded in L?(I; L?(w))
and the injection of L?(w) into H~!(w) is compact, the compactness argument implies that D7 stays in a
compact set of L?(I; H _1(w)). A subsequence D] converges in L?(I; H~"(w)) strong to D{° and therefore
for ¢ € H}(w) the function v™ defined in I by v™ = [ D7"(x1,22,...,2N)p(22,...,2N) dEs ... den

converges in L2(I) strong to v™ defined in a 51m11ar Way from D§°, and therefore _v™ converges in L?(w)

weak to aiv“’, and this implies that D{° = a_ %1;‘” in I X w; varying the cube I X w in () gives the same
— 1

result in Q.

I noticed later that the analysis of effective properties of layered media can be greatly simplified by using
the Div-Curl lemma,'® which we only proved in 1974 after having completed our basic approach described

here, in an attempt to unify the cases for which we were able to compute explicitly the effective coefficient
Ae ff _20

Lemma 2: (Div-Curl lemma) Let  be an open set of RV. Let
E™ — E* in L7 (Q; RY) weak
D™ — D™ in L7 (Q; RY) weak (48)
div D™ stays in a compact set of H;,!({) strong
curl E™ stays in a compact set of H; ! (Q Q; RVN(V=1/2) strong,

then
N N
/ (Z E} D?)god:/v — / (Z E* D;’°)<pdw for every ¢ € C.(9), (4.9)
Q=1 L

where curl E denotes the lists of all gf; — gTE; and C,(€) is the space of continuous functions with compact

support in .2'm

In 1974,22 our first proof involved localization in z, FOURIER transform, LAGRANGE formula and
PLANCHEREL formula, but in the case where E™ = grad(u,) with u, converging weakly to ue in H} (),

18 He had considered the more general case where a™(z) = [, fi(z;) with 0 < a; < fi < 3;, with

fi — fi and l- fT in L weak x, and he had found that a™% a“" — A;ff 831;"" in L?(Q) weak, with

Aeff—fl H]¢1f+forz—1 N,andAf]ff=0forzyéj.

19 Some, who want to avoid mentioning the Div-Curl lemma or the more general theory of Compensated
Compactness which I also developed with Frangois MURAT in 1976, do not hesitate to lengthen their proofs
in order to use only older methods. The correct behaviour in Mathematics is to mention the shortest proof
even if one does not follow it, usually because the writer finds it too difficult for himself/herself, and assumes
that it would be the same for the reader. Failing to mention such generalizations is a good way to slow down
the progress of Science. In this course, the general Compensated Compactness theory (and the theory of
H-measures which I developed in the late 80s) will only be used in describing methods for obtaining bounds
on effective coefficients.

20 After learning the term Homogenization, introduced by Ivo BABUSKA, we called these limiting coef-
ficients “homogenized” coefficients, but after learning the term effective, from George PAPANICOLAOU, I
decided to adopt it; it is often used by physicists, even if they have almost never defined it correctly.

21 One cannot use for ¢ the characteristic function of a smooth set, for example, but I have noticed that
one can develop the theory of H-measures with test functions in L (| VMO, by using a commutation lemma
of COIFMAN, ROCHBERG and WEISS, and therefore one can use ¢ € L[|V MO in the Div-Curl lemma.

22 Joel ROBBIN taught me afterwards how to interpret the Div-Curl lemma in terms of differential forms,
and he showed me another proof, based on HODGE decomposition. In 1976, Frangois MURAT and I devel-
opped the Compensated Compactness theory, following our original proof using FOURIER transform, and
PLANCHEREL formula (Proposition 30, Theorem 31).
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there is an easier proof by integration by parts, which we had already used: for ¢ € Cl(Q) one has
Jo & EF DY) pde = —(div(D"),un ) — [oun(3; D' 0; ¢) dz and one passes easily to the limit as u, ¢
converges in H}(Q) weak to us ¢ and u, converges in L7 (Q) strong to us. Most applications of the
Div-Curl lemma correspond to E™ being a gradient, but I will describe later the Compensated Compactness

theorem (Theorem 31), which I also used for questions of bounds for effective coefficients.

As a corrolary of the Div-Curl lemma, if a sequence of functions v,, which only depends upon z;
converges in L} (R) weak to o, then 9, DT converges in L? (Q) weak to 1o, DI° if 9, is bounded in
L®>; as a simplification, I say that if D™ satisfies the hypothesis in Lemma 2, then D} does not oscillate in
z1.2% Before we had solved the general problem, extending the notion of G-convergence introduced by Sergio
SPAGNOLO but unaware of his work yet, Frangois MURAT had obtained an explicit formula for the effective
coefficients of a layered media in the general anisotropic case; later, in the Spring 1975, Louis NIRENBERG
had shown me a preprint of W. MCCONNELL (maybe a preliminary version of [MC]), who had derived the
general formula for layered media in linearized Elasticity, and it was the analogue of what Frangois MURAT
had done, but with more technical computations of Linear Algebra; a few years after I noticed a general
approach for obtaining the effective behaviour of layered media,?* based on the preceding corollary. The
result of Frangois MURAT can be stated as

E" = E® in L} (9 RY) weak; D" = A™(z;)E™ — D™ in L7, (9 RY) weak

div D™ and the components of curl E™ stay in a compact set of H,,!(Q) strong (4.10)
imply D*® = A°ff(2,)E* a.e. in Q,
where
1 1
n — ———in LOO(Q) weak x
A Al
Ay Al
%4 ;‘f in L*(Q) weak x fori=2,...,N
At A
An AT (4.11)
o = o in L®(Q) weak x fori=2,...,N
ATy A
AP AT, ASTT pctf
n 1 . Aeff T4l 17 . fo) ..
Aij_T’fl A 4A‘1€{f in L*°(Q) weak % fori,5=2,...,N.

The A™ are not assumed to be symmetric, and the proof actually shows that uniform ellipticity of the
A™ is not necessary: in the case of layered media in z;, the result holds if there exists a > 0 such that
Al > o ae. in Q for all n. The basic idea is that DT does not oscillate in z;, but also EZ,..., E}Y,
because of the information on 0, E} - 0; E7 for j > 2; one forms the vector G™ with the “good” components
D}, EZ,...,EY, and one expresses the vector O™ of the “oscillating” components ET, D3, ..., D%, and one
has O™ = B™(z1)G™ with B™ = ®(A"), and ® is a well defined (involutive) nonlinear transformation; the
corollary of the Div-Curl lemma shows that the weak limit of B™ G™ is B> G*°, and therefore the explanation

23 More precisely, a sequence v, converging weakly in L? () does not oscillate in a direction & if the

H-measures associated with subsequences do not charge the direction &y; a consequence is that v, fn((fo.-))
converges weakly t0 Voo foo ((£0.)) if fn converges weakly to foo in L? (R).

24 Tn 1979, working with Georges DUVAUT as consultants for INRIA, we had been asked about an industrial
application using layers of steel and rubber. I already knew the method shown here in the linear case, and
I explained how to use it for nonlinear Elasticity, but I pointed out that there was no general theory of
Homogenization for nonlinear Elasticity (this is still true, as the results based on I'-convergence do not
answer the right questions).
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of (4.11) is that whenever A™ only depends upon z; and A7, > a > 0,

E? Dy
Dy E3
D™ = A™ E™ is the same as . =o(A") .
: : (4.12)
Dy E%

(A") — @(Aeff) in L*® (Q; ﬁ(RN, RN)) weak *.

In the case of linearized Elasticity, the relation is o7} = >, CFy (21)ef;, with ey = (O uf' + O uf)/2, o™ is
the symmetric CAUCHY stress tensor, and one may always assume that 77, = C7yy, = Oy, for all 4, j, k, 1,
but one does not need to use C7%y; = Cpy;; for all 4,5, k, 1 (which correspond to hyperelastic materials); the
equilibrium equations are }_, 8; 075 = f; for all 4; for a direction £ one defines the acoustic tensor A™()
by A%(§) = >2;; Cfjrié;& for all 4, k, and in the case of layered media in z;, the formula for layers holds
if there exists o > 0 such that (A"(e})A.A) > a|A|? a.e. in Q for all A € RY and all n; in that case the
components of the good vector G™ are the ¢} and o7; for all 7 and the €7, for k,! > 2, and the components
of the oscillating vector O™ are the €7} and e7; for all ¢ and the o}, for k,l > 2; one rewrites the constitutive
relation Of; = Yokl "%k G and the formulas for layered material in linearized Elasticity that MCCONNELL

had derived consist in writing T — I'¢ff.25

Sergio SPAGNOLO had introduced the notion of G-convergence in the late 60s, and unaware of it Frangois
MURAT and I had introduced a slightly different concept in the early 70s,2¢ for which the name H-convergence
was coined much later.2” We were interested in sequences satisfying

Up — Ueo in H} () weak
] . . (4.13)
— div (A" grad(un)) = fn — f in H}_ strong,
where A™ satisfies

A" bounded in L% (95 L(RN,BY)); (A" AN) > oA ace. in @, forall A€ RN and allm,  (4.14)

with a > 0; the bounds on u, were deduced from an application of LAX-MILGRAM lemma, using spe-
cific boundary conditions (we had started with DIRICHLET conditions, but after having read that Sergio
SPAGNOLO had noticed that A¢ff is the same for different boundary conditions, we checked that this

25 In the case of nonlinear Elasticity, the stress tensor used is the PIOLA-KIRCHHOFF stress tensor, which
is not symmetric, and the strain F is defined by F;; = d;; + 0; u; where u(z) is the displacement from the
initial position z of a material point to its final position =+ u(xz); for a material like steel which breaks if one
stretches it more than 10%, F lies near the set of rotations SO(3), but in linearized Elasticity one postulates
(often wrongly) that it lies near I; in nonlinear Elasticity, the components of the good vector G™ are the o7}
for all ¢ and the Fj for all ¢ but only for j > 2, and the components of the oscillating vector O™ are the Fyj
for all ¢ and the ¢ for all ¢ but only for j > 2; in order to be able to compute the constitutive relation as
O™ = ¥™(G") in the case of hyperelastic materials, a natural condition to impose for the stored energy is
the uniform convexity in all directions of the form a ® e!.

26 T had met Sergio SPAGNOLO at a CIME course in Varenna in 1970, and he had asked me if my inter-
polation results had something to do with his own results, but as soon as he had mentioned that he did not
assume any regularity for the coefficients in his work I could tell him that what I had done could not help;
however, I did not get a clear idea of what his results were.

27 The name was choosen by Frangois MURAT in the lectures that he gave in Algiers [Mu3], shortly after
I had taught my PECCOT lectures in the Spring 1977, where under the title “Homogénéisation dans les
équations aux dérivées partielles” I had described my method of oscillating test functions in Homogenization
and the Compensated Compactness theorem, but the notion of H-convergence was indeed clear from our
early work.
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was also clear in our framework). I used notations from Electrostatics, denoting E™ = grad(u,) and
D™ = A" grad(u,,), and after having extracted a subsequence so that D™ — D> in L} (Q; RN) weak, the
question was to identify what D> was. If one showed that there exists A°/f such that D> = A¢ff E*, then
with usual boundary conditions u. would be the solution of a similar boundary value problem, and this
was what Sergio SPAGNOLO had done in the symmetric case; in the nonsymmetric case the knowledge of the
inverse mapping f — uo, does not characterize what A°ff is, but as nonsymmetric problems do not occur
so often in applications, the main advantage of our approach is that after I had introduced my method of
oscillating test functions,?® it generalizes easily to all sort of linear partial differential equations or systems.2°

In the early 70s, we had started by an abstract elliptic framework, where V is a real separable HILBERT
space (corresponding to Hj(f2) in the concrete example that we had in mind), using || - || for the norm on
V, || - ||+« for the norm on V', and (:,-) for the duality product between V' and V, and we had considered a
bounded sequence A, € L(V,V’) (corresponding to A,u = —div(A™ grad(u)) in our example), satisfying a
uniform V-ellipticity condition (corresponding to (A™(z)¢.£) > al€|?, |A™(z)¢| < M|¢| for all ¢ € RV, ae.
z €  in our example), i.e. one assumes that there exist 0 < o < M < oo such that

(Anu,u) > af|u||? and ||Anu|l+ < M||u|| for all u € V. (4.15)

By LAX-MILGRAM lemma, each A, is an isomorphism from V onto V', and the first basic result in this
abstract framework is the following lemma.

Lemma 3: There exists a subsequence A, and a linear continuous operator A.s¢ from V into V' such that
for every f € V', the sequence of solutions u,, of A,um = f converges in V weak to the solution us, of
Aeffuco = f, and A.yy satisfies

MZ
(Aegru,u) > aflu||? and || Aefsull« < 7||u|| forallu €V, (4.16)

but MTZ can be replaced by M if all the operators 4, are symmetric.

Proof: One has ||(An)_1||L(V',V) < i as Apup = f implies & [un|[® < (Antn, un) = (f,un) < ||F]l]luall;
so that ||up|| < L||f||s- One can extract a subsequence u,, converging in V weak t0 U, and repeating this
extraction for f belonging to a countable dense family F' of V' and using a diagonal subsequence, one can
extract a subsequence A,, such that for every f € F, the sequence u,, = (A,) ' f converges in V weak to a
limit S(f); the sequence (A,,)~! being uniformly bounded and F being dense, (A,,) "' f converges in V weak
to a limit S(f) for every f € V'. S is a linear continuous operator from V' into V, with ||S f|| < 1||f|l.
for all f € V', and in order to show that S is invertible the mere fact that the operators (A,)~! are
uniformly bounded is not sufficient, because in any infinite dimensional HILBERT space, one can construct
a sequence of symmetric surjective isometries converging weakly to 0 (in L?(0,1) for example, one can take
the multiplication by sign(sin(n-))). However, the ellipticity condition prevents this difficulty. One notices
that (S f, f) = limy, (Um, f) = limy, (Am Um, Um) > aliminf,, ||un,||* (and < || f||? in the symmetric case),

28 The method was discovered independently by Leon SIMON [Si]; his student MCCONNELL had only done
the layered case in linearized Elasticity, and he had looked himself at the problem in a general way; it was
the referee, probably from the Italian school, who had mentioned to him my work. I first wrote about my
method in [Ta3], but I had explained it to Jacques-Louis LIONS in the Fall 1975 in Marseille [Li3]; he had
been convinced by Ivo BABUSKA of the importance in engineering of problems with a periodic structure, but
he had not thought of asking about the proof of our results which I had mentioned in a meeting that he had
organized in June 1974 [Ta2], either to Frangois MURAT who had stayed in Paris, or to me who had spent
the year in Madison, where he actually came in the Spring.

29 As I taught it in my PECCOT lectures, my method extends easily to some monotone situations, but
as I mentioned at a meeting in Rio de Janeiro a few months after [Ta7], I could not find a good setting
for Homogenization of nonlinear Elasticity. This is still the case, and the spreading error of mistaking I'-
convergence for Homogenization seems to come from the fact that those who commit it had not paid much
attention to the difference between G-convergence and H-convergence.
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and as M||um|| > ||Amtm||s = ||fl|+, one finds (S f, f) > ;5 ||f||*, and therefore S is invertible by LAX-

MILGRAM lemma and its inverse A.fs has a norm bounded by & T' As u,, converges in V weak to S f, one
has liminf,, ||um||2 > ||S f]|2, so that (S f, f) > a||S f||? for every f € V, or equivalently, as we know now
that S is invertible, (Aessv,v) > a||v||? for every v € V.

Of course, as most results in Functional Analysis, this lemma only gives a general framework and does
not help much for identifying A.s; in concrete cases,®® but one often uses the information that Ay is
invertible so that one can choose f € V' for which the weak limit u., is any element of V prescribed in
advance.

In our concrete example, the problem of G-convergence consists in showing that u, solves an equation
—div (Aef f grad uoo))\r = f, while the problem of H-convergence consists in showing that A™ grad(um)
converges in L2(Q; RN) weak to A°ff grad(u,), and this is a different question in nonsymmetric situations,
because if one adds to A" a constant antisymmetric matrix B (small enough in norm in order to retain the
ellipticity condition), one will not change the operator .A,, and therefore the preceding abstract result cannot
help identify the precise matrix A/, as it only uses the operators A,,.

Lemma 3 points to a technical difficulty in the nonsymmetric case, because we started with a bound M
for A,, and ended with the greater bound MTZ for Acf¢, and this is solved by defining differently the bounds
on the coefficients A™.

Definition 4: For 0 < a < 8 < 00, M(a, 8;) will denote the set of A € L™ (Q ,C(RN RN)) satisfying
(A(2)€.€) > al¢? and (A(z)é.£) > 5|A(z)é|? for all € € RN (or equivalently (A7 (z)¢.€) > 5[¢|? for all
¢ € RN), a.e. z € 03! If A is independent of z € {2, one writes A € M(a, )M

The reason for using the sets M(a, 8;Q) is that they are compact for the topology of H-convergence
which I define now.

Definition 5: We will say that a sequence A™ € M(a, 3;Q) H-converges to A°ff € M(o/,’;Q) for some
0<a <p < oo, ifforevery f € H™1(Q2), the sequence of solutions u,, € Hg () of —div(A™ grad(u,)) = f
converges in Hg () weak to s, and the corresponding sequence A™ grad(u,,) converges in L?(Q; RY) weak
to A%/ grad(ucs); Uso is therefore the solution of —div(A°/f grad(us)) = f in Q.M

H-convergence comes from a topology on X = J,,»; M(%,n;Q), union of all M(a,3; ), which is the
coarsest topology that makes a list of maps continuous. For f € H ~1(Q) one such map is A — u from X
into H}(Q2) weak and another one is A — A grad(u) from X into L%(Q; RN) weak, where u is the solution
of —div(Agrad(u)) = f. When one restricts that topology to M(a,3;), it is equivalent to consider only
f belonging to a countable bounded set whose combinations are dense in H~!(Q); then u and A grad(u)
belong to bounded sets respectively of Ha(Q) and L2(2; RY) which are metrizable for their respectuve weak
topology, and therefore the restriction of that topology to M(a,3;(2) is defined by a countable number
of semi-distances and is therefore defined by a semi-distance. That it is actually a distance can be seen
by showing uniqueness of the limit: if a sequence A™ H-converges to both A¢ff and to B®/f, then one
deduces that A°/f grad(us) = B¢/ grad(us) a.e. = € Q for every f € H~1(Q2), and therefore for every
Uoo € HE(R); choosing then uy, to coincide successively with z;, j = 1,..., N, on an open subset w with
compact closure in 2, one must have A°ff = Beff ae. € w. Of course, one never needs much from this
topology, but some arguments do make use of the fact that M(a, ;) is metrizable.

However, if one wants to let o tend to 0, like some people do for domains with holes, one must be very
careful because one cannot use arguments based on metrizability in that case.

Theorem 6: For any sequence A™ € M(a,3;Q) there exists a subsequence A™ and an element A°ff ¢
M(a, ;) such that A™ H-converges to A°f7.

30 Even when all the operators A, are differential operators, it may happen that A, #f is not a differential
operator and in some cases nonlocal integral corrections must be taken into account.

31 1f A € L(RN,RYN) satisfies (A£.£) > %|A§|2 for all £ € RN, then |A¢| < Bl¢]| for all ¢ € RN, but
if A € L(RN,RN) satisfies (A€.£) > a|¢|? and |A€| < MI€| for all ¢ € RN, then one can only deduce
(AL.E) > 12z| A€, if A is not symmetric, while of course one has (A £.£) > 57|A€|? if A is symmetric.

2 Theorem 6 shows that one can take o/ = « and ' = 8.

18



Proof: Using the same argument than in Lemma 3, F being a countable dense set of H~1(Q), we can extract a
subsequence A™ such that for every f € F the sequence u,, € H}(Q) of solutions of —div (Am grad(um)) =7
converges in H}(Q2) weak to us, = S(f) and A™ grad(u,,) converges in L2(Q; RY) weak to R(f); the same is
true then for all f € H~1({2), the operator S is invertible, and R(f) = C u, where C is a linear continuous
operator from H} () into L?(Q; RY). It remains to show that C is local, of the form C v = A%/ grad(v) for
all v € Hy(Q), and that A°ff € M(a, 8;Q). We first show that for all v € Hy(Q2) one has (Cv.grad(v)) >
algrad(v)|? and (C v.grad(v)) > %|C’v|2 ae z €.

For v € H}(Q), let f = —div(Cv), so that us = v, and let ¢ be a smooth function so that we may use
@um and @v as test functions. One gets (f, pum) = [, (A™ grad(um).¢ grad(um) + um grad(y)) dz, and
as u,, converges strongly to v in L?(2) because H}(2) is compactly imbedded into L?({2), one deduces that

(f, pv) = limpy, [, o(A™ grad(um)-grad(up)) dz + [ (C v.v grad(y)) dz, but (f,ov) = [,(Cv.p grad(v) +
v grad(<p)) dz, and therefore one deduces that for every smooth function ¢ one has?

/s; (,D(Am grad(um).grad(um)) dz — /s; (,D(C v.grad(v)) dz. (4.17)

Choosing now ¢ to be nonnegative, and using the first part of the definition of M(«, 3; ), we deduce that
/ go(C v.grad(v)) dz > aliminf/ olgrad(um)|? de > a/ plgrad(v)|? dz, (4.18)
Q m Q Q

where the second inequality follows from the fact that grad(u,,) converges in L2(Q2; RY) weak to grad(v),
and as this inequality holds for all smooth nonnegative functions ¢, one obtains

(C v.grad(v)) > algrad(v)|? a.e. z € Q, for every v € Hy (). (4.19)
Using the second part of the definition of M(a, B; ), we deduce that
1
/ go(C v.grad(v)) de > = liminf/ ©|A™ grad(u,,)|? dz > a/ ¢|Cv|?* de, (4.20)
Q B m Ja Q
as A™ grad(u,,) converges in L2(Q; RY) weak to Cv, so that
1
(C’ v.grad(v)) > B|Cv|2 a.e. z € Q, for every v € Hy(Q). (4.21)

From (4.21) one deduces
|Cv| < Blgrad(v)| a.e. z € Q, for every v € Hy (), (4.22)
and as C is linear, (4.22) implies that
if grad(v) = grad(w) a.e. in an open subset w, then Cv = Cw a.e. in w. (4.23)

Writing €2 as the union of an increasing sequence wy of open subsets with compact closure in €2, we define
A°¢ff in the following way: for £ € RN, we choose vy € H}(2) such that grad(vi) = ¢ on wg, and we define
A°ff ¢ on wy, to be the restriction of C(vg) to wg; this defines A°Ff ¢ as a measurable function in Q because
C v and C vy coincide on wy, (w; by (4.23); (4.23) also implies that A°f/ is linear in ¢. If w € HE(Q)
is piecewise affine so that grad(w) is piecewise constant, then (4.23) implies that Cw = A®f grad(w)
a.e. = € (). As piecewise affine functions are dense in H}(2), for each v € Hj () there is a sequence
w; of piecewise affine functions such that grad(w;) converges strongly in L%(Q; RN) to grad(v), and as
|Cv — A%ff gradwy| = |Cv — Cwj| < Blgrad(v — w;)| ae. = € Q, one deduces Cv = A/ grad(v)

33 One could deduce (4.17) directly from the Div-Curl lemma, but I am showing how we first argued, and
we had proved this result before discovering the Div-Curl lemma.
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a.e. = € . Having shown that Cv = A°ff grad(v) for a measurable A°¥f, (4.19) and (4.21) imply that
A¢ff € M(a, 3;Q) as one can take v to be any affine function in an open subset w with compact closure in
Qm

At a meeting in Roma in the Spring of 1974,3* I had apparently upset Ennio DE GIORGI by my claim
that my method (which was actually the joint work with Frangois MURAT) was more general than the method
developed by the Italian school. I thought that MEYERS'’s regularity theorem which Sergio SPAGNOLO was
using in his proof was based on the maximum principle [Me], but Ennio DE GIORGI had told me that it was
not restricted to second order equations. Actually, it would have been difficult for me at that time to explain
how to perform all the computations for higher order nonnecessarily symmetric equations or to systems like
linearized Elasticity, and even more difficult to explain what to do for nonlinear elliptic equations, but less
than a year after I had noticed that most of the important known properties of Homogenization of second
order variational elliptic equations in divergence form could be obtained through repeated applications of the
Div-Curl lemma, and the extension to linear elliptic systems in a variational framework (and some simple
nonlinear systems of monotone type) really became straightforward. As my method, which has been wrongly
called the “energy method” and which I prefer to call the “method of oscillating test functions”, uses only
a variational structure, it can be extended with minor changes®® to most of the linear partial differential
equations of Continuum Mechanics (not much is understood for nonlinear equations).

One starts with the same abstract analysis, Lemma 3 and the beginning of the proof of Theorem 6; one
extracts a subsequence A™ for which there is a linear continuous operator C' from H3(2) into L2(£2; RN)
such that for every f € H~!(£2) the sequence of solutions u, € Hg(£2) of —div(A™ grad(um)) = f converges
in H}(Q) weak to us, and A™ grad(u,,) converges in L?(€; RY) weak to R(f) = C(us). One uses then
the Div-Curl lemma to give a new proof that C is a local operator of the form C(v) = A%ff grad(v) with
Aetf e L= (Q; L(RN, RY)).

One constructs a sequence of oscillating test functions v,, satisfying

—div((Am)Tgrad(vm)) converges in H; ! () strong, (4.24)
where (A™)T is the transposed operator of A™ and
Um — Voo in H(Q) weak; (A™)T grad(vm) — woo in L*(Q; RY) weak, (4.25)
and one passes to the limit in the identity
(Am gmd(um).grad(vm)) = (grad(um).(Am)Tgrad(vm)). (4.26)

The Div-Curl lemma applies to the left side of (4.26) which converges in the sense of measures3® to
(C(uco)-grad(veo)), because div(A™ grad(un,)) is a fixed element of H~'({2) and grad(v,,) converges in
L?(Q; RN) weak to grad(veo); the Div-Curl lemma also applies to the right side of (4.26) which converges
in the sense of measures to (grad(uc)-Weo ), because of (4.24) and (4.25), and this shows

(Cluco)-grad(veo)) = (grad(tco) Woo) a-e. in €. (4.27)

34 Umberto MOSCO had insisted that I should write something before I left, and instead of visiting Roma,
I stayed in the hotel, so nicely located above Piazza di Spagna, writing [Tal] and another short description
concerning quasi-variational inequalities.

35 Becoming a mathematician requires some ability with abstract concepts, and it is part of the training
to check that one can apply a general method to particular examples, and it depends upon one’s taste and
one’s own scientific stature to decide if it was an exercise or something worth publishing.

36 A sequence s, converges to s, in the sense of distributions in 2 if for every ¢ € C°(2), the space of
indefinitely differentiable functions with compact support in €2, one has (s, ¢) = (Sco, ¢); the s, must be
distributions and according to the theory of distributions of Laurent SCHWARTZ the limit s, is automatically
a distribution. The sequence s,, converges to s, in the sense of measures if the preceding convergence holds
for every ¢ € C.(f2), the space of continuous functions with compact support in Q; the s,, must be RADON
measures and s is automatically a RADON measure. If s, € L}, (), then (s,, ) means [, s, ¢ dz.

loc
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One constructs a sequence v,, satisfying (4.24) and (4.25) by first choosing an open set ' containing the
closure of 2, then extending A™ in Q' \ Q for example by A™(z) = al for z € '\ Q, and then choosing
vm € Hg (') solution of

—div((Am)T grad(vm)) =gin (Y, (4.28)

for some g € H=1()’). One obtains a sequence v,, bounded in H} (') and therefore its restriction to (2 is
bounded in H'(2), and a subsequence satisfies (4.24) and (4.25). By Lemma 3 one can choose g € H~1(Q')
such that v is any arbitrary element of Hg ('), and in particular for each j = 1,..., N, there exists g; €
H~1(Q) such that vo, = z; a.e. in (2, and using these N choices of g;, (4.27) means C uy, = A%/ grad(uco)
for some A%// € L2(Q; L(RN, RY)).

This method quickly gives only an intermediate result and is not very good for questions of bounds,
and it must emphasized that questions of bounds are not yet very well understood for general equations or
systems. As pointed out by Francois MURAT, one can easily show that A¢ff ¢ L>® (Q; E(RN , RN )) by using
the following lemma based on the continuity of C, but the information A¢ff € M(a, ;) is not so natural
in this approach.

Lemma 7: If M € L?(Q; £(RY, R")) and the operator C defined by C(v) = M grad(v) for allv € H}(Q) is
a linear continuous operator from H} (£2) into L?(2; RY) of norm < v, then one has M € L (Q; L(RY,RY))
and ||M(z)||zr~ myy < 77 a.e. in Q.

Proof: Let ¢ € RV \ 0 and ¢ € C}(f), the space of functions of class C! with compact support in

( ) sinn(€.z)

Q. Define ¢, by pp(z) = ¢(z for z € , which gives a bounded sequence in H}(Q) with

lim, ||grad(en)||z2@imv) = 25116 @llr2imy) = Sllellna @) Clen) = M(F2EDgrad(p) + ¢ cosn(é.-)¢),

and therefore lim,, ||C(¢n)||z2(a;rv) = %||<,0M§||Lz(9), because ¢ and grad(yp) are bounded, so that ¢ M ¢
and M grad(p) belongs to L*(Q; RY). Therefore one deduces that ||¢ M £||r2() < VI€||l¢]|2(q) for every
¢ € C3(9), and therefore for every ¢ € L?(f2) by density, and this means ||M &||peo(o;rv) < 7[€], and as
this is valid for all ¢, the lemma is proved.®

Using the same approach,3” one can derive a few useful properties of H-convergence, the main tool
remaining the Div-Curl lemma.

Proposition 8: If a sequence A™ € M(a, 3;Q) H-converges to A°¥f, then the transposed sequence (A™)7
H-converges to (A°/f)T. In particular if a sequence A™ H-converges to A°/f and if A"(z) is symmetric a.e.
z € Q for all n, then A°/f(z) is symmetric a.e. z € Q.
Proof. A € M(a,3;Q) implies (and therefore is equivalent to) AT € M(a,B;Q) as A € M(a, 3;)) means
(A(2)€.€) > af¢f® and (A (2)€.€) > 5[¢|* for all € € RN, ae. = € Q, and as (A71)T = (A7), this is
the same as (AT (z)€.£) > a|¢]? and ((AT) " (z)¢.£) > %|§|2 for all ¢ € RN, a.e. z € Q. By Theorem 6 a
subsequence (A™)T H-converges to B*/f. For f,g € H~1(Q), let us define the sequences uy,, vy, € Hj(Q)
by

—div (Am grad(um)) =1, —div((Am)T grad(vm)) =ginQ, (4.29)
so that u,, and v,, converge in Hj(f) weak respectively to %o, and v, A™ grad(u,,) and (A™)T grad(v,,)

converge in L2(Q2; RY) weak respectively to A°ff grad(u,) and B®ffgrad(v., ), and one can use the Div-Curl
lemma to take the limit of the identity

(Am grad(um).grad(vm)) = (grad(um).(Am)Tgrad(vm)), (4.30)

and obtain
(Aeff gmd(uoo).grad(voo)) = (grad(uoo).Beff grad(voo)), (4.31)

37 The preceding method is not adapted to nonlinear problems, but I developped a variant where the
oscillating test functions satisfy the initial equation instead of the transposed equation, and it extends to
the case of monotone operators.
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and as Uy and vs, can be arbitrary elements of Hj(Q) by Lemma 3, this implies (4¢¥f)T = B¢ff a.e. in Q.
The second part of the Proposition results from uniqueness of H-limits.®

The next result shows that H-convergence inside 2 is not related to any particular boundary condition
imposed on 0Q.

Proposition 9: If a sequence A® € M(a,3;Q) H-converges to A°ff and a sequence u, converges in
HL () weak to uq, and div S’An grad(u,)) belongs to a compact set of H,:(f) strong, then the sequence
A" grad(u,) converges to A°¥¥ grad(us) in L2, (€ RY) weak.

Proof: Let ¢ € C}(Q) so that ¢ u, converges in H} () weak to ¢ us, ¢ grad(u,) converges in L*(Q; RN)
weak to ¢ grad(us); curl(p grad(u,)) has its components bounded in L?(f2), as they are of the form

Do Oun _ Op Jun Ag div(p A" grad(u,)) = ¢ div(A™ grad(u,)) + (A" grad(u,).grad(p)), it belongs to a

Oz; Oxp Oz Oz;

compact set of // ~1(f) strong, as multiplication by ¢ maps H; ! () into H~!(2) and (A™ grad(uy).grad(y))
is bounded in L2(£2). One extracts a subsequence such that ¢ A™ grad(u,,) converges in L?(Q2; RY) weak to
Weo- For f € H~(Q), one defines v,, € Hy () by —div]S(A")T grad(v,)) = £, so that v, converges in H{ ()
weak to vy and (A™)T grad(v,) converges in L2(Q; RY) weak to (A4°//)T grad(v.,) by Proposition 8. One
then passes to the limit in both sides of (¢ A™ grad(um).grad(vy)) = (¢ grad(um).(A™)7 grad(vy,)) by
using the Div-Curl lemma, and one obtains the relation (weo.grad(ve)) = (¢ grad(uco).(A°7 )T grad(vs))
a.e. in Q. As vy, is an arbitrary element of Hj(2) by Lemma 3, we, = ¢ A%ff grad(us,) a.e. in 2, and as ¢
is arbitrary in C}(£2) and the limit does not depend upon which subsequence has been chosen, one deduces
that all the sequence A™ grad(u,) converges in L7 (€; RY) weak to A¢’f grad(us.)m

In the preceding proof, div(A™ grad(¢ u,)) may not belong to a compact set of H~*(Q2) strong as it is
div(p A" grad(uy)) + div(un A™ grad(p)) and div(p A" grad(u,)) does indeed belong to a compact set of
H~1(Q) strong as was already used, but it is not clear if div(u, A™ grad(y)) does, because u, A™ grad(p)
may only converge in L?(Q2; RY) weak. We have used then the complete form of the Div-Curl lemma and
not only the special case where one only considers gradients.

Proposition 9 expresses that the boundary conditions used for u, are not so important, as long as the
solutions stay bounded, as had been noticed by Sergio SPAGNOLO in the case of G-convergence. We did define
H-convergence by using DIRICHLET conditions, but the result inside €2 would be the same for other boundary
conditions, if one can apply LAX-MILGRAM lemma for existence as we need to start by using Lemma 3. Using
DIRICHLET conditions has the advantage that no smoothness assumption is necessary for the boundary of (2.
What happens on the boundary JQ2 may depend upon the particular boundary condition used; the particular
cases of nonhomogeneous DIRICHLET conditions, NEUMANN conditions, and other variational conditions can
all be considered at once in the framework of variational inequalities, allowing actually some nonlinearity in
the boundary conditions (the nonlinearity inside 2 is a different matter).

The next result states that H-convergence has a local character, extending the corresponding result of
Sergio SPAGNOLO for G-convergence.

Proposition 10: If a sequence A™ € M(a, 3;Q) H-converges to A°¥f and w is an open subset of , then
the sequence M™ = A™|, of the restrictions of A™ to w H-converges to M°ff = A°ff|,. Therefore if a
sequence B"™ € M(a, 3;Q) H-converges to B/ and A™ = B™ for all n, a.e. £ € w, then A°ff = B*ff ae.
T Ew.

Proof. If all A™ belong to M(a,3;), then all M™ belong to M(a,B;w) and by Theorem 6 a subse-
quence M™ H-converges to some M¢ff ¢ M(a,B;w). For f € H '(w) and g € H~1(Q), let us solve
—div(M™ grad(um)) = f in w and —div((A™)T grad(vm)) = g in Q so that u,, converges in Hj(w) weak
t0 Uoo, M™ grad(u,,) converges in L?(w; RN) weak to M®/f grad(uws), vm converges in H} () weak to v,
and (A™)T grad(v,,) converges in L?(Q; RN) weak to (4°¥/)T grad(vs,). Extending u, and us by 0 in
Q \ w, one can apply the Div-Curl lemma in w for the left side and in Q for the right side of the equality
(M™ grad(um).grad(vy)) = (grad(um).(A™)T grad(vy)), and one obtains (M*/f grad(uc).grad(veo)) =
(9rad(uco)-(A°7F)T grad(ve)) a.e. in w. As by Lemma 3 uy, can be arbitrary in Hj(w) and ve, arbitrary
in H}(Q), one deduces that M eff = A¢ff a.e. in w; as the H-limit is independent of the subsequence used,
all the sequence M"™ H-converges to A¢/f |

Actually if for a measurable subset w of 2, one has A™ = B™ for all n, a.e. £ € w, and the sequences
A", B™ € M(a, 3;9Q) H-converge respectively in 2 to A°ff Beff then one has A°ff = B°ff ae. z € w.
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This can be proved by applying the same regularity theorem of MEYERS [Me] that Sergio SPAGNOLO used
in the symmetric case. It is equivalent to prove that A°/f = B¢ff ae. in w(g) for each ¢ > 0, where
w(e) is the set of points of w at a distance at least ¢ from 9. Defining v, as above but choosing f €
H~1(Q) and u, € H}(Q) instead, the problem is to use Xw(e)> the characteristic function of w(e), as a
test function in the Div-Curl lemma in 2. For obtaining that result one first takes f,g € W~1?(Q) with
p > 2, and MEYERS’s regularity theorem tells that grad(u,) and grad(v,) stay bounded in L) (w(e)) for
some g(¢) € (2,p], and therefore (A™ grad(u,).grad(v,)) and (grad(u,).(B")T grad(v,)) (which are equal
on w) are bounded in L%®)/2(w(e)), and converge in L%)/2(w(e)) weak to (4°7f grad(uco).grad(vs)) and
(9rad(us)-(Bf1)T grad(vo)) which are then equal a.e. in w(e). As W~1P(Q) is dense in H~'(f2), one
can pass to the limit in this equality in w(e) and obtain it for arbitrary f,g € H '(f), i.e. for arbitrary
Uoo, Voo € H (), and that gives A/ = B¢f a.e. in w(e), and therefore a.e. in w.

The argument of Proposition 10 is variational and extends therefore to all variational situations, while in
order to extend the preceding argument to a general situation one would have to prove a regularity theorem
like MEYERS’s one, and I do not know if this has been done; it has been checked by Jacques-Louis LIONS
that the analogous statement is valid for some linearized Elasticity systems.

5. Bounds on effective coefficients: first method
In the case A™ = a"I, which we had investigated first, we knew that the L>°(€2) weak * limits of a™ and
denoted respectively by a; and ai, are needed for expressing A°// in the case where a™ only depends

1
am’?

upon one variable. We had obtained sequences E™ = grad(u,) and D™ = a™ E™ = a" grad(u,) converging
in L2(Q; RN) weak, respectively to E* and D>, and the analogue of (4.17) had told us that a™|E™|? was
converging in the sense of measures to (D>°.E>). We had then decided to look at the convex hull in R2N+3
of the set

K= {(E,aE,a|E|2,a, 2)|E€RN,a€ [a,ﬂ]}, (5.1)

with the goal of investigating what could be deduced if D> and E*° satisfy the property

(E°°,D°°, (D*.E*®),a4, ai) € cleonv(K). (5.2)

I will show the necessary computations, which we did not carry out exactly as (5.34)/(5.40) in the early 70s,
as we had noticed that a simple argument of convexity showed that

a_I < AT < ayl. (5.3)
Lemma 11: If a sequence v, converges in L%(€; RN) weak to vy, if M™ € M(a, ;) is symmetric

a.e. z € Q and (M™)~! converges in L™ (Q; L(RN,RN)) weak * to (M_)~!, then for every nonnegative
continuous function ¢ with compact support in €2, one has

liminf/ (p(M"vn.vn)de/(p(M, Voo Voo ) AT, (5.4)
n Q Q

ie. if (M™wv,.v,) converges to a RADON measure v in the sense of measures (i.e. weakly %), then v >
(M _ v .9s0) in the sense of measures in Q.

Proof: If L (RN, RY) denotes the convex cone of symmetric positive operators from RY into itself, Lemma
11 follows from the fact that (P,v) — (P~!v.v) is convex on L, (RN, RY) x RN. Indeed, one has

(P~ ' vw) = (Py two.vp) + 2(Py t vo.v —vg) — (Py (P — Py)Py ' wpvg) + R (5.5)
and the remainder R is nonnegative for every Py € £, (RY,R"N) and vy € RY, as an explicit computation

shows that
R= (P(P—1 v— Pyt wg).(Plw — Pyt vo)). (5.6)
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As an application of Lemma 11, we can deduce upper bounds as well as lower bounds for A°/f, improving
then the result of Theorem 6; the bounds are expressed in terms of the weak x limit of A™ and the weak %
limit of (A™)~1.

Proposition 12: Assume that a sequence A" € M(a, 3;Q) H-converges to A/, if (A")T(z) = A"(z) a.e
z € ) for all n, and satisfies

A" A (AM)7D = (AL)Vin L (n; L(RN,RN)) weak . (5.7)

Then one has
A < AT <A, ae ze. (5.8)

Proof: In the proof of Theorem 6 we have constructed a sequence grad(u,) converging in L2(Q2; RY) weak
to grad(us ), and such that A™ grad(u,) converges in L?(Q; RY) weak to A°/f grad(u.,); moreover we had
shown that (A™ grad(un).grad(u,)) converges in the sense of measures to (A%// grad(uc).grad(uc)) (which
can be deduced from the Div-Curl lemma).

By using Lemma 11 with M™ = A" and v, = grad(un) one obtains (4°/f grad(uc).grad(uc)) >
(A_ grad(uos)-grad(ucs)) in the sense of measures. As both sides of the inequality belong to L'(£2) the
inequality is valid a.e. z € €. From the fact that u., can be any element of H}({2), one can choose
grad(us) to be any constant vector A on an open subset w with compact closure in , so that one has
proved that (AffA.)) > (A_\.\) for every A € RV, and therefore A°/f > A_ a.e. in Q.

Similarly, (A%// grad(uco).grad(uc)) > ((A4+) * A7 grad(us).A%f grad(us)) in the sense of mea-
sures, by applying Lemma 11 with M™ = (A")~! and v, = A" grad(u,), and as both sides of the inequality
belong to L'(f2) the inequality is valid a.e. z € €, and choosing grad(u.) = A on an open subset w with
compact closure in €2, one obtains (A°ff \.\) > (A4,) 1A¢Ff X\.4°ff )\) for every A € RN, and therefore
Acff > AefF(A)"1A%F ] or equivalently (A°fF)~1 > (A )"t or Aff < A, ae. in Qm

There is an important logical point to be emphasized here, as this kind of result may easily be attributed
to a few different persons. It would be interesting to check if those who either claim to have proved it before
Frangois MURAT and I had proved it in the early 70s, or claim that it had been proved a long time ago by
such or such a pioneer in Continuum Mechanics or Physics, could show that there was a clear definition of
what one was looking for in any of these “proofs”. When one says that something is well known, it only
means that it is well known by those who know it well, and in Roma in 1974, I think that Ennio DE GIORGI
did not know about such an inequality; I believe that he would have quickly found a proof if I had asked
him the question instead of saying that I had already proved the result. It is difficult to explain how anyone
could have proved the result before there was a definition of what effective coefficients were, i.e. before the
work of Sergio SPAGNOLO in the late 60s or the work of Frangois MURAT and me in the early 70s.

Many would probably argue that they knew about effective coefficients much before there was a defi-
nition, and indeed some had a good intuition about that question, but many just had a fuzzy idea of what
it was about, and I could observe that at a meeting at the Institute of Mathematics and its Applications in
Minneapolis in the Fall of 1995 when one of the speakers challenged the mathematicians by saying that he
had proved a result that mathematicians had not proved. Of course that could well happen and I have always
been ready to learn from engineers about anything that they may know on interesting scientific matters, but
it did not start well because the speaker was working with linearized Elasticity, and if there are still a few
mathematicians who do not know about the defects of linearized Elasticity it is not really my fault because
I have been a strong advocate of mentioning the known defects of models, and those of linearized Elasticity
are well known by now, and I expected a better understanding about this kind of questions from an engineer
anyway. The speaker pretended then to have proved bounds for (linear) effective elastic coefficients using
inclusions of (linear) elastic materials that were not elliptic, and as he was claiming that his bounds only
involved proportions I had mentioned to my neighbour and then loud enough to be heard by all that it was
false;3® indeed my comment was heard by many but after the talk there was only one person in the audience
interested in clarifying the question, as John WILLIS came to tell me that the speaker had not really meant to

38 For a diffusion equation, the question is very similar to using a function of one complex variable in the
style of the work of David BERGMAN [Be|, and extending it for small negative real values, and one cannot
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say nonelliptic, because the materials that he wanted to use were actually strongly elliptic (by opposition to
very strongly elliptic), and certainly an engineer who does not know the definition of ellipticity should avoid
challenging mathematicians in public,3® but that was not the only problem in the statement. The speaker
had only obtained results for DIRICHLET conditions and he would have been in great trouble for showing
that his results were local and could be obtained for all kinds of variational boundary conditions. Some
people might argue that boundary conditions are not of such importance in Elasticity, as they may have in
other questions,“® but the problem is that the materials used in the mathematical approach do not exist in
the real world, and if engineers misuse their knowledge and intuition about the real world by considering
unrealistic situations and pretending that they know the mathematical answer to some questions, they may
just be wrong: I do not see much reason why engineers should have a better intuition than mathematicians
about problems which are completely unrealistic.*!

According to the work of Sergio SPAGNOLO in the lates 60s or the work of Frangois MURAT and me in
the early 70s, homogenized/effective properties are “local” properties of a mixture of materials, and in this
course about Optimal Design it is extremely important to use local properties and to avoid any restriction
like periodic situations for example, because we are looking for the best design and we should not postulate
what we would like it to be. It is a different question to consider “global” properties, like how much energy is
located in a container, and some pioneers might have understood effective coefficients only in this restricted
way. People who are interested in the question of how much energy a given domain contains without being
interested about where this energy is located precisely and how this energy moves around,*? often drift to
quite unrealistic questions, and some still use names like Elasticity for these unrealistic questions, luring a

expect to use materials which are not elliptic without imposing something on the interface, as can be checked
for the checkerboard pattern, according to a formula of Joseph KELLER [Ke], which George PAPANICOLAOU
pointed out to me in 1980 after I had proved the same result. In the early 80s, Stefano MORTOLA and Sergio
STEFFE had shown that using regularity of interfaces one can indeed use some “materials” with nonelliptic
coefficients, but there is a relation between a measure of the regularity of the interface and the amount of
nonellipticity allowed [Mo&St1].

39 He may also have mistaken as mathematicians some people who do not hesitate to publish without
correct attribution some results that they have learned from others, without realizing that it may soon
become apparent that they do not understand very well the subject that they are talking about; the lack
of reaction of the audience might have been a sign that many did not care much about publishing wrong
results.

40 T remember a Chemistry teacher showing us a piece of phosphorus in a container full of oil, and he
explained why it was kept in oil by taking a small piece out, and it quickly burst into flames; the boundary
conditions on a piece of phosphorus are important because of chemical reactions taking place precisely at
the boundary.

41 After this incident in Minneapolis, I asked my student Sergio GUTTERREZ to look if one could extend
the theory of Homogenization in linearized Elasticity to some materials which are strongly elliptic but not
very strongly elliptic. As he showed as part of his PhD thesis [Gu], a local theory englobing the very strongly
elliptic materials and for which the formula of layers is valid cannot englobe any (isotropic) material which is
strongly elliptic but not very strongly elliptic, except perhaps for the limiting cases. I considered that result
as a fact that it is unlikely that such materials may exist, and I conjectured that the (linearized) evolution
equation with a single interface with one of these materials could be ill posed. Mort GURTIN has pointed out
that one can obtain some of these materials by linearization around an unstable equilibrium in (nonlinear)
Elasticity, and it suggests then that it is unlikely that one could avoid DIRICHLET conditions if one uses
some of these materials, except perhaps by putting enormous forces at the boundary in order to avoid
these materials to become unstable. It is interesting to notice that the publication of Sergio GUTIERREZ’s
result has created a strange reaction from a referee, who thought that it was contradicting a result on I'-
convergence; I have not been able to convince the editor that this was irrelevant and proved that the referee
did not understand what Homogenization is about if he/she thinks that I'-convergence is Homogenization,
that the correctness of the computations of Sergio GUTIERREZ is quite easy to check and that there is no
reason to impose on him the burden of explaining the errors that others may have committed elsewhere in
unrelated subjects.

42 Many mathematicians still seem to believe in a world described by stationary equations, where energy
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few naive mathematicians out of the scientific path.

Let us go back to deriving bounds on effective coefficients, and look at the compatibility of H-convergence
with the usual preorder relation on £L(R™, RY); let us recall that for A, B € L(RY,R"), A < B means that
for every ¢ € R one has (A£.£) < (BE.£); this preorder is not an order on £(RY, RY), but it is a partial
order if one restricts attention to symmetric operators.

Proposition 13: [DG&Sp] If a sequence A™ € M(a, 3;) satisfies (A")T = A" for all n, a.e. € Q and
H-converges to A°f/ if a sequence u,, converges to us, in Hj(Q) weak and if ¢ > 0 in Q with ¢ € C.(Q),
then one has

n

liminf/s; go(A” grad(un).grad(un)) dz > /S;go(Aeff grad(uoo).grad(uoo)) dz. (5.9)

For every uo, € Hj () there exists a sequence v, converging to u., in Hj (f2) weak and such that for every
¢ € C.(f) one has

liTrln/Q go(A” grad(vn).grad(vn)) dz = /Q cp(Aeff grad(uoo).grad(uoo)) dz. (5.10)

Proof: Let f = —div(A®f grad(us)) and let v, € Hg(Q) be the solution of —div(A™ grad(v,)) = f in Q,
then v, converges to some vo, in Hj () weak and as v is solution of —div(A®// grad(ve)) = f in €, one
must have vo, = Uy a.e. in §2; therefore v, converges to ue, in Hg(f2) weak and A™ grad(v,) converges to
A*ff grad(us) in L?(Q; RN) weak. Then one computes

lim inf/ go(A” (grad(un) - grad(vn)) .grad(uy) — grad(vn)) dz, (5.11)
n Q

which is a nonnegative number. One term is [, ¢ (A™ grad(u,).grad(u,)) dz whose liminf, is what we are
interested in; then, because of the symmetry of A™, the other terms are [, ga(A” grad(vy).grad(—2u, +
vn)) dx, and the Div-Curl lemma applies so the limit is — [, ¢ (A%/f grad(uc).grad(us)) dz, and this gives
(5.10). Of course, (5.11) is obtained by using the sequence v, just constructed and applying the Div-Curl
lemma.®

The preceding result is due to Ennio DE GIORGI and Sergio SPAGNOLO [DG&Sp]|, who were using
characteristic functions of measurable sets for ¢, because the use of MEYERS'’s regularity result permits to
prove the preceding result for ¢ > 0, ¢ € L>*(2). Notice that the convexity argument of Lemma 11 gives
A_ on the right side of (5.11) instead of A°¥f, so Proposition 13 is more precise then that Lemma 11 as
A_ < A°¥f by Proposition 12.

Proposition 14: If a sequence A™ € M (a, (3;2) satisfies (A™)T = A" for all n, a.e. = € Q) and H-converges
to A¢ff if a sequence B™ € M(a, 3;2) H-converges to B¢/ and if A® < B" a.e. in Q for all n, then one
has A¢ff < Beff ae. z € Q.

Proof. Let g € H*(Q2) and let v,, € H}(f2) be the sequence of solutions of —div(B" grad(v,)) = g in Q,
which converges in H}(f2) weak to v, and B™ grad(v,) converges in L2(€; RY) weak to B*/f grad(veo).
Then for ¢ > 0, ¢ € C.(Q), one passes to the limit in the inequality

/Q <p(B" grad(vn).gmd(vn)) dz > /s; go(A" gmd(vn).gmd(vn)) dz. (5.12)

The left side converges to [, ¢(B°/f grad(ve).grad(ve)) dz by the Div-Curl lemma; the liminf, of the
right side is > [, ¢(A4°// grad(vso).grad(ves)) dz by Proposition 13, and one obtains

/ng(Beff grad(voo).grad(voo)) dz > /

go(Aeff grad(voo).grad(voo)) dz. (5.13)
Q

is minimized, as if they had never heard about the First Principle of “conservation of energy”, and although
it is a difficult question to explain how some energy is transformed into heat and how good the Second
Principle is, it certainly seems utterly unrealistic to believe that after a short time every system finds its
point of minimum potential energy.
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As v, is arbitrary in H}(Q), one obtains ¢ B¢ > ¢ A°ff ae. in Q, and varying ¢ gives the result.m

The second part of Proposition 13 is valid without any symmetry requirement, but the first part is not
always true without symmetry. Similarly, Proposition 14 is not true for a general sequence A", even if all the
B™ are symmetric instead. Furthermore, in Proposition 12 we compared A%/ with A, and the symmetry
hypothesis on A™ is also important there. Let us construct a counter-example for N > 2 (as every operator
is symmetric if N = 1); define A™ by

A" =1+ 1/1n(:c1)(el ®ex—ex® 61), (514)

where
P — U1; (%n)? = Uy in L°(R) weak *, (5.15)

and choose the sequence 1, so that U5 > (¥;)2. The formula for layers (4.11) shows that
A™ H-converges to Aff =T+ Ui(e1®@ex—e2®e1) + (\Ilg — (1111)2)62 ® es. (5.16)

As A, =T+T,(e; ®es—ea®ey), this gives an example where A°ff < A is false. One has A™ < [ for all n,
while one does not have A¢ff < I, and one has instead A¢ff > I, as it must be from Proposition 14 because
one has A™ > I for all n. Finally, taking u, = uc for all n, one has [, ¢(A" grad(u,).grad(u,)) de =
Jo ¢l grad(us)|? dz but

/Q(Aeff grad(uoo).grad(uoo)) dz = /;lgo(|g7'ad(uoo)|2 + (T, — \I’%)‘ 631;020 2) dz (5.17)

showing that in this case (5.9) is not true.

Although in this course on Optimal Design all the problems considered are symmetric, I find useful to
describe general results valid without symmetry assumptions: it is a good training in Mathematics to learn
how to deal with general problems first so that one can easily deduce what to do on simpler problems, and
it is usually difficult for those who have been only trained on simple special cases to understand what to do
when they encounter a new situation. For that reason, I describe estimates which are useful for questions of
perturbations and continuous dependence of H-limits with respect to parameters.

Lemma 15: Let A € M(o,B;9Q) and D € L™ (Q; E(RN,RN)) with

1Dl (ucrv.em) SO<@ (5.18)
then 5
A+DeM(a—5,7af__5 Q) (5.19)

Proof: Of course ((A+D)£.£) > alé|*—|DE|.|¢] > (a—6)|¢]?. If A and D are symmetric, one has immediately
A+D € M(a—4§,3+4;Q), but in the general case the replacement for 3 requires more technical computations.
One first notices that (A4 £.£) > %,|A§|2 means ‘A& - g& ‘ < 'g|£|, and drawing a picture in a Euclidean plane
containing £ and A& helps understand how to obtain the above bound and also see why it is optimal.
Analytically, defining L by 2L = % one wants to show that for all £ one has [(A+ D)¢ — L&| < L|¢|, and
this will be a consequence of |A¢ — L&| < (L —6)[¢], ie. of |A¢|? —2L(AE.€) < (—28 L+62%)|€]2, and by the
definition of L one has —2§ L + §% = (8 — 2L)c; then one notices that |4 £|2 — 2L(A£.£) < (B —2L)(AL.E)
which is < (8 — 2L)alé|? as B —2L <0m

Proposition 16: If sequences A™ € M(a, 3;9Q) and B € M(o/, 3'; Q) H-converge respectively to A°¥f and
B!, and |B"™ — A" (gv gy < € a.e. @ € () for all n, then

Bp

aao

|BF — A7 || poo (. 0(rN mN)) < € (5.20)
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Proof: For f,g € H-1(Q), one solves
—div (A" grad(un)) =fin —div((B")T grad(vn)) =gin Q, (5.21)

SO Up,, vy, converge in Hy (2) weak respectively to Uso, Voo, and A™ grad(uy,) and (B™)7 grad(v,) converge in
L?(Q; RN) weak respectively to A°ff grad(us) and (B¢¥f)T grad(vs ). By the Div-Curl lemma one knows
that (A" grad(u,).grad(v,)) and (grad(us,).(B™)T grad(vy,)) converge in the sense of measures respectively
to (A%// grad(uc), grad(ve)) and (grad(ucs).(B¥¥)T grad(vs)), and so for every ¢ € C.(Q2) one has

liTan/Q go((B" —A™) grad(un).grad(vn)) dx = /ng((Beff — A1) grad(uoo).grad(voo)) dz. (5.22)

Choosing moreover ¢ > 0, and defining

X = |/Qg0((Beff - Aeff)grad(uoo).gmd(voo)) dw‘ (5.23)

one deduces
X< slimsup/ olgrad(uy)||grad(vy,)| dz. (5.24)
n  Jo

Then |grad(u,)||grad(v,)| < aalgrad(u,)|* + ba'|grad(v,)|*> when 4dabaa’ > 1, and as A™ € M(a, ;)
and B™ € M(a', 3';2) one has

X <elim sup/ <p[a (A" grad(un).grad(un)) + b(B" grad(vn).grad(vn))] dz, (5.25)
n Ja
which gives
X< 5/ go[a (Aeff grad(uoo).grad(uoo)) +b(Beff grad(voo).grad(voo))] dz, (5.26)
Q

and therefore
X <e aﬂ/ plgrad(us)|®dz +ebf / plgrad(ve)|? de. (5.27)
Q Q

As this inequality is true for every ¢ > 0, ¢ € C.(Q2), one deduces
‘ ((Be7 - 4°17) grad(uco).grad(vec) ) ‘ < ¢(aBlgrad(us)® + b8 lgrad(ve) ) (5.28)

a.e. in 2, and optimizing on rationals a and b satisfying 4aba o’ > 1, one obtains

|((Beff — AT grad(uoo).grad(voo))‘ <ey/ %|grad(uoo)| lgrad(vs )|, in Q, (5.29)

and as U and v, are arbitrary, one obtains (5.20).8

Proposition 17: Let P be an open set of RP. Let A™ be a sequence defined on 2 x P, such that A™(-,p) €
M(a, 3;Q) for each p € P, and such that the mappings p — A™(-,p) are of class C* (or real analytic) from
P into L (Q; L(RN, R")), with bounds of derivatives up to order k independent of n. Then there exists a
subsequence A™ such that for every p € P the sequence A™ (-, p) H-converges to A°/f(-,p) and p — A°/f(-,p)
is of class C* (or real analytic) from P into L> (€; L(RN,RYN)).

Proof: One considers a countable dense set II of P and, using a diagonal subsequence, one extracts a
subsequence A™ such that for every p € II the sequence A™(-,p) H-converges to a limit A¢ff(-, p). Using
the fact that A is uniformly continuous on compact subsets of P and Proposition 16, one deduces then that
p — A°f7(.,p) is continuous from P into L*°(Q; L(RN,R")) and that for every p € P the sequence A™(-,p)
H-converges to A°ff(-, p).
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Defining the operators A, (p) from V = Hg(Q) into V! = H () by Am(p)v = —div(A™ (-, p) grad(v)),
one finds that the mappings p — A,,(p) are of class C* (or real analytic) from P to £(V,V’) and similarly
p = (An(p)) ! are of class C* (or real analytic) from P to £(V’,V), and finally the operators R,, defined
by R,v = A™(-,p) grad(vm) with v, defined by A, (vsm) = Aess(v) are of class C* (or real analytic) from
P into £L(V; L?(Q; RY)); all the bounds of derivatives up to order k being independent of m so that the limit
inherits of the same bounds and as R¢ffv = A°ff(.,p) grad(v), one deduces therefore that p — A°ff(-,p) is
of class C* (or real analytic) from P into L*°(Q; L(RN,RN)).m

As T mentioned, some of the preceding results will not be used in this course but they serve as a more
general training on questions of Homogenization, but let us now come back to the method that Frangois
MURAT and I were following in the early 70s in order to obtain some information on effective coefficients: we
had computed the convex hull of K defined in (5.1), we had used the relation (5.2) (where a first version of
the Div-Curl lemma had been used), and we concluded that A%/ must satisfy (5.3); then we had noticed a
quicker way to prove the result by the convexity argument of Lemma 11, but I will describe in (5.34)/(5.40)
how to carry out the computations of the convex hull in a way that will be useful for further generalizations.
We were considering the special case where a” = xp,a + (1 — x»)B8, with 0 < & < 8 < o0, and X, being a
sequence of characteristic functions converging in L*°(£2) weak * to 6, so that 8(x) represent the proportion
of the material of conductivity a near the point z; in that case we denote

A (6) = 0o+ (1—0)3; %@:gﬂ%’, (5.30)

and the analogue of Proposition 12 told us that the eigenvalues of A°f/ were in the interval [A_(8), A, (6)].
In dimension N = 2, the eigenvalues A, Ay of A%ff must satisfy
apf

A-(0) = 98+ (1—0)a SApA<fa+(1-60)8=A.(0), (5.31)

defining a square in the (A1, A2) plane, and varying 6 between 0 and 1, the union of these squares gave
us the constraint that any mixture of two isotropic materials with conductivity a and 8 must satisfy the
inequalities

ap

< < min{Aq, A} < A, A2} < —
a_a—l-ﬂ—max{)\l,)\z} < min{Ay, Ao} < max{As, A} < @+ 3

B
min{)\l, /\2}

<B, (5-32)

and we showed that the characterization (5.32) is optimal (while the characterization (5.31) is not optimal).
For this we used the formula for layers, which in dimension N creates a tensor A°f with one eigenvalue
equal to A_(#) with the eigenvector orthogonal to the layers, and (N — 1) eigenvalues equal to Ay (#) with
the eigenvectors parallel to the layers, so that if N = 2 all the points on the boundary of the set (5.32) are
obtained by layered materials. Then we took one anisotropic material with eigenvalues (,d) and changing
the orientation of the material gave two diagonal tensors A; = (,d) and A; = (4,7), and using layers
orthogonal to the z; axis, using proportion 7 of material A; and proportion (1 — ) of material A, gave
materials with diagonal tensors (m, nd+ (1 - 77)'7), having therefore determinant equal to v 4, so
that by taking v = A_(0) and & = A, (f) showed that the piece of equilateral hyperbola joining the two
(non isotropic) diagonal corners of the square defined by (5.31) were attainable by mixtures and the union
of these pieces of hyperbolas covered the set (5.32) (independently, Alain BAMBERGER had noticed that in
dimension N = 2 if one mixes materials with det(A) = ¢ then one has det(A%/f) = c.

In doing so, we had followed the intuition that if one mixes a few materials which themselves have been
obtained as mixtures of some initial materials, then the result can be obtained by mixing directly the initial
materials in an adapted way. Mathematically, it is here that the metrizability property mentioned before is
important: one tries to define the closure for a metrizable topology of a set containing the tensors of the form
(x @+ (1—x)B)I with x being the characteristic function of an arbitrary measurable set (or of a smoother set
like an open set, for example), and one identifies then some first generation sets contained in the sequential
closure of the initial set, then one identifies some second generation sets contained in the sequential closure
of some first generation sets, and one repeats the process finitely many times, and because the topology is
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metrizable every set constructed is included in the sequential closure of the initial set. However, the local
character of H-convergence proved in Proposition 10 has also been used: if w;, j € J, is a countable collection
of disjoint open*? sets such that Q is the union of all the w; plus a set of measure 0, and if for each j one has
a sequence A;, € M(a,3;w;) which H-converges to A;f f , then one can glue these pieces together, defining
A=) j Xw; Ajn, which belongs to M(a, ;) and by Theorem 6 a subsequence H-converges to some AcTT
and Proposition 10 asserts that the restriction of A¢ff to wj is A;f f , and therefore all the sequence H-

converges to A¢ff =} j Xw; A;f . The preceding arguments enabled us to create in the desired H-closure
(or G-closure, as we were working with symmetric tensors) any measurable tensor taking a constant value
belonging to the set (5.32) for each of the disjoint open sets w;, and the conclusion came from the remark
that if a sequence A™ € M (a, 3; ) converges almost everywhere to A* then it H-converges to A®.

This is the result which I used in 1974 in order to compute necessary conditions of optimality for classical
solutions [Ta2]. Although Frangois MURAT and I had followed the same type of construction that Antonio
MARINO and Sergio SPAGNOLO had used in [Ma&Sp], the reason why we had been able to go further was
that we had obtained the necessary condition of Proposition 12, which had given us in dimension N = 2
the conditions (5.31) and (5.32). We were not able at the time to obtain the characterization in dimension
N > 3, or even in the case N = 2 we could not find the optimal characterization improving (5.31), when
one imposes to use given proportions. The first step towards the solution of these more general questions
was my introduction at the end of 1977 of a new method for obtaining bounds for effective coefficients [Ta6];
this method makes use of the notion of correctors in Homogenization and it requires the choice of adapted
functionals for which one checks the hypotheses by applying the Compensated Compactness theory. Before
describing these new ingredients, I want to show what a more precise analysis of (5.2) with the definition
(5.1) gives.**

In the case A™ = o™ I which we had investigated first, we knew that the L*°(Q2) weak * limits of a™
and ain, denoted respectively by a, and i, were needed in the case where a™ only depends upon one linear
combination of coordinates. We had constructed sequences E™ = grad(u,) and D™ = o™ E™ = a" grad(u,)
converging in L?(Q; RY) weak, respectively to E* and D*°, and we had shown by an integration by parts
(instead of the Div-Curl lemma which we discovered later) that a™|E™|? converges in the sense of measures
to (D*®.E>). Therefore we decided to look at the convex hull in R2N*3 of the set K defined by (5.1), and
one may wonder if it changes much to add other functions of a™ to the list and look at the convex hull of
the subset K of RZVN+k+1 defined by

K ={(B,aB,alBEP f1(a),..., fu(0) )|E € R, a € [0, 8]}, (5.33)

and fi,..., fr are k given continuous functions on [, 3]. The computations will show that the L*(2) weak x
limits of ™ and ain appear naturally. One characterization of the closed convex hull of K requires considering
quantities of the form (E.u;) + (a E.uz) + Coa |E|? + Ele C:fi(a), where uj,us € RN and Cy,...,Cx € R,
in order to compute their infimum for E € RN and a € [a,8]. One has then to consider the infimum of
(Eau1) + (@ E.wug) + Coa |EJ? for E € RY, and this infimum is —oo if Cy < 0, or if Cop = 0 and either u; or
ug is not 0; therefore the typical formula is

|v+ aw)|? B @

in (a|E|? — 2(E.v) — 2(a E. ): — 2(v.w) — a|w|? for v,w € RY. 5.34
Jnin, (a| | (Ew) —2(a E.w) o (v.aw) — a|w|® for v, w (5.34)
Taking the limit of
2
a™|E™|? - 2(E™v) — 2(a™ E™w) > —% —2(vaw) — a™ |w?, (5.35)
a

43 In his work on G-convergence, Sergio SPAGNOLO uses MEYERS’s regularity theorem [Me], and he can
use disjoint measurable sets.

44 Although we could have done the following computations in the early 70s, I only noticed Lemma 18
and Lemma 19 while I was working on a set of lecture notes for my CBMS-NSF course in Santa Cruz in
the Summer 1993 (I have abandoned this project since), and for preparing my lecture for a meeting in Nice
in 1995, where I applied our method for the case of mixing arbitrary anisotropic materials [Tal4]; I will
describe later this extension (Lemma 42), which is based on Lemma 18.
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one obtains )
(D*®.E®) — 2(E*®.w) — 2(D®.w) > —u

—2(v.aw) — ay|w|?, (5.36)

and that inequality is true for every v,w € RY. The best choice for v and w in (5.36) is obtained by solving
the system
v +w=E*®
a— (5.37)
vVt arw = l)oo’
and there is a difficulty if a_ = a, as one needs to have D> = a, E*°; this is not surprising as one always

has a_ < a4, with equality if and only if a™ converges in L], (Q2) strong to a; (i.e. in L? () strong for

loc loc

every p < 0o, because a™ is bounded in L*(Q)). If a_ < a, the solution of (5.37) is given by

_a_(a E® — D*)

a4 —a—

Dot o (5.38)
w=——,
a; —a_
and (5.34) leads to
(ay —a_)(D®.E®) —a_ (E°°.(a+E°° —D®)) - (D°°.(D°° - a_E°°)) >0, (5.39)
i.e.
(D*® —a_E*®.D*® —a,E*) <0, (5.40)

which means that D> belongs to the closed ball with diameter [a_ E*°, a4 Eo)], and the formula is still
valid if a_ = a,. Having shown already that D® = A°/f E* for a symmetric matrix A°/f, the validity
of (5.40) for every E* € RY is equivalent to A°f/ having all its eigenvalues between a_ and a, (defining
M = AFf — #I, the condition becomes (M z.z) < ﬁfTa|z|2 for all z € RN, equivalent to M having all its

eigenvalues with modulus < £52).

A slightly different point of view for dealing with (5.40) is that if 0 < b < a < oo and two vectors
E,D € RY satisfy (D — a E.D — bE) < 0, then there exists a symmetric B having its eigenvalues between
b and a such that D = B E. Indeed, assuming b < a, let v = “T'H’,d = "2;1’ and F = %(D — v E), one has
|F| < |E| and one wants to find a symmetric C' of norm < 1, equal to %(B —~1I), such that CE = F, and
there is actually such a C satisfying ||C|| < % if E # 0; in the case of two unit vectors e, e; which are not
parallel, the basic construction for finding a symmetric contraction mapping e; onto ez is to consider the
symmetry which has e; & ey as eigenvectors with eigenvalues 1 and if V > 2 the subspace orthogonal to
e1 and ey as eigenspace with an eigenvalue between —1 and +1. If N > 2, the preceding construction shows
that if E#0and (D—aE.D—bFE)=0then D = BF for a symmetric B having one eigenvalue b and the

N — 1 other eigenvalues equal to a, and such a case appears when one uses layerings.
This helps proving the following result.
Lemma 18: If 0 < o/ <b" <a" < B’ < o0 a.e. in Q, E", D" € L?(; RYN) for all n, and

(D™ —a™E".D"™ —b" E™) <0 a.e. in Q, (5.41)
with
a™ — a*™ in L*°(f2) weak x,
1 1
T pe in L*°(Q) weak *,
E™ —~ E*® in L*(Q; RN) weak, (5.42)

D™ — D™ in L*(Q; RY) weak,
(E™.D™) — (E*.D*) in the sense of measures,
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then one has
(D*® —a® E®.D* —b>*° E*) <0 a.e. in Q. (5.43)

Proof: By the preceding analysis, one has D™ = B™ E™ a.e. in (), with B™ symmetric and having its
eigenvalues in [b",a™]. Therefore for v,w € RN one has

(D".E") - 2(E".v) — 2(D"w) = (B" E".E") - 2(E".v + B"w) > - ((B") (v + B"w).(v + B"w))

1
= —((B")flv.v) —2vw) — (B"w.w) > —b—n|v|2 —2(v.aw) — a™|w|?,
(5.44)
a.e. in ; after using test functions ¢ € C.(2) with ¢ > 0 in 2, one obtains

1
(D*®.E®) = 2(E®°w) — 2(D*.w) > —bTo|v|2 —2(vaw) — a®|w|? a.e. in Q, (5.45)

and as this is the same inequality than (5.36) with a_ replaced by b and a replaced by a>, one deduces
the analogue of (5.40), which is (5.43).m

Lemma 18 can also be derived as a consequence of the following result.

Lemma 19: Define the real function ® on RN x RN x (0,00) x (0,00) by

1 (D—aE.D-bE)ifb<a,
®(E,D,a,b) =< 0ifb=a and D = a E, (5.46)
400 otherwise,

then ® is a convex function in (E, D,(E.D),a, %), and more precisely

3(B,D,a,b)= sup (~(D.E)+2(Ev) +2Dw) - %|v|2 — 2(vw) ~ alu). (5.47)

v,weERN

Proof: Indeed in the case 0 < b < a the quadratic form —3|v|> — 2(v.w) — a|w|? is negative definite, and
the supremum is attained when (v, w) solves the analogue of (5.37), 7 + w = E and v 4+ aw = D, which
gives the analogue of (5.38), v = % and w = DaibbE , and the value of the supremum is the quantity
defined in (5.46). If b > a > 0 the quadratic form is not definite and the supremum is +oo. If b = a > 0, the
quantity to maximize is —(D.E) + 2(D — a E.w) + 2(E.v 4+ aw) — t|v + aw|?, and the supremum is +oo if
D—aFE #0,and if D =aE it is —(D.E) + a|E|?, which is 0 in that case.®

6. Correctors in Homogenization

In 1975, I heard Ivo BABUSKA mention the importance of amplification factors: in real elastic materials
there is a threshold above which nonelastic effects (plastic deformation or fracture) usually appear. In a
mixture it is not the average stress which is relevant but the local stress, and therefore one must know an
amplification factor for computing the local stresses from the average stress; I did keep this comment in
mind when I defined my correctors.*> I first consider the case of layered media, for which one can prove a
stronger result than for the general case of H-convergence.*6

45 T had then heard Jacques-Louis LIONS describe his computations for the periodically modulated case,
which he had studied with Alain BENSOUSSAN and George PAPANICOLAOU [Be&Li&Pal, and I found that
his notation with x;; created an unnecessary chaos with indices, which I decided to avoid.

46 T did the general framework in 1975 or 1976, but I only noticed later the stronger result for the case of
layered media, because of a lecture at a meeting in Luminy in the Summer 1993 [Tal3], where I considered
functionals depending upon the gradient, and for the reasons mentioned in footnote 44.
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Proposition 20: Let a sequence A™ € M(a, ;) be such that it only depends upon z; and that it H-
converges to A®/f. If a sequence u, converges in H}. () weak to u, and div(A" grad(u,)) stays in a

compact of H,!(2) strong, then

(A" grad(un))1 — (Aeff grad(uoo))1 in L7 (Q) strong,

oz, — oz, | in L7 ,(Q) strong, for i =2,..., N.
If one defines the sequence P, € L*>°(Q; L(RN, R")) by
(Aeff)ll
Po)in =+,
( )11 (An)ll
(A77)1; _ (A™)yy (6.2)
V1 = forj=2,...,N,
(P )1] (Aeff)]_]_ (A,n) or .7
(Pn)ij :(Sij for i = 2,...,N, andj = 1,...,N,
then one has
grad(u,) — P, grad(us) — 0 in L2 _(Q; RY) strong. (6.3)

Proof: If one denotes E™ = grad(u,) and D™ = A™ grad(u,) and if one uses the vector G™ and the tensor
B™ = $(A") introduced after (4.11), the statement (6.1) means that G™ converges in L2 (€; RY) strong to
G*°. In order to prove this statement, one first notices that

(B"(G" - G®).G" — G°°) converges to 0 in the sense of measures. (6.4)

Indeed, (B™ G™.G™) = (D™.E™) which converges in the sense of measures to (D®.E®) = (B® G*.G™)
by the Div-Curl lemma, and as G™ does not oscillate in z; and B™ only depends upon z; and converges
in L>(Q; L(RN,RYN)) weak x to B® = ®(A%/f), both (B" G".G*) and (B™ G*.G") converge in L} ()
weak to (B> G*°.G*°). Then one notices that there exists v > 0 such that

(B™A.A) > 4|\ for all A € RY, (6.5)

as one may take ¥ = 5% for example, as (B" G".G") = (A" E".E") > a|E™|? and |G"|?2 < |D"|?+|E"2 <
(8% 4+ 1)|E™|%. Then (6.1) follows from writing

N
(89% = ﬁ[(A grad(un ) Z (A™) 1]%], (6.6)

j=2
and using the fact that ﬁ is uniformly bounded by é.l

I have mentioned after (4.11) that the formula for computing the effective properties of a layered material
is valid under a much weaker hypothesis than the one used for the general theory of H-convergence, namely
A™ bounded and A%, > a > 0 a.e. in § for layers in the direction z;.#” The main reason for using
LAX-MILGRAM lemma in the general framework is that it enables to construct sequences E™ = grad(uy,)
converging in L2(w RY) weak to a constant vector with D" = (A")TE™ such that div(D") stays in a
compact of H, 1(Q); such an abstract construction is not needed in the case of layers because one can
immediately write down explicitly a similar sequence; indeed taking G to be a constant vector and defining
O™ = B™(z1)G, gives a vector E™ which is a gradient as (E™); only depends upon z; and E; is constant for

47 Tt applies to the hyperbolic equatlon 5t (pn( )B"") ( "(z )3”") = fifa™ > a and p, > a a.e. for

all n: if p, converges to po, and ;% converges in L°°(Q) weak * to m, then the effective equation has the
same form, with p, and a™ replaced by poo and a¢f
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i=2,...,N, and the vector D™ = A™(z;)E™ has divergence 0 as (D™); is constant and (D"); only depends
upon z; for i = 2,..., N; the sequence E™ indeed converges in L%(Q; RY) weak to a limit £, and E* is
not constant as (E°°); may indeed be a nonconstant function of 1, but it is not so important that the limit
be constant as what is necessary for the argument to work is that one can construct IV such sequences with
limits which are linearly independent, and this is true here.

However, the strong convergence result of Proposition 20 cannot be true without assuming an ellipticity
condition: let A be a constant tensor with A;; > 0 and (A £.£) = 0 for some € # 0 (and & # e;, as A;; > 0),
then the sequence u, defined by u,(z) = 2 sin(n({.z)) satisfies div(A grad(u,)) = 0 and G™ converges in
L?(Q; RN) weak to 0 but it does not converge in L? _(Q; RN) strong. It is therefore natural to assume that
(A£.£) does not vanish and the hypothesis A™ € M (a, 3;2) appears then as a natural restriction when one
wants the argument to apply for every direction of layers.

In the general framework of H-convergence, one cannot prove a result as strong as Proposition 20, and
the basic result is the following.

Theorem 21: Let a sequence A™ € M(a, 3;Q) H-converge to A°¥f. Then there is a subsequence A™ and
an associated sequence P™ of correctors such that

P™ [in L2 (Q; L(RN,RN )) weak,

A™ P s A°TS i L2 (Q;L‘(RN,RN)) weak,

curl(P™\) = 0 in Q for all A € RY,

div(A™ P™ )\) stays in a compact of H;,!(Q) strong, for all A € RY.

(6.7)

For any sequence un, converging in H}, () weak to us with div(A™ grad(um)) staying in a compact of
H, }(Q) strong, one has

grad(um,) — P™ grad(us) — 0 in L}, (Q; RY) strong. (6.8)

Proof: For an open set ' of RN containing 2, one extends A™ by a I in '\ and one extracts a subsequence
A™ which H-converges to a limit on Q'; one also denotes this limit A°ff, and by Proposition 10 it must
be an extension to Q' of the H-limit already defined on . Then for ¢ = 1,..., N, one chooses a function
@i € Hi () such that grad(p;) = e; on £, and one defines P™e; = grad(vy,) in €2, where v,, € Hg(Q) is
the solution of div(A™ grad(vm) — A%/ grad(¢;)) = 0 in Q. By this construction v,, converges in H} (')
weak t0 v, solution of div (A% grad(vee) — A/ grad(p;)) = 0in €, i.e. v = ;, and therefore grad(vm )
and A™ grad(v,,) converge in L%(Q'; RY) weak, respectively to grad(y;) and A/ grad(y;), i.e. P™e; and
A™ P™e; converge in L?(Q; RN) weak, respectively to e; and A°/fe;. By repeating this construction for
i =1,...,N, one obtains a sequence P™ satisfying (6.7). Actually the construction gives P™ satisfying a
more precise condition than (6.7), as one has div(A™ P™ )\ — A¢ff \) = 0 in Q for all A € RY, but it is
useful to impose only (6.7) as there may be slightly different definitions for P™ that may not satisfy this
supplementary requirement.*® The sequence P™ grad(us) is bounded in L!(Q; RY) because the sequence
of correctors P™ is bounded in L?(€; L(RY,RY)). In order to prove (6.8), one chooses g € C(Q;RY),
¢ € C.(), and one computes the limit of

Xm = /ng(Am(grad(um) — P™g).grad(uy,) — P™ g) dz. (6.9)

Writing g = ), grek, one expands the integrand in X,, and by (6.7) the Div-Curl lemma applies to
each term: (A™ grad(um).grad(um)) converges in the sense of measures to (A% grad(us).grad(uc)),
and similarly (A™ grad(um).P™ e;) converges to (A%// grad(uc).e1), (A™ P™ ej.grad(um)) converges to

48 In the case of layers for example, it is more natural to look for P™ depending only upon z;, and the
correctors defined in (6.2) satisfy div(A™ P™ )\) = 0 in Q, even if div(A°/f \) does depend upon z;. In the
periodic case, it is more natural to ask for P™ to be periodic.
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(Aeff ek.grad(uoo)) and (A™ P™e,.P™¢;) converges to (A°ff ex.e;); as each g is continuous and ¢ has
compact support, one deduces that

Xm—>Xoo:/
Q

go(Aeff(grad(uoo) —g).grad(us) — g) dz. (6.10)
If up € C1(R2) one can take g = grad(u ), and one deduces that X,,, — 0; by taking0 < ¢ <land ¢ =1on
a compact K of 2, one deduces that grad(u,,) — P™ grad(us,) — 0 in L?(K; RY) strong for every compact
of Q. If us, € H'(Q), one cannot use g = grad(u,) in general, and therefore one approaches grad(us,) by
g € C(; RY) in order to have

llgrad(uco) — gllL2(;rv) <é, (6.11)
implying
Xoo < ﬂ/ lgrad(us) — g|* dx < B> (6.12)
Q
By (6.10) and (6.12) one has
limsup/ algrad(uy,) — P™ g|*dz < Be?, (6.13)
m  JK

from which one deduces

Bmeas(K)

lim sup/ lgrad(um,) — P™gldz <e
m K a

(6.14)

Using (6.11) one deduces that

K
lim sup/ |grad(um,) — P™ grad(us )| dz < &4/ Bmeas(K) +Ce¢, (6.15)
m K a

where C is an upper bound for the norm of P™ in L*(Q; L(R", R")); therefore grad(um)—P™ grad(uos) — 0
in L'(K; RY) strong and as K is an arbitrary compact of {2, one obtains the desired result (6.8).m

Using better integrability property for grad(u ), and MEYERS’s regularity theorem [Me], one can prove
that grad(um) — P™ grad(ue) converges in L7 (Q; RN) strong to 0 for some p > 1. If P™ is bounded in
L} (9 L(RN,RN)) for some ¢ > 2, as can be shown using MEYERS’s regularity theorem [Me], or directly
as in the case of layers where one can take ¢ = oo, and grad(ue,) € L"(Q; RY) for some r > 2, then one
can take g € L*(Q; RN) in (6.9) and (6.10) with s = quqz, and if g is near grad(uc) in L"(Q; RY) or equal
to grad(uc) if 7 > s, then P™(grad(us) — g) is small in Lf, (Q; RY) with t = 3 one can then choose

p = min{s, t}.

Although the following results will not be used in this course, it is important to realize that correctors
are important even for finding the effective equation for similar equations obtained by adding lower order
terms; for simplicity, I will ignore the advantage of using MEYERS’s regularity theorem [Me].

Proposition 22: Let a sequence A™ € M(a, 3;Q) H-converge to A°ff  let c" be a sequence bounded in
LP(;RY) with p> N if N > 2, p =2 if N = 1, and assume that a sequence u,, converges in H} () weak
to us and satisfies

—div (A" grad(un)) + (c".grad(un)) — f in H;;}(Q) strong. (6.16)
Then u,, satisfies the equation
—div (Aeff grad(uoo)) + (ceff.grad(uoo)) = fin Q, (6.17)
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with an effective coefficient c*f such that for a subsequence
(P™)Tem — ¢ff in L%/ (P+2) weak if N > 2, in the sense of measures if N = 1, (6.18)

for a sequence of correctors P™.

Proof: One extracts a subsequence such that (P™)%¢c™ converges in L?/(P+2)(Q) weak to c*/f if N > 2 and
in the sense of measures if N = 1.4° Using SOBOLEV’s imbedding theorem, (cm.grad(um)) stays in a compact
of H;;!(2) and therefore Theorem 21 implies that grad(u,,) — P™ grad(us,) converges in L}, (€; RN) strong
to 0, and one wants to prove that

(cm.grad(um)) - (ceff.grad(uoo)) in L?%/(P+2) weak if N > 2, in the sense of measures if N = 1.
(6.19)
Indeed (c™.P™ g) converges to (c¢*f.g) if g € C(Q; RY), and if g satisfies (6.11), then (6.13) implies that
both (c™.grad(u,,) — P™g) and (c*/f.grad(us) — g) have a small norm in L!, so that one deduces (6.19).m

One could add a term d™u,, in the equation, with d" being a bounded sequence in L?(2) with ¢ > & for
N >2,g=1for N =1. The term d"u, stays in a compact of H; () strong and a subsequence converges
to d®u, if for that subsequence d™ converges in L4(2) weak to d* for N > 2 or in the sense of measures
if N = 1. Without loss of generality, this term can be put into the right hand side converging in H. l;cl ()

strong to a known limit.

I conclude by some computations of Frangois MURAT giving other properties of the correctors and

showing how to treat cases with terms converging only in Hj,!(Q) weak.

Proposition 23: Let a sequence A™ € M(a,3;Q) H-converge to A/, let b" be a sequence bounded in
L?(9Q; RN) and let u,be a sequence converging in H. (Q) weak to u., and satisfying

loc
—div (A" grad(u,) + b”) — f in H,;}(Q) strong. (6.20)
Then u., satisfies
—div(Aeff grad(us) + beff) =finQ, (6.21)

with an effective term b*ff € L2(Q; RY) such that
(II™)Tb™ — b°f in the sense of measures, (6.22)

for a subsequence for which II"™ denotes the corresponding correctors associated to (A™)7T.50
Proof. One extracts a subsequence such that (6.22) holds and

A™ grad(um,) + b™ converges in L?(Q; RN) weak to &, (6.23)

and one shows that
¢ = A% grad(uo) + %% in Q. (6.24)

For v., € CL(), let v, € H} () be the sequence of solutions of
div((Am)T grad(vy,) — (A°TH)T grad(voo)) =0in Q, (6.25)

so that
Um — Voo in Hy(Q) weak,
(A™7T grad(vm) — (A°FH)7T grad(ve,) in L2(Q; RY) weak, (6.26)
grad(vy,) — ™ grad(ve,) — 0 in L2, (Q; RY) strong,

49 There could be different subsequences of (P™)Tc™ converging to different limits, but Proposition 22
shows that all these limits give the same value for (c*//.grad(uc)).

50 From the explicit computation (6.2) of P™ in the case of layers, one sees that II™ is not in general equal
to (P™)T; of course, if (A")T = A" for all n one can choose II™ = P™.
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and one computes the limit of (A™ grad(u,,) + b™.grad(vy,)), which is (¢£.grad(vs)), by using the Div-Curl
lemma. As (grad(um).(A™)7 grad(vm,)) has limit (grad(us).(4°7)T grad(vs)) and as (b™.grad(v,)) has
the same limit as (b™.II"™ grad(veo)), i-e. (b°/f.grad(vs)), one has proved that

(§ — A% grad(us) — beff.gmd(voo)) =01in Q, (6.27)

and by density of C}(f2) in H}(2), one obtains (6.24).®

Frangois MURAT also noticed that although P™ may only be bounded in L?(Q; L(RY,RY)) for some
p < oo (with p € (2,00) if one uses MEYERS’s regularity theorem [Me], or p = 2 if one does not use it), it
is nevertheless true that for g € [2,00] and any sequence 8, bounded in L4(f2) and any i,5 = 1,..., N, all
the limits of subsequences of (P™);; By, in the sense of measures actually belong to L4(€2). For g = 2 this is
what (6.22) asserts for II" instead of P™ by taking b™ = (,,e;. For ¢ > 2, assume that (P™);; B, converges
in L29/(4+2)(Q) weak to ¢ and 82, converges in L9/?(Q) weak to 82, with B, € LI(R); then one uses the fact
that (A™ P™ X\.P™ )\) converges in the sense of measures to (A7 A\.\) by the Div-Curl lemma, and therefore
the limit of any (P™); in the sense of measures belongs to L>(f2). For ¢ € C.(Q) with -1 < ¢ <1in Q,
one has

/ ¢ d = lim / )oj B da < lim / PIE (Pm)”+ ( 5 ) da (6.28)

for every function € > 0; therefore [, p&dx < [, |(,0|(%C’2 + %ﬂﬁo) dz and then taking the infimum in €
gives [, p&dr < [ |0|CPux dz, ie. |€] < CBu ae. € Q by varying o.
Proposition 24: Under the hypotheses of Proposition 23, one has

grad(u,) — P™ grad(ue) — rm — 0 in L}, (Q) strong, (6.29)
for some 7, (constructed explicitly) which satisfies

m — 0in L2(Q; RY) weak,

6.30
A™ 1 + 0™ — b7F in L2(Q; RY) weak. (6.30)

Proof: Let p, € H}(Q) be the solution of
div (A" grad(pr) + bn) =0in Q, (6.31)

so that p, is bounded in H}(Q) and by Proposition 23 a subsequence p,, converges in Hj(2) weak to peo,
solution of
div (Aeff grad(pes) + beff) —0in 0. (6.32)

Then one notices that div(A™ grad(um) — A™ grad(pm)) — f in Hj, () strong so that grad(um) —
grad(pm) — P™(grad(us) — grad(p)) — 0 in L}, (€ RN) strong, and therefore one has (6.29) and (6.30)
by taking

Tm = grad(pm) — P™ grad(poo)- (6.33)

As a corollary, if a sequence A™ € M(a, 3;Q) H-converges to A°ff, if b” is bounded in L%(Q; RY), if c"
is bounded in LP(Q; RN) withp > N if N > 2, p =2 if N = 1, and if u,, is a sequence converging in HL .(Q)
weak to us, and satisfies

—div (A" grad(uy) + bn) + (c".grad(un)) — f in Hj;}(Q) strong, (6.34)
then, using the definitions of c*/f and b°f/ given by (6.18) and (6.22), u., satisfies
—div (Aeff grad(us) + beff) + (ceff.grad(uoo)) + e = f in Q, (6.35)
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where
(c™.rn) — eso in L2/ P2 (Q) weak. (6.36)

As many seem to believe that Homogenization means periodicity, it is important to notice that in the
framework of G-convergence that Sergio SPAGNOLO had developped in the late 60s or in the framework
of H-convergence that Frangois MURAT and I had developed in the early 70s, there were no conditions of
periodicity. As Frangois MURAT and I were looking at questions of Optimal Design, there was no reason
for thinking that periodicity had anything to do with our problem, and when we discovered that Henri
SANCHEZ-PALENCIA had been working on asymptotic methods for periodic structures [S-P1], [S-P2], it
helped us understand that what we had been doing was related to effective properties of mixtures, but
it was not more useful for our purpose. In the Fall of 1974, after I had described my work in Madison,
Carl DE BOOR had mentioned some work by Ivo BABUSKA; this work was restricted to some engineering
applications where periodicity is natural, and when I first met Ivo BABUSKA in the Spring 1975 [Ba], I
did learn from him about some practical questions, quite unrelated to those that we were interested in our
work.?! In the Fall of 1975, at a IUTAM meeting in Marseille, I learned that Jacques-Louis LIONS had been
convinced by Ivo BABUSKA of the importance of Homogenization for periodic structures and had worked
with Alain BENSOUSSAN and George PAPANICOLAOU, and I showed him my method of oscillating test
functions associated with the Div-Curl lemma, and the first mention of it appears then in the article which
he wrote for the proceedings [Li3]. It was only on the occasion of my lectures on our method at Bréau-sans-
Nappe in the Summer 1983 [Mu&Tal] that George PAPANICOLAOU told me that he finally understood why
I had insisted so much about working without periodicity assumptions. Although I taught about general
questions of Homogenization in my PECCOT lectures in the Spring 1977, many who attended these lectures
but specialized in questions with periodic structures seem to have forgotten to either quote that they were
using my method or that my method was not restricted to periodic situations: it might be for that reason
that Olga OLEINIK rediscovered my method by considering first quasi-periodic situations and then general
situations.

Some people, who seem to try to avoid mentioning either the name of Sergio SPAGNOLO for the intro-
duction of G-convergence in the late 60s or the names of Frangois MURAT and me for the introduction of
H-convergence in the early 70s, often state that it is enough to consider periodic media; they may be unaware
that such a statement is perfectly meaningless for someone who does not know that there exists a general
theory; they may not realize either that for those who know about the general theory it clearly shows that
they have been unable to understand the general framework. It seems that many who started by studying
the special case of periodic structures have had some trouble learning about the general framework, while
for all those who have started by learning the general framework, the case of periodic structures appears as
the following simple exercise.

In the periodic setting, one starts with a period cell Y, generated by IV linearly independent vectors
Y1,--.,Yn, of RY ie.

N
Y= {y|y € RN’y = Zﬁiyiao < gi <lfori= 11"'aN}a (637)
i=1
and one says that a function g defined on RY is Y-periodic if
gly+y)=g(y) ae. yc R, fori=1,...,N. (6.38)
For A € M(a,(3; RY) and Y -periodic, one defines A™ by

A™(z) = A(i) ae. z € Q, (6.39)

€n

51 T could imagine some real situations where our work could be useful, at least after we would have made
some progress on the question of characterization of effective coefficients. I think that it was on this occasion
that I learned from Ivo BABUSKA about the importance of amplification factors for stress, but I do not recall
ever hearing him mention that the defects of linearized Elasticity were quite worse for mixtures than for
homogeneous materials, and I only realized that many years after.
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where ¢,, tends to 0.

Proposition 25: The whole sequence A™ defined by (6.39) H-converges to a constant A°ff  independent
of the particular sequence ¢, used, and A°ff can be computed in the following way. For A € RY, let
wy € HL . (RN) be the Y-periodic solution (defined up to addition of a constant) of

div (A(grad(w;) + )\)) =0in R", (6.40)
and let P € H._ (RN ; L(RN,RN )) be the Y-periodic function defined by

P\ = grad(wy) + X a.e. in RV, (6.41)

Then

1
—_— f N 42
meas(¥) /Y A(grad(wy) + A) dy for every A € R™, (6.42)

AT X =

and a sequence of corrector is defined by

n o z N
P™(z) = P(sn) ae z€RY. (6.43)
Proof: The sequence u,, defined by
un(z) = (M) + snwx(;), ae. z € RY, (6.44)

n

satisfies u, € H (RN) and div(A™ grad(u,)) = 0 in RY. The sequence u, converges in H}, (R") weak
t0 U, defined by ue(z) = (A.z), grad(u,) is the rescaled version of A + grad(w,) which is Y-periodic and
therefore it converges in L2 _(RY; RN) weak to its average on the period cell Y, i.e. to grad(us) = A, and

A" grad(u,) € L, .(RY; RY) is the rescaled version of A(\ + grad(wy)) which is Y-periodic and therefore

loc

it converges in L2 (RM; RN) weak to its average on Y, i.e. to the value A°/f \ as defined by (6.42); using

loc
N linearly independent A € RN characterizes the H-limit of A™ as A°ff.
As grad(uy,) = P™ grad(us) a-e., and P, satisfies the conditions (6.7), the sequence P, gives acceptable
correctors.m

Once correctors had become natural objects for studying Homogenization, it was very natural to use
them for obtaining bounds on effective coefficients.

7. Bounds on effective coefficients: second method

A first difference between this new method that I introduced at the end of 1977 in [Ta7] and the preceding
one that I had used with Frangois MURAT in the early 70s based on (5.1) and (5.2) (after having used an
earlier version of the Div-Curl lemma), is that instead of considering one sequence of solutions one considers
N linearly independent sequences of solutions which are the columns of the sequence of correctors P™. A
second difference is that the Div-Curl lemma had to be replaced by the more general theory of Compensated
Compactness that I had just developed with Frangois MURAT in the meantime [Mu4], [Ta4], [Ta5], [Ta6],
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[Ta8].52 If A™ € M(a, 8;) H-converges to A°ff, then any sequence of correctors P™ has the property that

P™  p® = [ in L2 (Q; E(RN,RN)) weak,

(7.1)
curl(P™ )) stays in a compact of H,! (Q; L.(RN,RY )) strong for all A € RV,
where L,(RY, RYN) is the space of antisymmetric matrices, and if one defines the sequence Q™ by
Q™ = A™ P™, (7.2)
then Q™ has the property that
Q™ — Q™ = A°tf in L2 (Q;L(RN,RN)) weak, 3

div(Q™ \) stays in a compact of H,!(Q) strong for all A € RY.

Of course each column of P™ plays the role of a vector E™ and each column of Q™ plays the role of a
vector D™ for which the Div-Curl lemma applies, and this means that (Q™)TP™ converges in the sense
of measures to (Q®°)TP>® = (A°f/)T, but the Compensated Compactness theorem creates a few other
interesting inequalities. While I was visiting the Mathematics Research Center in Madison in the Fall 1977,
I had found a crucial additive to the Compensated Compactness theorem, as I had discovered a way to
use a formal computation based on “entropies” for passing to the limit in general systems.’® As I was
wondering what I should talk about at a meeting in Versailles in December 1977, and I had thought of
improving bounds on effective coefficients, it was then natural that I tried to use more general functionals,
not necessarily quadratic.

Theorem 26: Assume that F is a continuous function on £L(RN, RY) x L(RN, R) which has the property

52 Jacques-Louis LIONS had asked Francois MURAT to generalize our Div-Curl lemma, and he had given
him an article by SCHULENBERGER and WILCOX which he thought related. Frangois MURAT first proved
a bilinear theorem: a sequence U™ converged weakly to U* and satisfied a list of differential constraints,
another sequence V™ converged weakly to V°>° and satisfied another list of differential constraints, and he
characterized which bilinear forms B had the property that B(U™, V™) automatically converged in the sense
of measures to B(U*, V). I told him that the bilinear setting looked artificial and that a quadratic setting
was more natural: for a sequence U™ converging weakly to U and satisfying a list of differential constraints,
he then characterized which quadratic forms @ are such that Q(U™) automatically converges in the sense of
measures to Q(U*). While he was giving a talk about his results at the seminar that Jacques-Louis LIONS
was organizing at Institut Henri POINCARE, it suddenly occurred to me that the right question was to look
at quadratic forms @ such that if Q(U™) converges in the sense of measures to v then one automatically has
v > Q(U™) and before the end of the talk I had checked that the same method that we had used for the
Div-Curl lemma gave me the right characterization, and I did not even need the hypothesis of constant rank
that Frangois MURAT had to impose, because of a slightly different method of proof.

53 This is the improvement which I call the Compensated Compactness Method, on which I based my lec-
tures at HERIOT-WATT University in the Summer 1978 [Ta8]. Of course, my framework was never restricted
to hyperbolic systems, and I had already explained in [Ta5] how to use it for minimization problems, and I
had described again the same example in [Ta8] in order to show that my approach based on characterizing
YOUNG measures associated to a given list of differential constraints was better than the programme that
others preferred of looking only at sequentially weakly lower semi-continuous functionals. Of course, “en-
tropies” were never specific to hyperbolic situations, and before discussing the case of hyperbolic systems, I
had explained how “entropies” explain the sequential weak continuity of Jacobian determinants of size larger
than 2 as examples of the Compensated Compactness theorem. In [Ta6] I had advocated a different fact,
that “entropy conditions” were also necessary for stationary solutions of Elasticity.

40



that _ _
Pm s P in L2 (Q; L(RN,RYN )) weak,

@™ — @ in L* (% L(RY, RY)) weak,

(7.4)
curl(P™ \) stays in a compact of Hl;cl (Q; L.(RN,RY )) strong for all A € RY,
div(@m )) stays in a compact of H;,!(Q) strong for all A € RV,
imply
liminf/ F(P™,Q™)pdz > / F(P™,Q%)¢dx for all p € C.(), ¢ > 0. (7.5)
One defines the function g on £(RY, RY), possibly taking the value +oo, by
g(A) = sup F(P,AP). (7.6)
PEL(RN ,RN)
Then if A™ € M(a, 3;Q) H-converges to A/, then one has
lin_l)inf/ 9(AM)pdz > / g(A°TF)p dz for all p € C.(Q),¢ > 0. (7.7)

Proof. Of course, one assumes that the left side of (7.7) is < +00, one extracts a subsequence A™ for which
liminf,, is a limit and a sequence of correctors P™ exists. For X € C'(€; L(RY,R")), the sequences

P™ = Pm X and Q™ = Q™ X satisfy (7.4) with P® = X and Q> = A®// X, and therefore by (7.5) one has

liminf/ F(P™X,A™P™ X)pdz > / F(X, Aff X)pdz for all ¢ € C.(Q), ¢ > 0, (7.8)
Q Q

m—0o0

and as F(P™ X, A™ P™ X) < g(A™) by (7.6), one deduces that

lim inf / J(A™)pda > / F(X, A7 X)pde for all X € O (9 £(RY, RY)), (7.9)
and for all ¢ € C.(Q), ¢ > 0. For X € L*°(Q; L(R",RY)), there exists a sequence X,, € C*(Q; L(RY,RY))
such that X,, stays bounded in L*° (Q; L(RN,RN )) and converges a.e. to X, and by LEBESGUE dominated
convergence theorem F(X,,, A*ff X,) converges in L!(Q) strong to F(X, A¢¥f X) and therefore (7.9) is true
for all X € L= (Q; L(RN, RY)).
For r < oo let
9r(A) = sup F(P,AP), (7.10)
[|P||<r

which is continuous, as F' is uniformly continuous on bounded sets. For ¢ > 0 let M, be a measurable
function taking only a finite number of distinct values in £(R™, RY) and such that ||M, — A°/f|| < ¢ ae.
in Q. Then one can choose a measurable X, taking only a finite number of distinct values in £(RY, RY),
such that || X.|| < r and F(X., M X.) = g-(M.) a-.e. in Q, and as g,(M.) converges uniformly to g,(A°f)
as ¢ tends to 0, one deduces from the inequality (7.9) for X, that one has

m—00

liminf/ g(A™pdz > / 9r (A7) p dz for all r < 400 and all ¢ € Cs(Q), ¢ > 0.. (7.11)
Q Q
Then g,.(A¥f) increases and converges to g(A°ff) as r increases to +o0o, and one deduces (7.7) by BEPPO-

LEVI’s theorem.m

Of course, the (quadratic) theorem of Compensated Compactness, which I will state and prove a little
later, provides an analytic characterization of all the homogeneous quadratic functions F' which are such
that (7.4) implies (7.5), namely it is true if and only if

F(n®¢,Q¢) >0 for all n,¢ € RY and all Q¢ € L(RY, R"N) satisfying Q¢ ¢ = 0. (7.12)
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It was only in June 1980, while I was visiting the COURANT Institute at New York University, that
I tried to find which F' would be suitable for the case of mixing isotropic materials, restricting myself to
the case where A°ff would also be isotropic, i.e. equal to a®/f I, and I decided then to look for func-
tions F satisfying (7.12) which would also be invariant under a change of orthonormal basis. Of course
as a consequence of the Div-Curl lemma the functions Fijj:(P, Q) = £(Q PT);; = £, Qi Pjx do satisfy
(7.12), and therefore F*(P,Q) = +trace(Q PT) give two such invariant functions F satisfying (7.12). As

trace(PT P), (trace(P))2, trace(QT Q) and (trace(Q))2 are invariant under a change of orthonormal basis,
I checked which linear combinations of these particular functions would satisfy (7.12). It is obvious that

F,(P) = trace(PT P) — (trace(P))2 does satisfy (7.12), because if P = ¢ ® i then trace(PT P) = |¢|? |n|?
and trace(P) = (£.n), and therefore trace(PT P) > (157‘ace(P))2 by CAUCHY-SCHWARZ'’s inequality. Then I
found that F»(Q) = (N — 1)trace(QT Q) — (trace(Q))2 also satisfies (7.12), by applying the following lemma
to Q¢ whose rank is at most /N — 1.

Lemma 27: If M € L(RN,RYN) then
rank(M) trace(M™ M) — (157'ace(M))2 >0. (7.13)

Proof: If rank(M) = k, one chooses an orthogonal basis such that the range of M is spanned by the first
k vectors of the basis, and then trace(M) = Y-, My; and trace(M™ M) = Y, . M7 > 3, M7, which is
> £(3°; Mi;)? by CAUCHY-SCHWARZ’s inequality.®

Among the combinations of these particular functions, I quickly selected two simple ones, corresponding
to the following two lemmas. In June 1980, I only computed g(A) for A = A1, but as Frangois MURAT

suggested in the Fall that the same functionals would also give an optimal result for anisotropic A4, we did
together the computations for general symmetric A, and I show this general computation below.

Lemma 28: If
Fi(P,Q) =« [trace(PT P)— (trace(P))z] — trace(Q PT) + 2trace(P), (7.14)

then for A € L(RN,RN) with AT = A and A > oI, and denoting Ay, ..., An, the eigenvalues of A, one has

N
T 1
A) = ith 7 = . 1
9:(4) Trar with 7 ]Ezl N—a (7.15)

Proof. Of course, if « is an eigenvalue of A then 7 = co and g;(4) = é One chooses an orthonormal basis
where A is diagonal, and the form of F;(P, A P) is unchanged, and one must compute

N N N N
sup (a E P} —of E P;)? - E Ai P} +2 E Pz-i), (7.16)
P S - J ;
i,7=1 i=1 i,7=1 i=1

and for ¢ # j a good choice for P;; is 0 (it does not really matter what P;; is if \; = «), and one must then
compute

N N N
SuP(Z(a ~N)Pi—a(d Pu)*+2) Pu). (7.17)
PN i=1 i=1

If °, P; is a given value ¢, then in the case where \; > « for all ¢, maximizing ) ,(a — A\;)P3 is obtained
by taking P;; = +<— for all ¢, so that ¢ = C'7, and one finds ¢ by maximizing —C?7 — at? + 2t, i.e. by

)\ifa
maximizing —g — at? + 2t, which gives the value of ¢ and the maximum equal to 747 I A = o for some
i, the best is to take P;; =t and P;; = 0 for j # ¢, and then the best value of ¢ and the maximum are equal
to 1.m
[
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Lemma 29: If

2
Fy(P,Q) = (N — 1)trace(QT Q) — (trace(Q)) — B(N — 1)trace(Q PT) + 2trace(Q), (7.18)
then for A € L(RY,RN) with AT = A and A < 31, and denoting Ay, ..., An the eigenvalues of A, one has
o N
A)=——  witho = . .
92(4) 0+N—1’WIt o ;ﬂ_Aj (7.19)

Proof. Of course, if 3 is an eigenvalue of A then 0 = oo and g2(A) = 1. One chooses an orthonormal basis
where A is diagonal, and the form of F5(P, A P) is unchanged, and one must compute

N N N N
s1113p((N —) Y NPE - (NP B -1) Y APE+2Y N Ph-), (7.20)
i,j=1 i=1 i,j=1 i=1

and for ¢ # j a good choice for P;; is 0 (it does not really matter what P;; is if A; = ), and one must then
compute

P i=1

sup (V= 1) 3 (A — )X P2 - Qo NP +23 N P;). (7.21)

If Y, \; P;; is a given value s, then in the case where \; < (3 for all 4, maximizing ) ,(A\; —8)\; P2 is obtained
by taking P;; = ﬁ for all 4, so that s = C o, and one finds s by maximizing —(N — 1)C% 0 — 52 + 2s, i.e.
by maximizing — =152 — s? + 25, which gives the value of s and the maximum equal to st HA =2
for some i, the best is to take P;; = )‘il and P;; = 0 for j # 4, and then the best value of s and the maximum

are equal to 1.m

Of course, I had also considered more general combinations like

F3(P,Q) = —trace(Q PT) + a[trace(PT P)— (trace(P))2] + b[(N — Dtrace(QT Q) — (trace(Q))2]

+ 2ctrace(P) + 2d trace(Q) with a,b > 0,
(7.22)
for which the computation of gs(v I) requires to compute

sgp [(—'y + a4+ b(N — 1)y)trace(PT P) — (a+ bv?) (trace(P)) ’ +2(c+7 d)trace(P)] . (7.23)

In order to have g3(vI) < +00, one needs to have —y +a -+ b(N —1)y? < 0, and one can then choose all non
diagonal coefficients of P equal to 0; for trace(P) given one wants to minimize trace(PT P), and therefore one
only considers P = p I, and one wants then to maximize (—y+a+b(N —1)y*> — N(a+by?))p*+2(c+~v d)p),
and one obtains

(c+74d)?
(N—-1)a+~v+by?

gs(vI) = if a,b>0and —vy+a+b(N —1)y* <0. (7.24)

As it was not so easy to handle, I had choosen the simplification of considering either b = d = 0, which
corresponds to Lemma 28, or a = ¢ = 0, which corresponds to Lemma 29. I was interested in characterizing
the possible effective tensors A/ of mixtures obtained by using proportion § of an isotropic material
with tensor ool and proportion 1 — 6 of an isotropic material with tensor 31, i.e. I considered A™ =
(xn @+ (1 — xn)B)I with a sequence of characteristic functions x, converging in L>°(f2) weak x to 6, and
A™ H-converging to A°¥f. T already knew (5.3); in order to show explicitly the dependence in 8, (5.3) means
that the eigenvalues \1,..., Ay of A%ff satisfy

A_(0) <A <AL(0),j=1,...,N ae. inQ, (7.25)
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where, as in (5.3)
A (0)=0a+(1-0)p 1 8, 1-6 (7.26)
e A®) el B '
Theorem 26 asserts that
g(ATF)y < 0g(al) + (1 - 0)g(BI) ae. in Q, (7.27)

whenever g is associated to a function F' for which (7.4) implies (7.5). For the particular function g; given

by Lemma 28, one has g;(aI) = é and ¢;(B1) = 1+IZ/]£,3(ﬁaja) = (N_fga_i_ﬂ, and therefore (7.27) means that
refs (1-ON _  (N—§)at68

9 . .
TTarF Sa T (N—1)atB — a((N—l)a+ﬁ) , which gives for 7¢// the upper bound

reff — 1 (N —0)a+p
; Aj—a = (1-0)a(B-a) (7.28)

Equality occurs for the case of layers, which according to (4.11) corresponds to A°ff having one eigenvalue
equal to A_(#) and the N — 1 others equal to A (6), i.e

1 N-1  (N-6)a+g

= . 7.29
YO -a Nl -a (1-0a@-a (7:29)
For the particular function gy given by L 29 h ) = Nallb) . __Na
2 given by Lemma 29, one has ga(a I) Na/ (o) T N—T aTvonp and
g92(BI) = 1, and therefore (7.27) means that Uef‘;:i,_l < a+9(11\\fr—al),3 +(1-6)= (ONH_(:?J):E;(EI_)?(N_lm’
which gives for ¢/ the upper bound
N
o'eff:Z )\] S (0N+1_0)a+(1_0)(N_1),8, (730)
2 5% 03— )
and equality occurs for the case of layers, i.e
1 N-1 ON+1—0 1-0)(NVN -1
. _ON+1-6)at(1-6N-1F -
B-2(0 " B-20 68— a)

I discuss now the basic result of Compensated Compactness theory, which has been used for Lemma 29
through the condition (7.12); Lemma 28 is more easy, and actually follows from the Div-Curl lemma, stated
in (4.8)/(4.9) in Lemma 2, and mostly used in the case of gradients for which a simple proof by integration
by parts has been shown, except for an application in Proposition 9. The necessity of a condition like (7.12)
is easy and the general result is not even restricted to quadratic functionals [Ta8].

Proposition 30: Assume that  is an open subset of RY, Aijr,i=1,...,¢,5=1,...,p,k=1,...,N, are
real constants and F' is a continuous real function on R? such that, whenever

U™ — U™ in L*(Q; R?) weak *
F(U™) = V= in L*(Q) weak *

7.32
p N aU‘;n ) ( )
ZZAijka— =0fori=1,...,q,
j=1k=1 Tk
one can deduce that
Ve > F({U®™) a.. in Q. (7.33)
Then F is A-convex, i.e.
t+— F(a+tA) is convex for all a € RP and all A € A, (7.34)
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where

p N
= {)\|)\ € RP : there exists £ € R \ ZZ Ajjpi€e =0fori=1,.. .,q}. (7.35)
j=1k=1

Proof: Let A € A and ¢ € RY \ 0 satisfy the condition in (7.35), then if one takes

U™z) =a+X f"( . a:)), (7.36)
with f™ smooth, one has
P (T
ZZAijkﬁ = (ZZAijkAjfk)(fn)l((ﬁ-w)) =0. (7.37)
j=1k=1 j=1k=1

One chooses a sequence X, of characteristic functions converging in L*°(R) weak x to 6 and a regularization
f™ = pn * Xn such that f™ — x, converges almost everywhere to 0, one has

U~ xn(a+A)+ (1 —xn)a, F(U™) = xnF(a+ X))+ (1 = xn)F(a)

U®=0(a+A)+(1-60)a, V°=0F(a+ )+ (1—06)F(a). (7.38)

By hypothesis, one has V>° > F(U>°) and (7.34) follows by varying 8 € (0,1),a € RN, and A € A.m

The sufficiency of a condition like (7.12) comes from applying a general result valid for quadratic
functionals, which I often call the quadratic theorem of Compensated Compactness [Ta8].

Theorem 31: Let @ be a real homogeneous quadratic form on RP which is A-convex, with A defined in
(7.35), or equivalently
Q(A) >0 for all A € A. (7.39)
If
U™ =~ U* in L}, (Q; RP) weak
Q(U™) — v in the sense of measures
(7.40)

p N n
Z ZA”’“ . stays in a compact of H;,!(Q) strong for i = 1,.
j=1k=1
then one has
v > Q(U®) in the sense of measures. (7.41)

Proof: U™ — U satisfies (7.40) with U replaced by 0, and v replaced by v — Q(U®), and one may then
assume that U = 0 with the goal of proving that v > 0. For ¢ € C1(Q), let W™ = ¢ U™, which is extended
by 0 outside €2 and let us prove that

lim inf Q(W™)dz > 0. (7.42)

n—oo RN

This shows that (v, p?) > 0 for all ¢ € C1(Q2), and by density for all ¢ € C.(f2), and as every nonnegative
function in C.(€) is a square, one deduces that v > 0 in the sense of measures.

IfQU) = Ei]. gi; U; U; with g;; = gj; for all 4,5 =1,...,p, I still denote @) the Hermitian extension to
C? ie. QU) =>4 Ui U;, and by PLANCHEREL formula, (7.42) is equivalent to

n—00

lim inf / QFW™)dt >0, (7.43)
RN
where F denotes FOURIER. transform, for which I use Laurent SCHWARTZ’s notations
FWwrE)= | W(z)e 2@ dg. (7.44)
RN
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One can replace @ by RQ in (7.43), because the integral in (7.42) and therefore in (7.43) is real, and one
notices that (7.39) is equivalent to

RQ(AN) >0forall A e A+iA C CP. (7.45)

As W™ converges in L2(R™; RP) weak to 0 and keeps its support in a fixed compact set K of RV, its
FOURIER transform converges pointwise to 0 and is uniformly bounded and therefore by LEBESGUE dom-
inated convergence theorem it converges in L} (R™) strong to 0, and the problem for proving (7.43) lies
in the behaviour of W™ at infinity. Information at infinity is given by the partial differential equations
satisfied by W™, and because Ej Dok A,-jk% must converge in H~!(RY) strong to 0 for i = 1,...,q, one
deduces that

Z/RN 1+ €2 ‘ZZAW FWi(€)Ek dﬁ — 0. (7.46)

j=1k=1
~ E_ . . . .
For |¢| large W &> and (7.46) tells that near infinity FW™ is near A + 4 A, where Q > 0, and a
proof of (7.43) follows from the fact that for every € > 0 there exists C, such that
9 P N
RQ(Z) > —¢|Z|? - C. Z‘Z 3 A 72 e ‘ for all Z € CP,¢ € RN \ 0. (7.47)
i=1 j=1k=1

Applying (7.47) to Z = FW™(€) and integrating in £ for |£| > 1, gives a lower bound for f|£|>1 Q(FW™)d¢
where the coefficient of —¢ is bounded as W™ is bounded in L?(R™; RP) and the coefficient of C; tends
to 0 by (7.46), and therefore one deduces that liminf, [,y RQ(FW")df > —Me, and letting ¢ tend to
0 proves (7.43). The inequality (7.47) is proved by contradiction: if there exists &g > 0 and a sequence
Z™ € ON,¢™ € RN \ 0 such that RQ(Z™) < —&olZ"2 —n Y, |Z]kA1]k j |€n|| b
Z™ to |Z™| = 1, and extracting a subsequence such that Z™ converges to Z* and o™ Ig_"l converges to

oo, One finds that RQ(Z>*) < —ep, which contradicts the fact that (Z°°,n) satisfies the conditions of the
definition of A in (7.35), showing that Z> € A + ¢ A and therefore 1mp1y1ng RQ(Z>) > 0 by (7.45).m

then after normalizing

8. Computation of effective coefficients

I computed the bounds (7.28) and (7.30) in the Fall 1980 with Frangois MURAT, but in June 1980 in
New York I had only done the corresponding computations for the case where A°ff = a¢ff I, and having
shown my new bounds to George PAPANICOLAOU he had suggested that I compare them with the HASHIN-
SHTRIKMAN bounds [Ha&Sh], which I was hearing about for the first time. As for the first method for
obtaining bounds for effective coefficients that I had used before with Frangois MURAT, that second method
which I had developed in [Ta7] was not restricted to symmetric tensors, and I could not understand what
would replace in more general problems the particular minimization formulation that Zvi HASHIN and S.
SHTRIKMAN had used, but there was an obvious gap in their “proof”, and at the time I could not find a
mathematical argument which could explain their computation.’* However, the bounds which I had just
found were indeed the same as the formal bounds that they had derived, and I had therefore given the
first mathematical proof that the HASHIN-SHTRIKMAN bounds are indeed valid for mixtures of two isotropic
materials in the case where the effective tensor is isotropic. I had not yet thought of showing that my bounds
were optimal and could be attained (which I would have tried with the method of successive layerings, which
was the only simple explicit construction that I knew), and as the construction of coated spheres that
Zvi HASHIN and S. SHTRIKMAN had used was clear enough to me, I easily transformed it into a correct

54 In their argument, Zvi HASHIN and S. SHTRIKMAN used something that did not make any (mathemat-
ical) sense at the time, and it seems now related to H-measures, which I only introduced in the late 80s for
a different purpose [Tal2]; the new method for deriving bounds which I wrote in [Tal2], generalizing my
earlier approach of [Ta7], has actually some analogy with the argument of Zvi HASHIN and S. SHTRIKMAN,
but it is not restricted to minimization problems.
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mathematical argument, but I did not try to compare with what the repeated formula for layerings would
have given.

When I went back to Paris after spending the Summer at the Mathematics Research Center in Madison,
I showed my computations to Frangois MURAT an he suggested that the same functionals might also give
optimal bounds for anisotropic effective tensors, and therefore we computed (7.28) and (7.30) and we tried to
show that the bounds were attained by a construction of coated confocal ellipsoids. Edward FRAENKEL was
visiting Paris in the Fall of 1980, and as I had mentioned to him our plan, he had given us some advice about
the way to compute with ellipsoids, but we could not follow precisely what he had told us. We tried then
families of general surfaces, and in order to simplify a very technical computation, we made a simplifying
assumption, and that gave us exactly the case of confocal ellipsoids, but using different formulas than the
ones that Edward FRAENKEL had advocated. Indeed the set of bounds (7.25), (7.28), (7.30) gave the
characterization of the effective tensors of mixtures using exactly proportion 6 of an isotropic material with
tensor o I and proportion 1 — 6 of an isotropic material with tensor 3 I. I will not describe the computations
for confocal ellipsoids, for which I refer to [Ta9], as I will describe a simpler approach later.

I described our results at a meeting at New York University in June 1981, and they gave the missing
link in the method that I had partially described in 1974 [Ta2]. As I suggested that the case of mixing more
than two isotropic materials would probably be very similar with a construction like the HASHIN-SHTRIKMAN
coated spheres in the isotropic case, with materials of increasing conductivity from inside out or from outside
in depending upon which bound was considered, I was surprised to hear a comment by a young participant
that even for three materials it was not so, and that hiding the best conductor in the middle was sometimes
giving a better effective conductivity than if the best conductor was put outside. The comment was coming
from a young Australian physicist, still a graduate student at the time, who has since imposed himself as
the best specialist for questions of bounds of effective coefficients, Graeme MILTON.55

In the Spring 1982, I gave an introductory course to Homogenization at Ecole Polytechnique, and as
I thought that our construction with confocal ellipsoids could not be avoided, I had asked two students,
Philippe BRAIDY and Didier POUILLOUX, to make a numerical study comparing the materials that we had
constructed by using confocal ellipsoids and those that could be constructed by successive layerings, which
was the method that we had used for the results quoted in [Ta2]. Contrary to my mistaken expectations,
they reported that the numerical computations showed that the two sets were the same, and a few days
after they had a proof of it, using NV layerings in orthogonal directions, where in each layering the direction
orthogonal to the layers is a common eigenvector for the two materials being mixed [Br&Po|. I immediately
checked that the repeated layering construction has the same restricted “generalized BERGMAN function”
than our construction with confocal ellipsoids. For example, in my interpretation of the construction with
coated spheres of Zvi HASHIN and S. SHTRIKMAN in June 1980, for a parameter 6 € [0,1] I used a sequence
of VITALI coverings with smaller and smaller coated spheres, all showing the same proportion of volume
between the inside spheres and the outside spherical coats; the geometry being given I imagined all the
interior spheres filled with an isotropic material with tensor oI and all the outside spherical coats filled
with an isotropic material with tensor 31, and then I showed that the sequence A™ defined in this way
H-converges to ®¢(a, 3) I, where ®¢(c, 3) is one of the two HASHIN-SHTRIKMAN bounds, corresponding to
equality in (7.28).°¢ This is exactly the type of functions used by David BERGMAN when one mixes two

55 In the early 90s, while I visited Graeme MILTON in New York, he gave me a physical explanation of
why it is sometime good to hide the best conductor available; he argued that if one has a spherical core of a
very poor conductor, the electric current tries to avoid it and that creates a high concentration of field lines
near the surface of the poor conductor and therefore it is there that the best conductor is more useful.

56 My proof relied on the fact that, despite the huge arbitrariness in the choice of the VITALI coverings, for
any A € RN I could write explicit solutions of div(A™ grad(u,)) = 0 for which grad(u,) converges weakly to
A and I could compute the limit of A™ grad(u,). My construction was local, and I followed the computation
that I had just read in the article of Zvi HASHIN and S. SHTRIKMAN [Ha&Sh], i.e. the explicit solution
of div (A grad(v)) = 0 in a coated sphere domain with affine boundary conditions on the outside coat; this
computation is a by-product of the formula for the change in electric field created by an isotropic spherical
conducting inclusion in an infinite isotropic medium, a classical formula for physicists who associate it with
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isotropic conductors and one expects the resulting effective material to be isotropic whatever the ratio of
the two conductivities are, and therefore one has ®y(c,3) = aF(g). David BERGMAN made the impor-
tant observation that F' extends to the complex upper half plane into a holomorphic function satisfying
S(F(2)) > 0 [Be].*” What I call a “generalized BERGMAN function” is a similar situation where a sequence
of geometries is given for mixing r materials with proportions 64, ...,0,, and if the » materials used have
tensors M, ..., M,, then the resulting effective tensor is ®(Mj, ..., M,). One assumes that for j =1,...,r,
M; € M(a;j,B;;), and that one has r sequences of characteristic functions of measurable sets from a par-
tition x7, j = 1,...,r, satisfying x7xz = 0 for j # k, E]. xj = 1 a.e. in , and one assumes that x7
converges in L*°(2) weak * to 6; for j = 1,...,r; then one uses Proposition 17 in order to show that there
is a subsequence for which for all such M;,...,M,, > j Xj"M; H-converges to an element ®(My,...,M,) of
M(a,8;Q) with 0 < @ = min{a1,...,a,} < 8 = max{3,...,8-} < co. I use the qualificative restricted
for expressing the fact that one restricts attention to a special class of Mj,..., M,, for example isotropic
tensors my I,...,m, I,>® and I do not know how to compute the generalized BERGMAN function for a ge-
ometry of coated spheres or confocal ellipsoids, and it may be dependent of other properties of the VITALI
covering used.>® In their computation, Philippe BRAIDY and Didier POUILLOUX had used the same method
that Antonio MARINO and Sergio SPAGNOLO or Frangois MURAT and I had used in the early 70s, and
the reiteration of the layering formula was simple enough because at each step the direction orthogonal to
the layers was a common eigenvector of both (symmetric) tensors which were mixed, and actually the two
tensors had a common basis of eigenvectors. During the Spring 1983, while I was visiting the Mathematical
Sciences Research Institute in Berkeley, I tried to compute the formula for mixing arbitrary materials in
arbitrary directions, having in mind to reiterate the procedure. I wanted to rewrite formula (4.11) in a more
intrinsic way, and I could easily deduce what the formula (4.11) would become if I used layers orthogonal
to a vector e, i.e. A™ depending only upon (z.e), but that did not change much, and it was a different idea
that simplified the computation. Using layers orthogonal to e for mixing two materials with tensors A and
B, with respective proportions # and 1 — 8, the simplification came by considering # small, and because
the formula appeared to have the form B + 6 F(A, B, e) + o(f), it suggested to write a differential equation
B' = F(A, B,e) and integrate it. In other terms, for e fixed, increasing the proportion of A from 0 to 1
creates a curve going from B to A in the space of matrices, and I first computed that curve by considering
it as the trajectory of a differential equation, which was easy to write down. One can first rewrite formula

various names, some as famous as MAXWELL, but it must have been known to GAUSS and to DIRICHLET,
who seems to be credited for a similar formula for an ellipsoid (and he may therefore have known the formulas
that Francois MURAT and I (re)discovered for our construction with coated ellipsoids).

57 The idea may have been used before, and I think that I had heard such an idea attributed to PRAGER.
In dimension N = 2, the function F' also satisfies the relation F(z)F(%) = 1 by an argument of Joseph
KELLER [Ke], and in the early 80s Graeme MILTON showed me that all such functions can be obtained.

58 Ken GOLDEN and George PAPANICOLAOU have studied functions of » complex variables F' appearing
when one imposes the restriction ®(m; I,...,m, I) = F(m1,...,m,)I for all m;,...,m, > 0.

59 The computations of Zvi HASHIN and S. SHTRIKMAN for coated spheres and diffusion equation consists
in looking for solutions of the form z;f(r) and one finds that f must satisfy a differential equation; they
also used the same construction of coated spheres for linearized Elasticity with isotropic materials, and they
could compute the effective bulk modulus because it corresponds to applying a uniform pressure and the
displacement has the form z g(r), and one finds that g must satisfy a differential equation. I do not know how
to compute the effective shear modulus for the geometry of coated spheres, and it may depend upon which
VITALI covering is used (if I understood correctly what Graeme MILTON told me a few years ago, he knew
that it does depend upon the covering). Gilles FRANCFORT and Frangois MURAT have computed in [Fr&Mu]
the complete effective elasticity tensors of mixtures, but following the method of multiple layerings, adapting
the extension that I had given in [Ta9] of the computation of Philippe BRAIDY and Didier POUILLOUX.
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(4.11) for layers orthogonal to e.

1 1 ) .
(Ame.e) - (A°ff e.e) in L% () weak

(A" fe) (A fe) .

(A" 6.6) (Aeff e.e) '
n eff

28] 03 0wk e

ney (A" fe)(A"eg)
(4% f.9) (Ame.e)

n L () weak x for every fle

eff eff
(A°F7F f.9) — (4 (i;ff);fe) e-9) in L*°(Q) weak % for every fle,gle,
(8.1)

where I have used the Euclidean structure of RV.6° Mixing A with a small proportion § and B with
proportion 1 — € in layers orthogonal to e gives then

1 _ 1-6 n 0
(Aeffee) (Bee) (Ae.e) By (8.2)
(477 c.e) = (Be.e) +6[(Beee) - Aos) | +006),
and then for f and g orthogonal to e
(Asf7 f.e) _(1-0)(Bfe)  6(Afe)
(Aeff e.e) (Be.€) (Ae.e) (8.3)
. B (Af.e)(Bee) (Bf.e)Be.e)
(477 f.e) = (B f.e) +0] GGes) = (Aee) | +o(0)
(A%Ff e.g) _ (1-6)(Be.g) 6(Ae.g)
(Aeffe.e) (Be.e) (Ae.e) (8.4)
. B (Ae.g)(Be.e) (Be.g)(Be.e)
(477 e.g) = (Be.g) +6] des) T (dee) | +o(6)
. (A97 fe)(AT eg) (1—-6)(Bfe)(Beg) 0(Afe)(Ae.g)
(A fff-g)_ (Aeffe.e) _(1_0)(Bfg)_ (Be.e) +0(Afg)_ (Ae.e)
(Bfe)—(Afe))((Be.g)—(Ae.g)
(477 f.9) = (B f.9) +6[(Af.9) ~ (B f.9) - ( ( A)() T )] +o(6).
(8.5)
The form of (8.5) suggests that one has
e e®e

Aff:B+0[A_B_(B_A)m(B_A)}+o(9), (8.6)

and indeed this is compatible with (8.2)/(8.4). When e and A are given, formula (8.6) corresponds to a

differential equation
e®e
M =A-M-— (M- A)—~—(M— A). 8.7
(M = A) S5 0~ ) (87)
The integral curve corresponds to the formula for layering with a material with tensor A, with layers orthogo-
nal to e. Formula (8.1), which corresponds to the first lines of (8.2)/(8.5) when one mixes two materials with

tensors A and B says that the integral curves become straight lines if one performs the change of variable

60 Tt can be avoided by denoting £ the ambient vector space, taking e as an element of the dual &', and
considering the tensors A, B, as elements of L(£',£), as well as e ® e which appears in some formulas.
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A ((Ai oL Eﬁiz) Eﬁz g; (Af.g)— %) when f, g span the subspace orthogonal to e. In the early

70s, we knew that if one does not pay attention to the proportions used of various materials, formula (4.11)
means that the set of effective tensors has the property that all its images by maps like the one mentioned
above are automatically convex. This condition gives a geometric characterization of the sets that one cannot
enlarge by layering, at least for the case where one is not allowed to rotate the materials used, in the case
where one starts with some anisotropic materials; in realistic problems, one must also allow for rotations of
the materials used, i.e. the set must be stable by mappings A — PT AP for P € SO(N), with N = 2 or
N = 3 usually.
Assuming that M — A is invertible, (8.7) can be written as

e®e

(O = 4)71] = ~(M — ) AWM = )7 = (- A+ G

(8.8)

whch is a linear equation in (M — A)~!. Using 7 as variable, and assuming that 7 = 0 corresponds to B,
the solution of (8.8) is

(M- A) ! =

e®e e®e) (8.9)

" (Aee) +e ((B AT (Ae.e)

and if M corresponds to having used proportion 7(7) of A and 1 — n(7) of B, then for 0 small (7 + 0) =
0+ (1 —6)n(r) + o(f) gives ' =1 — n and therefore n =1 — e~ " or equivalently e” = ﬁ for proportion 7
of A, giving

1 (B—A)™ n e®e
 1-q 1-n(Ae.e)
If (B — A)z = 0 for a nonzero vector z, then (8.7) shows that (M — A)z = 0, and in this case one must

reinterpret (8.10). Of course, exchanging the role of A and B and changing 7 into 1 — 7, (8.10) is replaced
by

(M- A) for proportion 7 of A. (8.10)

(A-B)! +1—n e®e
n n (Be.e)

With formula (8.10) at hand I could easily reiterate the layering process with various directions of layers, with
the condition that each layering uses the material with tensor A, and it gave the following generalization of
the formula which had been obtained by Philippe BRAIDY and Didier POUILLOUX in the special case where
A and B have a common basis of eigenvectors and each e is one of these common eigenvectors.

(M —-B)'= for proportion 7 of A. (8.11)

Proposition 32: For n € (0,1), let &1,...,&, be p positive numbers with Z]- & =1-—mn,letey,...,e, bep
nonzero vectors of RV, then using proportion 7 of material with tensor A and proportion 1 — 7 of material
with tensor B, one can construct by multiple layerings the material with tensor M such that

= (ng o). (.12)

(Bej.€j)

Proof: Of course, one assumes that B — A is invertible, as the formula must be reinterpreted if B — A is
not invertible. One starts from My = A and by induction one constructs M; by layering M;_; and B in
proportions 7; and 1 — n;, with layers orthogonal to e;. Formula (8.11) gives

1 (Mj1=B)™"  1-m; e®e
n;j n; (Bee)

(M; — B)~ for j =1,. (8.13)

which is adapted to reiteration and provides (8.12) with

n:nl...fr]p

_ _ . (8.14)
Gi=1-n,&=m-n 1(1—m)forj=1,...,p,

which gives {3+ ...+ & =1—mny---n; for j =1,...,p, and this defines in a unique way n; for j =1,...,p®
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The preceding computations did not require any symmetry assumption for A or B. The characterization
of the sum Z §J(e’®ee’ ) for all {; > 0 with sum 1 — » and all nonzero vectors e; depends only on the

symmetric part of B (and of 7).

Lemma 33: If B is symmetric positive definite then for £;,...,& > 0 and nonzero vectors ey,...,ep, one
has
e;Qe; P
Z@ (B] J_ = B~Y2K B71/2 with K symmetric nonnegative and trace(K) = ij, (8.15)
e;.€;) —

and conversely any such K can be obtained in this way.
Proof. Putting e; = B~Y/2 f; for j = 1,...,p, one has K = > Q%, and each fl"f;eflij is a nonnegative

symmetric tensor with trace 1, and (8.15) follows. Conversely if K is a symmetric nonnegative tensor with
trace equal to S, then there is an orthonormal basis of eigenvectors f1,..., fn, with K f; = k; f; and k; > 0
forj=1,...,N,and > ;k; = S,sothat K =3 . x; f; ® f; B

Using Proposition 32 and Lemma 33, with A = aI and B = 31, one can construct materials with a
symmetric tensor M with eigenvalues Aj, ..., An, and (8.12) and Lemma 33 mean that

1 1
> forj=1,...,N
N—B"ae—p) 7
N (8.16)

_ N 1—1n
]-Z;)\j—,@_77(04—ﬂ)Jr nB’

ie. Aj <Ay(n) for j =1,...,N, and equality in (7.30), which implies A\; > A_(n) for j =1,..., N, because
of (7.31). Exchanging the roles of A and B one can obtain another part of the boundary of possible effective
tensors with equality in (7.28), and filling the interior of the set is then easy.

After I had mentioned these new results to Robert KOHN, who was also visiting MSRI at the time,
he wondered if one could find a more direct proof, and I therefore proved again the formulas (8.10)/(8.11)
directly.

Lemma 34: Mixing materials with tensor A and B with respective proportions n and 1 — 5 in layers
orthogonal to e gives an effective tensor A¢f/ given by

exe
(1-n)(Aee) +n(Be.e)

A = A4+ (1 —-n)B—n(1—1n)(B-A) (B — A). (8.17)

Proof. One considers a sequence of characteristic functions x,, converging in L°°(R) weak x to  and depend-
ing only upon (z.e), and one chooses A" = x,, A + (1 — x)B. For an arbitrary vector E* € RY one con-
structs a sequence E™ = grad(u,) converging in L2 (R"Y; RN) weak to E>, depending only upon (z.e) and
satisfying div(A™ grad(u,)) = 0, and one computes the limit in L? (RN; RY) weak of D" = A" grad(u,),
which will be D® = A¢ff E~ with A¢ff given by (8.17).

One looks for E4, Ep € RN such that one can take

loc

E" =xnEs+ (1 - Xn)EB
D" :XnAEA+(1_Xn)BEB (818)
nEs+(1-n)Ep = E*,

and the constraints curl(E™) = div(D™) = 0 become

Eg —Ejq =ce

8.19
(BEB—AEA.e):O, ( )
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and then one should have

nAE4s+ (1 —n)BEp = A°ff E>®, (8.20)
One chooses then
Es=E®+cae; EB=E*+cge; nea+ (1 —n)eg =0, (8.21)
and (8.19) requires that
((B - A)E°°.e) +cp(Bee) —ca(Aee) =0, (8.22)

and (8.21)/(8.22) give

((1 —n)(Ae.e) + (B e.e))cA =(1-1) ((B - A)E°°.e)

(8.23)
((1 —n)(Ae.e) +n(B e.e))cB = —n((B - A)E°°.e),
and therefore (8.20) becomes
o . ((B-A)E>e)
AT = (1 A+ (L= mB)E® + e (n1—mAae-n(-nBe),  (824)

and as (8.24) is true for every E* € RN, one deduces formula (8.17) for A¢¥f m
One deduces then (8.10)/(8.11) from (8.17) by applying a result of Linear Algebra.

Lemma 35: If M € L£(&, F) is invertible, and if a € F,b € £, then M 4+ a®b is invertible if (M 'a.b) # —1

and
1

14 (M-1ab)
Proof: One wants to solve (M +a®b)z =y, i.e. M z+ a(b.z) =y, and therefore z = M1y —t M~ a with
t = (b.z), but one needs then to have ¢t = (.M~ y) —t(M ~! a.b), which is possible because (M ~! a.b) # —1,

-1
and givesz = M1y — M_la%’

(M+a®b) ' =M"" M Y a®bM™'. (8.25)

and as y is arbitrary it gives (8.25).m

A few years ago, working with Frangois MURAT on the relation between YOUNG measures and H-

measures,®! we computed the analog of formula (8.17) when one mixes r different materials.

Lemma 36: Mixing r materials with tensors M, ..., M,, with respective proportions 7,...,7,, in layers
orthogonal to e, gives an effective tensor Me// given by

M =" My — Y min; (M; — M) R (M; — M)

i=1 1<i<j<r
1 e@e 1
R;; = forz,5=1,..., 8.26
T (Miee) H (Mjee) 7 " (8.26)
r -
H = —.
Z (My e.e)
k=1
Proof: As for the proof of Lemma 34, one uses
E; = E*® + c; e in the layers of material #i, for ¢ =1,...,r, and Zm c; =0, (8.27)
i=1

61 T have used in various publications not related to the purpose of this course our construction of admissible
pairs of a YOUNG measure and a H-measure associated with a sequence, the first time at a meeting for the
600" anniversary of the University of Ferrara in 1991. Our redaction of these results is still a draft which
we have not looked at for years, but I have nevertheless given it to a few persons, and I wonder how many
will have claimed our results as theirs.
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and one must have (M; E;.e) = (M; Ej.e) if there is an interface between material #4 and material #j, and
therefore there exists a constant C' such that

(M;E;e)=Cfori=1,...,r (8.28)
With the definition of F;,7 =1,...,r, (8.28) implies
C—(M; E*™.e .
ci:mez:l,...,r, (8.29)
and the condition Zz nic; = 0 gives
(M; E>.e)
HC = 8.30
Z Mice) ’ (8.30)
with H given in (8.26). Using (8.28) one obtains
v (M - M;) E>®.e
H(Meecl—(z ; (Mee ) Mee an (M e.0) fori=1,...,7. (8.31)

This gives

. - T - 1 T i r (M] — MI)Eooe
MTE = (3 m M)E +EZ(M?—2.6)(ZW( (0, ) ))Mie
i=1 i=1 j=1 J

r ( (M; — M~)E°°.e)
= - MYE>® — — . M:e (8.32)
(§__ ni M;)E ;] ln,n] (M) (M, c.0) (M; — M)
ZT o 1 e®e .

proving (8.26).8

I have shown the derivation of the differential equation (8.7) because it has some intrinsic interest. I

noticed later that by using relaxation techniques related to Lemma 1, one can replace (de’ee) in (8.7) by any

e;j®e _e®e
convex combination Z GJW’ or more generally f SN-1 (Ae.e)

d7r(e) for a probability measure m on the

sphere SV~1, and this gives a differential analogue of formula (8. 12)

As T will explain in the next chapter, I also discovered in the Spring 1983 that the characterization
obtained with Frangois MURAT was not absolutely necessary for solving the problems that we had in mind.
There was an obvious generalization to mixing an arbitrary number of isotropic materials, but there were
some technical details for mixing anisotropic materials, and I only noticed the following results much later
(see footnote 44), and Lemma 18 played a crucial role. Although the two methods for obtaining bounds on
effective coefficients that I have described in chapters 5 and 7 are valid for nonnecessarily symmetric operators
(as is the third one that I have mentioned in footnote 54, based on H-measures), the only applications that I
know use symmetric operators,® and because one allows for arbitrary rotations the set of effective operators

2 One can also use a convex combination in (A.e), and I had hoped that this trick would give more
characterization of effective coefficients. I did talk about this method at a meeting in Minneapolis in 1985,
but I only mentioned it in writing for a meeting in Los Alamos in 1987.

63 Around 1984, I generalized a formula of Joseph KELLER valid for dimension N = 2 [Ke], and I later
learned from Graeme MILTON that he had also discovered the same result (and he had kindly proposed that
I cosign an article where he was using these formulas; I do not know the precise reference of his article).
He had been led to these formulas by studying HALL effect, and if my memory is correct it is a nonzero
value of a magnetic field which is responsible for the appearance of a nonsymmetric tensor, and this is the
only instance of a non symmetric situation which I have heard about in real problems. Later I tried to use
these formulas with Michel ARTOLA in order to prove a conjecture of Stefano MORTOLA and Sergio STEFFE
[Mo&St2] (Sergei KOZLOV told me in 1993 in Trieste that the conjecture is false, but he did not provide
enough information, so that I do not know if he had proved it or if he just thought that it was wrong).
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corresponding to mixtures using precise proportions of each constituent is a set of matrices defined in terms
of their eigenvalues, and that point is worth discussing in detail.

One starts from a finite number of materials with symmetric anisotropic tensors M;,i = 1,...,r, and
mixing them with local proportions 7;,¢ = 1,...,7, with > ., 7; = 1 a.e. in 2, means that one considers
sequences ;' of characteristic functions of disjoint measurable sets for ¢ = 1,...,7, i.e. x{'xj = 0 whenever

i # j, such that
Xi — m; in L=(Q) weak x

A" = " xHR™T M; R, with R" € SO(N) a.e. in Q (8.33)
i=1
A™ H-converges to A7,

and one writes
A e K(nyy ..o me; My, ..., M,) a.e. in Q, (8.34)

and the claim is that the set K(n1,...,7,; M,...,M,) of effective materials obtained by mixing the ma-
terials Mj,..., M, with “exact proportions” 7i,...,n, only depends upon A%/ through its eigenvalues
)\iff, e, )\7\{", which satisfy

OH L oxd )y e A, ..., e My, ..., M,) ace. in Q, (8.35)

where A(n1,...,n; My, ..., M,) is a subset of RY which is invariant by permutation of the coordinates, be-
cause one has not imposed any rule for ordering the eigenvalues. Like for the discussion following Proposition
17, the statement above is clear from the intuitive understanding of what mixing is about, but I have not
given any precise mathematical definition of what the set K(n1,...,7,; M1,...,M,) is yet. In 1983, Robert
KOHN had asked me a question showing that he was concerned about a problem of this kind: in my work
with Frangois MURAT, obtained for mixing two isotropic materials, we had found a necessary condition of
the type A¢¥f € S(6) for a set of matrices S(6) which was our candidate for X(6,1—6;aI,31), and because
this set is convex it is easy to approach a function (8, A) such that A(z) € S(6(z)) a.e. € Q by a piecewise
constant function satisfying the same constraint, as after decomposing € into small open cubes (plus a set of
measure 0), one can replace f on any such small cube w by its average 6 on w and replace A by its projection
on S(0), giving a new function (5, Z) satisfying the same constraint with § piecewise constant; then on each
small cube one approaches A by a piecewise constant function (on much smaller cubes) taking its values in
S(0). One also uses the fact that the HAUSDORFF distance from S(6;) to S(62) is O(|6; — 61|. However,
the convexity of each S(6) is not really important, and one can give a precise meaning of (8.34), for the case
(8.33) or for other still more general situations, in the following way.

Definition 37: For nonnegative real numbers 64,...,0,, with > . 6; =1,and P € L(RN,RN), one says that
P belongs to K(64,...,6,; My,...,M,) if and only if there exist sequences x? of characteristic functions of
disjoint measurable sets for ¢ = 1,...,7, and a sequence of rotations R" € SO(N) such that (8.33) holds,
and moreover such that there exists z, € Q, LEBESGUE point of A°ff and of 7y, ..., 7,, with n;(z,) = 6; for
i=1,...,r,and A f(z,) = Pm

Of course, because the set of LEBESGUE points of any vector valued function is dense, the fact that (8.34)
is valid is now merely the statement of Definition 37, but one must show that this definition is consistent
with the intuitive idea of mixing materials. The proof makes use of an obvious fact, that H-convergence
commutes with translations and dilations. Commuting with translations means that if A™ H-converges to
A¢ff in Q and if for a € RY one has B"(z) = A™(z+a) a.e. £ € Q—a, then B™ H-converges to B/ in Q—a
and B¢ff(z) = A°ff(z +a) a.e. in Q — a; commuting with dilations, or rescaling, means that if for s # 0 one
has C™(z) = A™(sx) a.e. € s~ Q, then C™ H-converges to C°/f in s71 Q and C*/f(z) = A°¥f(sz) a.e.
in s7! Q. More generally, one has the following result about changing variables in H-convergence, identical
to the formula first proved by Sergio SPAGNOLO in the case of G-convergence.

Lemma 38: If ¢ is a diffeomorphism from {2 onto ¢(2) and A™ H-converges to A°/f in 2, and B" is defined
on ¢(2) by
1

— Ww(z)An(z)wT(m) ae z€Q, (8.36)

B"(p(x))
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then B™ H-converges in ¢(Q) to B¢/ and
1

B () = det(Vo(z))

Proof: If —div(A™ grad(u,)) = f in €, one defines vy, in () by vn(y) = un(p'(y)) a.e. y € ©(), or
equivalently un(z) = vn(p(z)) ae. = € Q, so that grad(u,)(z) = Ve (z) grad(vs)(¢(z)) a.e. z € Q.
Writing then the equation in variational form [, (A" grad(us,).grad(w)) de = [, fwdz for all w € C}(Q),

one finds that —div(B™ grad(v,)) = g in ¢(Q2), with B" given by (8.36) and g(¢(z)) = Mf(x) a.e.
e p(z

z € ), in the case f € L?(Q2), with straightforward generalization in the case f € H~1(Q). Then one relates
the weak limits of grad(v,) and of B™ grad(v,) in ¢(f2) to the weak limits of grad(u,) and of A™ grad(v,)
in Q, and one finds that B¢/ is defined by (8.37).m

Lemma 39: For nonnegative real numbers 64,...,0,, with }.0; = 1, and P € K(04,...,0,; M,...,M,),
there exist sequences x7* of characteristic functions of disjoint measurable sets for7 = 1,...,r, and a sequence
R™ € L*(; SO(N)) such that (8.33) holds, with 7; = 6; a.e. in Qfori=1,...,r, and Aff =P ae. in Q.
Proof: One proves the Lemma with € replaced by a cube @ centered at 0 and large enough to contain
Q; then one restricts the result to (2, using Proposition 10. By Definition 37 there exists a point z, and
sequences x7, ¢ = 1,...,r, R, which are not yet the ones needed in the Lemma, and one obtains the desired

Vo(z)A (2)VeT () ae. z € Q. (8.37)

ones by translation and rescaling. For an integer k large enough so that z, + %Q C , one defines X?’k,
i=1,...,r, R™* A™* in Q by x?’k(w) =Xz + %) ae. z€Q,i=1,...,r, R"*(z) = R"(z, + &),
A™¥(z) = A™(zs + £) ae. z € Q. By Lemma 38, for k fixed A™* H-converges in Q to A°//* defined by
Acttk(z) = A°ff(z, + Z) ae. = € Q, and because «, is a LEBESGUE point of A°/f, A¢/f* converges in
L>*(Q) weak % and L!(Q) strong to the constant tensor P = A°ff(z,), and therefore A°/#** H-converges to
P in Q. Similarly, for k fixed X?’k converges in L>(Q) weak x to x°** defined by x***(z) = n; (z. + £) a.e.
z €Qfori=1,...,r, and because z, is a LEBESGUE point of each 7;, x> converges in L>°(Q) weak x and
L'(Q) strong to the constant function §; = n;(z«), for i = 1,...,7. Using the metrizability of H-convergence
restricted to M(a, 3;Q), when 0 < a < 8 < oo have been choosen so that M; € M(a,f) fori =1,...,r,
and the metrizability of L>°(Q) weak x convergence on bounded sets, there exists a diagonal subsequence
indexed by n/, k' such that A" **" H-converges in Q to the constant tensor P, and x?,’k, converges in L*(Q)
weak x to the constant function 6;, fori =1,...,r.®

Lemma 40: If for ¢ = 1,...,7, n; € L>®(Q), n; > 0 a.e. in Q, with >} ,;7; = 1 a.e. in Q, and P €
L*>(; L(RN,RN)) with P(z) € K(nu(z),...,n-(z); M1, ..., M,) a.e. z € (1, then there exists sequences x7
of characteristic functions of disjoint measurable sets for ¢ = 1,...,r, and a sequence R"™ € L™ (Q; SO(N ))
such that (8.33) holds and A¢ff = P in Q.

Proof: Let g € L*(Q; R?) and for € > 0 let p, be defined by p.(z) = Jrp1(2) with py € L'(RY), nonnegative
and with compact support; then [, .~ |9(z) — g(z — y)|pc(y) dz dy tends to 0 as e tends to 0 (as it is

< 2||gl|z2|p1||z1, it is enough to prove the result for a dense subspace, and for g € C.(RY) it is immediate
as g is uniformly continuous). For p; the characteristic function of the cube (0,1)", and § = % one can
then choose £ small enough to have ‘/.|$7Z| <. l9(z) — g(z)|dzdz < § V. Then decomposing R" into disjoint

€
VN
fwj l9(z) — g(25)| dz < ELN wjXw; l9(z) — g(2)| dzdz < Elzv sew; |o—z|<e |g(z) — g(2)| dz dz, and if gF denotes
the function equal to g(z;) on w;, then g is piecewise constant and one has ||g — g*|| Li(rV) < z.
One applies the preceding analysis to g = (71, ---,n., P), and g* = (n},...,n*, P¥) and one has P* ¢
K(nk,...,n¥;My,...,M,) on each cube w;. Using Lemma 39, as well as Proposition 10 in order to glue

cubes w; of size (plus a set of measure 0), one chooses for each cube w; a point 2 € w; such that

the pieces together, there exist sequences X?‘k of characteristic functions of disjoint measurable sets for
i =1,...,r, and a sequence R™* € L*(€;SO(N)) such that (8.33) holds, with 7; replaced by nf for
i=1,...,r, and A°ff replaced by P*. As k tends to oo, n* converges in L>°(Q) weak x and L!(Q2) strong to
n* fori=1,...,r, and P* converges in L°(2) weak x and L'(f2) strong to P, and therefore P* H-converges
to P in Q. Using the metrizability of H-convergence restricted to M(a, 8; @), and the metrizability of L>(Q)
weak * convergence on bounded sets, there exists a diagonal subsequence indexed by n', k' such that x?,’kl
converges in L°(€) weak * to ;, for i = 1,...,7, and A"*" H-converges in  to P.m

55



Because of the local character of H-convergence expressed by Proposition 10, there is no mention of a
particular open set in Definition 37, which is actually valid without any hypothesis of symmetry and without
the use of rotations R"™ (depending measurably in z) in (8.33). However, it is precisely the symmetry of M;,
i =1,...,r, and the use of these rotations which implies that (8.34) has the form (8.35), and this is seen
by using Lemma 38 with ¢(z) = Rz with R € SO(N): it shows that if P € K(n1,...,n; M1,...,M,) then
RPRT € K(m,.--yn3 My,...,M,) for any R € SO(N), and as P is symmetric, all tensors with the same
eigenvalues than P belong to the set K(71,...,n,; Mi,..., M,), and one deduces (8.35).54

I must say that prior to writing these notes I had not been so interested in writing down the detail of
the analysis which I just showed, considering that these are uninteresting details which everyone with a good
knowledge of measure theory can check, and that the important questions of Homogenization lie elsewhere.
I have heard some mention of a work of Gianni DAL MASO and Robert KOHN which might have addressed
this question in general, or it may have been the answer to the question that Robert KOHN was asking me
in 1983, which was related to linearized Elasticity, which is not a frame indifferent theory, as he already
knew; his concern was to identify which are the invariant quantities replacing the eigenvalues in the case of
fourth order tensors Cjjx;. I do not see any special difficulty in adapting Definition 37 to this case, but as I
consider that questions in linearized Elasticity are too often spoiled by unrealistic effects which deprive the
mathematical results of much of their value, I have preferred not to be involved in such questions.

The set K(n1,...,mr; M1,...,M,) is not necessarily convex: in dimension N = 2 with only one material
M; symmetric with distinct eigenvalues a < 8, K(1; M;) is the set of symmetric matrices with eigenvalues
A1, A2 € [a, 8] with A; A2 = a 8. However, some projections of K(71,...,n,; Mi,..., M,) are convex [Tal4],
and this is not dependent on symmetry requirements or use of rotations.

Lemma 41: Consider 7i,...,n,, nonnegative numbers adding up to 1, and Mi,..., M,, tensors from
M(a, B); then for every set of N — 1 vectors a!,...,a¥ ! of RV,
{(Pd,...,Pa™ V)P € K(m,...,n; My,...,M,)} is convex. (8.38)
Moreover
P,P,e K(ny...yne; My, ..., M,) and rank(Py — P)) < N —1
imply P, + (1 —0)Py € K(n1,--.,m0; M1, ..., M,) for all € (0,1).

Proof. For P, P, € K(m,.-.,m;Mi,...,M,) and 6 € (0,1) one exhibits Ps € K(n1,...,n; M1,..., M)
such that

(8.39)

Psa'=0Pa'+(1—6)Pya* fori=1,...,N -1, (8.40)

and this is done by layering materials with tensors P; and P», respectively with proportions  and 1 — 7,
and this obviously creates a tensor belonging to K(n1,...,n.; M1,..., M,), and then one uses formula (8.37)
of Lemma 34. The nonzero vector e orthogonal to the layers must satisfy

(P2 = P)aie) =0fori=1,...,N -1, (8.41)
and this is possible because there are only IV — 1 vectors a;, but if P» — P; does not have full rank, one can

take e orthogonal to the range of P, — P;, and (8.39) follows.m

It means that if one considers the first N — 1 columns of elements from K(n1,...,7,; M1,...,M,) in a
basis al,...,a", then one has a convex set. If the basis is orthogonal and all M; are symmetric, then the
choice (8.41) for e in the proof of Lemma 41 means that (P> — P;)e is proportional to a?V and the last term

64 The first method for obtaining bounds on effective coefficients, which I developed with Frangois MURAT
in the early 70s, and which I have described in chapter 5, is not restricted to symmetric operators, but I do
not know what kind of transformations to impose in the nonsymmetric case. I have not read carefully the
article of Graeme MILTON mentioned in footnote 63 as the only instance of a nonsymmetric situation that I
have heard of in a realistic situation, but knowing that the HALL effect is concerned with electrical currents
in thin ribbons, the macroscopic direction of the current is obviously imposed and therefore the situation is
not subject to frame indifference.
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in the formula (8.37) is then proportional to a” ® a’V and therefore if one considers the N2 — 1 entries of
elements P of K(n1,...,m:;Mi,...,M,) obtained by deleting the entry Pyy, then one has a convex set.
Even though K(n,1 —n;a I, 81) is characterized by explicit inequalities (7,25), (7.28), (7.30), I do not know
a simple description of what all these convex sets are in this special case, but if one just wants to identify
one column of elements of K(71,...,n,; Mi,..., M,), then one has the following result in the symmetric case
using rotations [Tal4].

Lemma 42: Consider 7, .. .,7,, nonnegative numbers adding up to 1, and M, ..., M,, symmetric tensors
from M(a,3), with eigenvalues \;(M;), i =1,...,7, j=1,...,N and N > 2; then for every E € RN,

{(PE|P € K(m,...,np; M1,...,M,)} is the closed ball with diameter [b E, a E]
a=)_ mimax{};(M)}
i=1
T

} _ i
b o Z mln]{)\](Mz)}

i=1

(8.42)

Proof.: Let A_(M;) = min;{\;(M;)} and A{(M;) = max;{)\;j(M;)}. Let eq,...,en be an orthonormal
basis, and rotate the materials in such a way that it becomes a basis of eigenvector for each RZT M; R;,
with RF M; R;e; = A_(M;)e; and RF M; R;en = Ay (M;)en; layering in direction orthogonal to e; these
materials RY M; R; with proportion 7; gives by formula (4.11) a tensor P € K(ny,...,m; Mi,..., M,)
such that Pe; = be; and Pey = aey. If E belongs to the plane spanned by e; and ey, then PE =
b(E.e1)e1+a(E.ey)en,sothat PE—bE = (a—b)(E.ey)ey and PE—aE = (b—a)(E.eq)e1, and therefore
(PE—-bE.PE—akFE) =0, showing that P E belongs to the sphere with diameter [b E, a E|. By choosing all
possible orientations, the set of P E contains at least the sphere with diameter [b E,a E], and as by Lemma
41, the set that we are looking for is convex, it must contain the closed ball with diameter [bE, a E].

That the desired set is included in the closed ball with diameter [bE,a E] follows from Proposition
12 and Proposition 14 (or from Lemma 18). Assume that A™ = Y, x*(R")” M; R™ H-converges to A¢/f
in Q, where the x? are characteristic functions of disjoint measurable sets with x? converging in L*(Q)
weak x to 7; for i = 1,...,7. As (R™)T M; R™ has eigenvalues between A_(M;) and A\, (}M;) then one has
B" = (3, xPA-(M))I < A™ < (3, x? A+(M;)) = C™, and if one extracts a subsequence such that B™
H-converges to B¢ff and C™ H-converges to C®/f, then by Proposition 14 one has B¢ff < A¢ff < Cef7.
By Proposition 12, an upper bound for C¢ff is C,, the limit in L> (Q; L(RYN, RN)) weak x of C™, which by
(8.42) is a I, and a lower bound for B*// is B_, where (B_)~! is the limit in L> (Q; L(RN, RY)) weak * of
(B™)™', which by (8.42) is ; I. One has then b1 < A*/f < a1, and therefore (as was shown before Lemma
18), A°ff E belongs to the closed ball with diameter [bE,a E], a.e. in (.8

9. Necessary conditions of optimality: first step

At a meeting in New York in 1981, T had described the characterization found with Frangois MURAT of
all effective materials obtained by mixing two isotropic materials, i.e. (7.25) (Proposition 10, described in
[Tal]) and (7.28), (7.30), obtained by following my second method for obtaining bounds satisfied by effective
coefficients (Theorem 26, described in [Ta7], and Lemmas 28, 29). It was clear that our program for questions
of Optimal Design initialized in the early 70s was completed, but I did not try immediately to extend the
computation of necessary conditions that I had done in [Ta2].

During the Spring 1983, I was invited at a Midwest PDE Seminar in Madison, and I heard Michael
RENARDY talk about his work with Daniel JOSEPH on POISEUILLE flows of two immiscible fluids.®> For a
cylinder with arbitrary cross section €2, there are infinitely many possible POISEUILLE flows, but when (2 is
a disc one only observes the flow where the less viscous fluid occupies an annular region near the boundary,
and they had imagined that it was related to a maximization of dissipation. This situation is described
by (4.1) with f = 1 (a is the viscosity of the fluid, independent of the direction along the pipe, and the
gradient of the pressure is constant, pointing in the direction of the pipe), and one wants to maximize

65 In applications, it either meant melted polymers or crude oil and water, the water being added in small
quantity in a pipeline for lubricating it.
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Joalgrad(u)|*de = [,udz, and therefore it corresponds to g(z,u,a) = —u in (4.3). There is indeed a
classical solution in the case of a circular cross section, which is as described, but as they were conjecturing
the existence of a classical solution in general, I told Michael RENARDY that on the contrary I expected that
no classical solution would exist in general.®® In order to check about this question, I looked at the necessary
conditions of optimality, as I had done in [Ta2], but using now the characterization that Frangois MURAT and
I had obtained two years before. Surprisingly, I discovered that our precise characterization could be ignored
completely, and that the same necessary conditions could be deduced from the crude bounds that we had
obtained almost ten years earlier.®” Assuming that a classical solution exists, and that the interface between
the two materials is smooth enough, the necessary conditions of optimality imply that some DIRICHLET
conditions and some NEUMANN conditions must be satisfied on the interface, which is quite unlikely in
general. On my way back to France I stopped in New York, and discussing about this matter in the lounge
at the COURANT Institute, the precise argument for rejecting that possibility was mentioned to me by Joel
SPRUCK, who reminded me of a result of James SERRIN that I had heard at a conference in Jerusalem in
1972 (and he told me about a quicker proof by Hans WEINBERGER); this result assumes the domain to
be simply connected, and shows that among simply connected domains a classical solution only exists for
circular domains.%8

In July 1983, I described completely our method for a Summer Course CEA - EDF - INRIA on Ho-
mogenization at Bréau sans Nappe, which gave Frangois MURAT and I the occasion to write [Mu&Tal]. As
this first text had been written in French, we wrote a summary in English for a conference at Isola d’Elba in
the Fall [Mu&Ta2]. In November, I took the occasion of a meeting in Paris dedicated to Ennio DE GIORGI
for writing down the details of the characterization obtained with Frangois MURAT in 1980 [Ta9], charac-
terization which I had first described at a meeting in New York in 1981 but only quoted in [Mu&Tal], and
in [Ta9] I gave our initial construction with coated ellipsoids generalizing the idea of using coated spheres
that I had learned in the original work of Zvi HASHIN and S. SHTRIKMAN [Ha&Sh]|, just after it had been
pointed out to me by George PAPANICOLAOU, and for the computations with multiple layerings I gave the
generalization that I had obtained in the Spring 1983 in Berkeley of the work initially done the year before
by Philippe BRAIDY and Didier POUILLOUX [Br&Po].

In the early 70s, Frangois MURAT and I had developed the Homogenization approach in order to describe
a relaxed problem, and this is a way to prove existence of generalized solutions. For the sake of generality, I
describe here the more general framework that I developed later in [Tal4], instead of the restricted problem
of mixing only two isotropic materials, as we had done in [Mu&Tal]. For a bounded open set 2 of RN, one

considers a mixture of r symmetric possibly anisotropic materials Ms,..., M, € M (e, 3), in finite quantity
K1,.-., Ky, assuming that >, k; > meas(2), of course. Then one defines
r
A:inRTMiRin Q, (9.1)
i=1
where x;, i = 1,...,r, are characteristic functions of disjoint measurable sets with union equal to Q (up to

a set of measure 0), and R is measurable and takes values in SO(N), a.e. in 2, and one assumes that

/S;Xidwgniforizl,...,r. (9.2)

66 The idea that turbulent flows are trying to optimize something has been suggested before, as I have read
in a book by Daniel JOSEPH [Jo], but it is not clear if fluids are trying to optimize something, and what it
could be; however, this idea is consistent with the Homogenization approach that in order to optimize some
criteria one might have to create adequate microstructures.

67 As I learned later, this point had already been noticed in the late 70s by RAITUM [Ra].

68 Of course, when {2 is not a disc this negative result does not tell what configurations will be chosen
by a mixture of fluids in a pipe, as the question of what mixtures of fluids really try to optimize must be
studied further. Daniel JOSEPH, Michael RENARDY and Yuriko RENARDY have also studied the stability of
the solution for circular domains, and for such questions of stability one must go back to the full NAVIER-
STOKES equation, of course.
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Then one solves the state equation
—div (A grad(u)) = fin Q, with u € H}(Q), (9.3)

with f € H=1(f2), and I have choosen homogeneous DIRICHLET conditions for u as an example. Finally one
wants to minimize the cost function J defined by

J(x1s---rxr R) = /Q i xi F; (a:, u(a:)) dz, (9.4)

so that there is no cost for rotating materials, and one adds regularity and growth hypotheses on Fi,..., F,
in order to have

u + Fi(-,u) is sequentially continuous from Hj(f2) weak into L*(Q) strong, for i = 1,...,7, (9.5)

which is usually obtained by assuming that each F; is a CARATHEODORY function, and that ), |Fj(z,v)| <
p(z)+Clv|P forallv € Ra.e. z € Q, with g € L(Q2) and p < 2~ for N > 2 (but for N = 2 one can assume
instead that ), |Fi(z,v)| < p(z) + G(|v|) and allow some exponential growth for G), and for N = 1 one
assumes that ), sup, <, |Fi(2,v)| < pr() with g, € L'(Q) for all . In the case where Y, k; > meas(Q),
one can also add in J a term of the form G( [, x1dz,..., [, xr dz).

The set of admissible A is not empty, because ), k; > meas(€), and it is included in some M(a, 3; ),
so that all the u obtained belong to a bounded set of H;(£2). For a sequence A™, for example a minimizing
sequence, one can extract a subsequence which H-converges to A¢ff, and also such that for i = 1,...,r, the

sequence X converges in L>°(f2) weak x to a nonnegative function 7;, which satisfies and
/mdwgmiforizl,...,r, (9.6)
Q

with >, 7; = 1in €, and therefore by Definition 37
AT e K(ny, ... s My, ..., M,) a.e. in Q, (9.7)

and also such that u, converges in HJ () weak to uc,, and therefore (9.5) implies

Jxt, - xR — A(iniFi(x, uoo)) dz. (9.8)

By Lemma 40, if r nonnegative functions n;, ¢ = 1,...,r, satisfy > .,m; = 1 in Q and (9.6), and P €
K(n, .- e M, ..., M,) a.e. in €, there exist sequences x? of characteristic functions of disjoint measurable
sets converging in L*°(Q) weak x ton; fori = 1,...,r, and A™ H-converges to P, but there is a small technical
point to resolve, because the sequence created in the proof of Lemma 40 might not satisfy (9.2). In that
case one has [, xJ'dz < k;+€, fori =1,...,7, and &, tends to 0 because [, 7;dz < k; fori=1,...,r. For
each ¢ one can change X} on a set of measure at most ¢, in order to create sequences X} of characteristic
functions of disjoint measurable sets converging in L*°(Q) weak * to n; for ¢ = 1,...,r and satisfying
(9.2), and A" = ¥, ¥*(R™)” M; R* H-converges to P, and one must show that P = P a.e. in . As the
perturbations are not small in L* norm, one cannot apply Proposition 16, but one can control the effect of
small perturbations of the coefficients in L® norm with s < co (with the coefficients staying in M(a, 3;))
by using MEYERS’s regularity theorem [Me]; however, one can also construct a more direct proof based on
Proposition 10 as follows. If for ¢ = 1,...,r, one chooses a small cube w; such that fwi n; dz > 0, and one

chooses n large enough so that fw. xrdzx > e, for ¢ =1,...,r, then one can manage to make the changes
only inside |J, w;, and as A" = A" in Q \ (U; @i), Proposition 10 implies that P=Pin Q\ (U, @5); the w;
can be taken as small as one wants (around a density point of 7;), and therefore P = P a.e. in Q.
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One has therefore identified a relaxed problem (as defined in the end of chapter 3): the new set of
controls is the set of (11, ...,7n,, A) satisfying

0<nae. inQfori=1,...,n Zm:la.e. in Q
=1
(9.9)
/mda:gni fort=1,...,r
Q

AEIC(nla-'-an‘r‘;Mla---,Mr) a.e. in Q,

the state u is still given by (9.3), and the cost function J to be minimized is given by

T,y A) = /Q[im Fi(cc,u(x))} dz. (9.10)

The initial problem corresponds to the case where each 7; is a characteristic function.

Lemma 43: The function J given by (9.10) with u defined by (9.3) attains its minimum on the set described
by (9.9).

Proof. The topology on the new control set described by (9.9) is the L>°(€2) weak x topology for each n; and
the H-convergence topology for A, and this topology is metrizable. The new control set is the completion of
the initial control set, and it is compact for this topology (this uses Theorem 6, Lemma 40, and the simple
trick shown above for enforcing (9.2), together with classical results of Functional Analysis for dealing with
the L*° () weak x topology). Moreover, J is continuous for that topology. A consequence of all these facts
is that the minimum of J is attained.m

The questions are rather different for more general functionals depending upon grad(u), as we already
knew in the early 70s; I have described some very partial results on this question in [Tal3]. However, the
property (9.4)/(9.5) is still true for some functionals depending upon grad(u) in a “fake” way. For example,
(9.3) implies that [, (A grad(v).grad(u))dz = [, fudz if f € L?(Q), so that one should not really say
that the first integral depends upon grad(u)! There are other situations of this kind like the following ones,
where one cannot make grad(u) disappear completely; for simplicity, I do not try to use MEYERS’s regularity
theorem [Me]. Assume that for some j, one has J(x1,--.,Xxr R) = [, g(u)g—;v dz, with g continuous and
having limited growth |g(u)| < C(1+|u|P) and p < 5 if N > 2, withv € L%(Q) and p(3 — %) + 3 +% <1,
so that ¢ < co and the integral makes sense by an application of SOBOLEV imbedding theorem. If v is not
regular, one cannot make grad(u) disappear entirely by integration by parts, but one can decompose v as
vy + vy with v; small in L9(Q) and v, € C}(Q2), and one notices that [, g(u)g—ng de = — [, G(u)gimj dz,
where G(s) = [ (o) do; because the last integral is sequentially continuous on Hg(£2) weak, one finds that
the same is true for J as a uniform limit of sequentially weakly continuous functionals. One can prove the same
result differently, and it also applies to the case where one has J(x1,...,xr, R) = [, g(u)(4 grad(u))jv dz,
with the same hypotheses on g and v. Because the sequences considered are such that A™ grad(u, ) converges
in L2(Q; RY) weak to A%ff grad(us,), it is enough to show that g(u,)v converges in L2({2) strong to g(ue)v,
and using another decomposition of v as vz + v4 with v3 small in L9(Q) and v4 € L>®(Q), it is enough to
show that g(u,) converges in L?(Q) strong to g(u ), and this follows from SOBOLEV imbedding theorem
and the fact that the injection of HJ(f2) into L?(f2) is compact.

The next step is to write necessary conditions of optimality, and therefore one wants to use differen-
tiable paths between the candidate to optimality and any other control. One assumes then that each Fj is
continuously differentiable in u, that ang(u"") is a CARATHEODORY function, and that some growth condition
is satisfied so that

Fi(-
U # is continuous from Hy () into L5(Q) c H~(Q), (9.11)
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for example |% < g(z) + Clu|? with g € L™(Q) and r > 1\2,—_1]\_,2 ifN>3o0rr>1if N=2(and r =1 for

N=1),and ¢ < % if N >3orq< o if N<2. The condition of optimality will be simplified by using

an adjoint state, defined by

. . aE HUu) .
—div (AT grad(p)) = Zni% in Q, p € Hy(Q), (9.12)

i=1

and although I am dealing with symmetric A here, I have used A7 in (9.12) in order to show what is needed
in a nonsymmetric situation. In 1983, I was checking the conditions of optimality for the special case of
mixing two anisotropic materials, using the characterization obtained with Frangois MURAT, i.e. (7.25),
(7.28) and (7.30), and as these conditions define a convex set of matrices, I could use straight segments
for mixtures corresponding to the same local proportions. I discovered that the precise form of (7.28) and
(7.30) is not really important, and generalizing to mixing more than two isotropic materials became an easy
exercise, but I only understood the general case of mixing anisotropic materials in given proportions when
I observed the property of Lemma 42. For the generalization, which I show directly without starting by the
particular case that I had done first, I will use the notation

B,y My, ..., M) ={APpI < A<al}

r

_ i
- ; min; {A;(M;)} (9.13)

a =Y max{x; (M)},

(SN

which defines a convex set B(n1, . - ., 7r; Ma, . .., M) containing K(n1, . .., nr; M1, ..., M,), but although they
are different sets, Lemma 42 tells that some of their projections are identical.

Lemma 44: For N > 2, let 57, ...,n}, A* satisfy (9.9), and

Jl, .. i, A < J(ni,...,nx,A) for all A e K(n3,...,n5, My, ..., M,), (9.14)

with J defined by (9.10). Then, if u* and p* are the corresponding solutions of respectively (9.3) and (9.12),
one has

/ (A* grad(u*).grad(p*)) dz > / (B grad(u*).grad(p*)) dz for all B € B(n3,...,nx, M,...,M,).
Q Q
(9.15)
Proof. For B € B(ny,...,nr; My,...,M,), and € € (0,1), one defines
Ale)=(1—-¢e)A*+eB=A"+¢cdA, (9.16)

and A(e) € B(n},...,nf; My,. .., M,) because it is convex and contains K(nf,...,n, My,...,M,). As A(e)
is analytic in ¢ with values in M(a, 3; ), the operator A. = —div(A(e)grad(-)) is analytic with values in
L(H}(2), H1(Q)) and invertible by LAX-MILGRAM lemma, and therefore its inverse A_! is analytic with
values in £L(H (), Hj(2)), so that the corresponding solution u(e) is analytic in ¢ with values in Hg (),
and its derivative Ju at ¢ = 0 satisfies

u(e) = u* +edu+ o(e) in Hy(R)

. (9.17)
div (A* grad(éu) + 6A grad(u*)) =0,

where §A = B — A*. The function J| (n%,...,n}, A(e)) is therefore differentiable in ¢, and its derivative 6T
at € = 0 satisfies

T(ntyeeomiy A©)) = TGt mt, A*) + €8T + o(e)

sz/ﬂ(inf%)éudw,

=1

(9.18)
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and using the definition (9.12) of the adjoint state p* and (9,17), one finds

6J = /Q((A*)T grad(p*).grad(éu)) dz = /Q(A* grad(&u).grad(p*)) dz

(9.19)
= —/Q((SA grad(u*).grad(p*)) dz = /Q((A* - B) grad(U*)-grad(p*)) da.

If one had A(e) € K(nt,...,nf, My,...,M,) for all ¢ € (0,1), one would have j(ni“,...,n:,A(s)) >

j(n{,...,n;‘,A*) by (9.14), and therefore §J > 0 by (9.18), and that would give (9.15) for the particu-
lar choice of B. However, almost everywhere in 2, A(g)grad(u(e)) belongs to the closed ball with diameter
[bgrad(u(e)),agrad(u(e))], and therefore by Lemma 42

there exists M(e) € K(n7,...,m5, My,..., M) : A(E)grad(u(e)) = M(e)grad(u(e)) a.e. in Q.  (9.20)
Because A(e) and M (e) create then the same state u(e), one has
J(n;,...,n:,A(e)) - J(n;,...,n:,M(a)) > J(nt, ... nt, A%, (9.21)

and therefore the conclusion §.J >0 is valid.m

In the derivation of (9.20), there is a small technical difficulty, because Lemma 42 was given without any
dependence upon z € ), and one must then check that there is a measurable M (¢) satisfying (9.20) (¢ > 0
being fixed). Of course, one can make Lemma 42 more precise by constructing an explicit lifting, which
maps n1,---,M,B € B(n,...,ns;My,...,M,),e € RN to A € K(m,...,n; My,...,M,) with Ae = Be,
but a natural construction relies on different cases, e being 0 or not, B e being parallel to e or not, B e being
on the sphere with diameter [b(n)e, a(n)e] or not, and so on, and in each case one only checks continuity
of the lifting, so that the constructed A is measurable. One may also avoid this question of measurability
altogether by restricting one’s attention to specific mixtures obtained by layering in arbitrary directions, and
in the end it gives the same condition (because in Lemma 42 the elements on the boundary of the ball are
created by layerings). One chooses an orthonormal basis e, ..., en, and one orients material #4 so that e; is
an eigenvector for the eigenvalue A;(M;), with eigenvalues increasing with j (so that A; (M) = min; \;(M;)
and Ay (M;) = max; A\j(M;)), and then one uses layers orthogonal to e;, with proportions 7nj,...,n}, and
one obtains a material with tensor

N
P=> mie;@e; € K(ni,...,n5 My,..., M,)
j=1

(9.22)

b=m <...<my =aa.e. in Q.

For a measurable subset w of Q one keeps A(¢) = A* in Q\w, and in w one defines A(g) by mixing the material
with tensor A* and the material with tensor P, in layers orthogonal to e and with respective proportions
1 —¢ and e. Of course, one uses Lemma 40 for showing that such an A(e) is allowed in (9.14), and formula
(8.17) gives

e®e
(Pe.e)

A(e)=A*+edA+o0(e) inw with JA=P — A* — (P — A¥) (P— A", (9.23)

and this different definition of §A corresponds to a different du to use in (9.17) and (9.18), and the last
equality in (9.19) changes because of the different definition of §A4, and by varying w one deduces that (9.9)
and (9.14) imply that for all e # 0 one has

((P - A*)grad(u*).e) ((P - A*)grad(p*).e)
(Pe.e)

(A* grad(u*).grad(p*)) > (Pgrad(u*).grad(p*)) - , (9.24)
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a.e. in Q, and by choosing e # 0 orthogonal to (P — A*)grad(u*), one finds
(A* gmd(u*).grad(p*)) > (P grad(u*).gmd(p*)) for all P satisfying (9.22), a.e. in Q. (9.25)

From (9.15) or (9.25) one deduces the following necessary condition of optimality.

Proposition 45: For N > 2, let #7,...,nk, A* satisfy (9.9) and (9.14), then at almost every point where
|grad(u*)| |grad(p*)| # 0 one has

if grad(p*) = cgrad(u*) with ¢ > 0, then A* grad(u*) = agrad(u*), A* grad(p*) = agrad(p*), (9.26)

if grad(p*) = cgrad(u*) with ¢ < 0, then A* grad(u*) = bgrad(u*), A* grad(p*) = bgrad(p*), (9.27)

if grad(p*) is not parallel to grad(u*) then
a — b |grad(u*)| .
————grad
2 lgrad(p)] ) (9.28)
a— b |grad(p")|

5 7|gmd(u*)|grad(u ).

A* grad(u*) = ot bgrad(u*) +

A° grad(pr) = 21

grad(p*) +

Proof. As |grad(u*)| # 0, when one changes the basis e, ..., en, the vector P grad(u*) spans the sphere
with diameter [bgrad(u*),agrad(u*)], and the quantity (P grad(u*).grad(p*)) attains its maximum at a
unique point of the sphere; as A* grad(u*) belongs to the closed ball with diameter [bgrad(u*), a grad(u*)],
A* grad(u*) must be equal to the value of P grad(u*) for the P for which the maximum is attained, and this
gives the formulas for A* grad(u*) in (9.26)/(9.28). The corresponding formulas for A* grad(p*) follow
by a simple remark from Linear Algebra, applied to A* — “%bl , namely that if M is symmetric with
norm < v and if for a vector E # 0 one has M E = F and |F| = v|E|, then M F = 42 E (because
M F =2 BP = |MFP - 292(F.M E) ++'|E> < 12(*| E* — |F[2)) = )8

On the set Q. where neither grad(u*) nor grad(p*) vanish, one may therefore replace A* by P which is
obtained by layering the materials with the same proportions 77, ...,7), and one has the same cost because
one can keep the same u*, as A* grad(u*) = P grad(u*) a.e. in Q. On the set Q, where grad(u*) = 0, one
can also replace A* by any material without changing A* grad(u*) (which remains 0), and in particular one
can replace A* by a material obtained by layering the materials with the same proportions. However, the
situation is different for the set Q, where grad(p*) = 0 and grad(u*) # 0, but one can adapt an argument of
RAITUM [Ra] for replacing A* by materials obtained by layering but with different proportions (if A* grad(u*)
is not on the sphere with diameter [b grad(u*), a grad(u*)], it may only belong to the boundary of another
sphere obtained by changing b or a, and therefore one needs to change some of the proportions). Let

Q. = {a:|a: € Q, (A*grad(u*) —bgrad(u*).A*grad(u*) — agrad(u*)) < 0}, (9.29)

i.e. the set where A*grad(u*) cannot be obtained by a layered material so that grad(u*) # 0, and the
preceding analysis shows that on . one must have grad(p*) = 0, i.e. Q. C Q,. One defines b(n) and a(n)
for

n=m,---,nr) € L®(Qc; R") such that ; > 0 a.e. in Q. fori=1,...,r, Zni =1ae. in Q. (9.30)

i=1
by the formulas
1 K ni r
=y " =" i max A (M; 31
b(n) ; min; A;(M;)’ a(m) ;77 e 1 (M:), (9:31)
and one imposes the two constraints
(A*grad(u*) —a(n)grad(u*).A*grad(u*) — b(n)grad(u*)) <0 ae. in Q,, (9.32)
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/mdw:/ nidz,i=1,...,n (9.33)
Q. Q.

Jo(n / (Z i Fy(z,u )) de. (9.34)

C’L—

and one wants to minimize

The set of i satisfying (9.30), (9.32)/(9.33) contains * (as (9.32) is true by Lemma 42). The condition (9.30)
defines a convex set, which is L°°(£2;; R") weak x compact; the constraint (9.32) defines a L>(Q2.; R?) weak
* closed convex set in (a, b) by Lemma 19, and by (9.31) the set of 7 satisfying (9.32) is therefore convex,
and L*(Q; R") weak x closed, and similarly for the constraint (9.33). As J. is linear and L (QC,R”)
weak x continuous, it attains its minimum on at least one extreme point of the L>°(Q,; R") weak * compact
convex set defined by (9.30) and (9.32)/(9.33). One shows then that for such an extreme point one must
have equality in (9.32) a.e. in Q, by using an argument of Zvi ARTSTEIN [Ar]. Indeed, assume that
(A*grad(u*) — a(n)grad(u*).A*grad(u*) — b(n)grad(u*)) < —e < 0 on a subset K C €. with positive
measure; one may assume that one can find r + 1 disjoint subsets K; C K with positive measure and on
each such set K} one can find two distinct indices i(k),j(k) € {1,...,7} such that n;u),n;x) > 0 > 0 a.e.
in K, (if it was not true, a.e. in K}, there would only be one 7; different from 0 and thus equal to 1, in which
case a(n) = b(n) and one could not be in 2.); for |cx| < dg, one can add cx to 7;x) in K and subtract cg
to m;(x) in Ky and still satisfy (9.30), and by restricting a little more |ci| one can still satisfy (9.32); then
one has r + 1 small arbitrary constants that one can play with and only r linear constraints (9.33) that they
must satisfy, and it leaves the possibility to move both ways in at least one direction while satisfying all the
constraints, contradicting the assumption that one has choosen an extreme point. Therefore one has found
an optimal solution of the initial problem which can be realized by layerings inside €2..

At least one solution of the optimization problem corresponds then to a material obtained by layerings
(with varying proportions and directions), and therefore at the end the Homogenization questions seem to
disappear from the analysis, and one may wonder if it was really necessary to study Homogenization in the
first place.

There is an analogous question about Functional Analysis. One wants to show the existence of a
characteristic function x € L°(£2) which minimizes [, x f dz, where f is given in L'(Q) and where the
minimization is only considered for characteristic functions of measurable subsets of () satisfying a finite
number of constraints fog,- de = o; for i = 1,...,m, where gi,...,gm are given in L'(Q); of course,
one assumes that at least one such x exists. The proof of existence that I know was taught to me by Zvi
ARTSTEIN in 1975 [Ar],%° and it consists in minimizing L(f) = [, 6 f dz among functions § € C = {6]6 €
L*(Q),0 <0 <1ae inQ, fQOg,- de = a; for i = 1,...,m}; as C is a nonempty compact set for the
L>(Q) weak x topology (which is metrizable when restricted to C), and L is continuous for this topology,
the minimum of L is attained, and because C' is convex and L is affine, the minimum is actually attained on
a (nonempty) convex compact subset Cy of C, and Cy has at least one extreme point 6§y by KREIN-MILMAN
theorem. Finally, Zvi ARTSTEIN argues that 6y belongs to a finite dimensional face of the bigger convex set
Cy = {66 € L*(2),0 < § <1 a.e. in Q}, and using the fact that the LEBESGUE measure has no atoms, he
shows that 6y must be a characteristic function, which is therefore optimal among characteristic functions
from C.

In both situations, one wants to minimize on a set X some function F;, belonging to a family of such
functions indexed by ¢ € I, and one has constructed a compact space X containing X as a dense subspace,
and each F; becomes the restriction to X of a function F which is continuous on X Of course, each function
F; attains its minimum on X, but one exhibits a subset ¥ such that X C Y j= X (and equal to X in the
second case), whlch has the property t that for each ¢ € I the set of minima of F intersects Y. Of course, as
X is dense in X Y is also dense in X and therefore not compact if Y #£ X. Tt is not clear if there exists
another topology for which Y is compact with X dense in Y and each Fj is the restriction to X of a function
G; which is lower semi-continuous on Y.

I do not know any obvious abstract framework which explains how to avoid mentioning Functional
Analysis or Homogenization in these examples, and although it could be useful to develop special results for

69 The following argument is precisely Zvi ARTSTEIN’s proof of LYAPUNOV’s theorem.
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the growing number of students who hope to use only elementary tools in Mathematics, it seems impossible to
maintain such a goal if one is interested in practical problems. It is indeed often emphasized by those who have
dealt with practical problems of Optimization, that one is rarely given a very precise function to minimize,
and that one must reassert the goal in view of preliminary results. For what concerns Homogenization
appearing in the problems that I have been considering, an obvious remark is that in the realization of such
an optimal solution including mixtures in some areas, one needs to reconsider the function to be minimized
by adding the cost of creating these mixtures.”®

Actually, as was pointed out later by Robert KOHN, there is another natural class of functionals where
the optimal solution seems to require more precise information on optimal bounds, and more general designs
than simple layerings. In identification problems, one does a few experiments with the same arrangement of
materials, and one tries to estimate some coefficient by using a finite number of measurements. As a simple
model of this kind, one considers g equations of the form

—div(A grad(ui)) —fiinQ, u € HY(Q), fori=1,...,q, (9.35)

and all these equations use the same A € M(a, 3;Q) but different functions f; € H=1(Q),i =1,...,q, and
q functions v; € H}(Q) (or simply v; € L?()) are given for i = 1,...,q, corresponding to measurements in
a material using an unknown value Ay that one wants to identify.”* One idea would be to minimize a cost

function J of the form .
I = [ (3 hus - wi?) o, (9.36)
Q =1

and if one knows that A is one of the materials Mj, ..., M, rotated in an arbitrary way (a.e. in ), one gets
a problem where the Homogenization approach will appear, but if one considers functionals of the form

Ji(A4) = /Q (i lgrad(u; — vi)P?) dz, (9.37)

the situation is quite different [Tal3]. In the case of (9.36), minimizing sequences will make some A°ff ¢
K(ni,...,ne; My,..., M,) appear, and there exists then an optimal homogenized A, and one may wonder
what its relation with the actual Ay is, for example if in the case where M; = u; I for ¢ = 1,...,r and
therefore Ag is locally an isotropic material, but one finds that all the optimal A are anisotropic in some
regions. Of course, if the measured values were exactly those associated with Ap when one uses (9.35), then
one would have J(Ap) = 0, but measurements are not always entirely accurate and this explains why, even
when Ag only takes isotropic values, it may do so on relatively small pieces, and Ay may well be near an
anisotropic A in a distance corresponding to H-convergence (mentioned after Definition 5). If one decides

70 1t is unfortunately often the case that some people dealing with questions in Elasticity not only forget
to mention the defects of Linearized Elasticity but only consider extremely particular functionals. On
the contrary, on the engineering side, as was emphasized by Martin BENDS@E at a meeting in Trieste in
1993, it is important to have an interactive point of view when dealing with Optimal Design problems; one
rarely needs to compute with high precision which mixtures will appear in connection with minimizing a
particular functional, because one may well abandon this particular functional during the interactive part
of the procedure, and one may end up minimizing something different, in principle more adapted to the
engineering application.

"1 Practical problems may include elecrical or heat conduction questions or permeability of oil reservoirs,
and they do not correspond to homogeneous DIRICHLET data. Instead of using different f; one may use
different nonhomogeneous DIRICHLET data on some parts of the boundary and NEUMANN data on other
parts of the boundary, and the different measurements may give the value of u; or the flux (A grad(u;).n) on
various other parts of the boundary. Another important class of problems arising in applications deals with
eigenvalues, in which case one may measure a few of the lowest eigenvalues corresponding to some unknown
Ap, which one tries to identify from these measurements. It is not difficult however to adapt the methods
described in this course (for some academic models) in order to deal with these more realistic variants.
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then to minimize (9.36) and one wants to write necessary conditions of optimality, an increase §A creates
increases du;, i = 1,...,q, solutions of

—div (Agrad(éui) + 44 grad(u,-)) =0in Q, du; € Hy(Q),i=1,...,q, (9.38)

and an increase §J given by
q

§J = /Q Z(Z(ui - vi)éui) de, (9.39)

i=1
and in order to express dJ in terms of § A, one introduces g adjoint states p,...,pq, solutions of
—div (Agrad(pi)) =wu;—v; inQ, p; € Hy(Q),i=1,...,q, (9.40)

and the necessary condition of optimality becomes

q

0J = — / [Z (5A grad(ui).grad(pi))] dz > 0 for admissible JA. (9.41)
Q

In the first step of the obtention of necessary conditions that I have described, i.e. keeping the proportions
n%,...,n: fixed, one sees that it would be useful to characterize the set of (A grad(ui),..., Agrad(ug)) for
AeK(m,...,nMy,...,M,), but for ¢ > 2 the analogue of Lemma 42 is not known. Even for the case of
mixing two isotropic materials, i.e. My = a1, My = 31, for which I had obtained the characterization (7.25),
(7.28), (7.30) of K£(8,1 — 6; I, 3I) with Frangois MURAT in 1980, I do not know a simple characterization
of this set, although Lemma 41 asserts that it is convex if ¢ < N — 1. It was for this case that Robert KOHN
had pointed out that the full characterization seems necessary, but I do not know if the necessary condition
(9.41) has given rise to a precise analysis of what optimal solutions look like.

10. Necessary conditions of optimality: second step

We can now look at the second step of the derivation of necessary conditions of optimality, which
consists in varying 7, ...,7,, and is therefore more classical. I begin by treating two very special examples,
corresponding to p = u or to p = —u, where one can avoid Homogenization almost completely. The special
examples correspond to minimizing either the cost function J; or the cost function J> defined by

Jl(Xl""aXTaR) :/fudw
? (10.1)

J2(X1a"'aX1‘aR) = _/ fU'dxa
Q

and it is important that in (10.1) one uses the same function f which appears in (9.3). The reason why these
two functionals are special is that the definition (9.12) of the adjoint state in the case of minimizing J; gives
p = u, and therefore A* grad(u*) = a(n*)grad(u*) by (9.26) for N > 2, while in the case of minimizing J,
it gives p = —u, and therefore A* grad(u*) = b(n*)grad(u*) by (9.27) (which is valid for N > 1, and also
for minimizing J; in the case N = 1), where the functions a and b are defined by (9.13), repeated as (9.31).
Another important fact for the argument is that, because A is symmetric a.e. in €, solving (9.3) amounts
to a minimization problem, namely

Min,e g1 (a) /Q[(A grad(v).grad(v)) —2f 'u] dz is attained for v = u defined by (9.3),

(10.2)
and the value of the minimum is — / fudz.
Q
Lemma 46: The minimization of J; is equivalent to the following min-max problem
MaznMin,em () / (a(17)|grad(v)|2 - 2f v) de if N > 2, (10.3)
Q
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MazyMin,cm (o) /s;(b(77)|grad(v)|2 —2f v) dz if N =1, (10.4)

the set of 7 on which one maximizes is given by (9.6), repeated in (9.9), and in both cases u* is defined in a
unique way.

Proof As already mentioned, for any optimal solution u* one has p* = u*, and therefore one does not
need the argument of RAITUM described after Proposition 45. For N > 2 one has (9.26) at points where
grad(u*) # 0, and as it holds automatically at points where grad(u*) = 0, the formula (10.2) gives (10.3).
For N = 1 one automatically has A°ff = b(n)I and therefore (9.27) holds, and the formula (10.2) gives
(10.4).

That the problems in (10.3) or (10.4) have at least one solution follows from classical min-max theorems,
because by using the information A € M(a, ;) one may restrict the minimization in v to a large enough
closed ball of H} (), which is a compact convex set for the weak topology of Hj (£2), the set of i is a compact
convex set for the L= (Q; R") weak x topology, and the functional is convex lower semi-continuous in v and
concave upper semi-continuous in 7 (it is actually linear continuous in the case N > 2). Moreover, because
the functional is strictly convex in v, the solution u* is unique. B

Of course, if without knowing anything about Homogenization one has guessed that the problem (10.3)
is a way to solve the initial problem of minimizing J;, one still has to use Homogenization in order to
interpret what a solution n* means, and that it can be created by layerings. Jean CEA and K. MALANOWSKI
had unknowingly taken advantage of a similar miracle in [Cé&Ma], but they had started from accepting
all possible v I with o < 4 < 3, and they did not even have to explain by Homogenization the (classical)
solution that they had obtained.

Lemma 47: The minimization of J; is equivalent to the following minimization problem

Min, Min,c s o) /Q (b(n)| grad(v)|? — 2f v) dz, (10.5)

and the set of 7 on which one minimizes is given by (9.6), repeated in (9.9), and b(n*)grad(u*) is defined in
a unique way.
Proof As already mentioned, for any optimal solution u* one has p* = —u*, and therefore one does not
need the argument of RAITUM described after Proposition 45. For N > 2 one has (9.27) at points where
grad(u*) # 0, and as it holds automatically at points where grad(u*) = 0, the formula (10.2) gives (10.5).
That the problem in (10.5) has a solution follows from classical theorems in Optimization, because by
using the information A € M(a, 8; ) one may restrict the minimization in v to a large enough closed ball
of Hg (), which is a compact convex set for the weak topology of Hy (), the set of 7 is a compact convex
set for the L*°(€Q; R") weak * topology, and the functional is convex in (v,7n) and lower semi-continuous by
Lemma 11 with M = b(n) I; moreover, as P = M~ in formula (5.6), one sees that the functional is strictly
convex in b(n)grad(v) and therefore b(n*)grad(u*) is unique.m

Of course, if without knowing anything about Homogenization one has guessed that the problem (10.5)
is a way to solve the initial problem of minimizing J5, one still has to use Homogenization in order to interpret
what a solution n* means, and that it can be created by layerings.

These two examples are not always instances of an intermediate problem in the abstract setting men-
tioned after (9.34), and they do not always fit the framework of relaxed problems described in chapter 3
either, because the set X for which the minimization of J; or J; is considered (which is the set of charac-
teristic functions x1, ..., X, of disjoints sets satisfying (9.2), together with a measurable rotation R so that
A is defined by (9.1)) is not always included in the set Y on which (10.3) or (10.4) are considered (which is
the set of 71, . ..,n, satisfying (9.6), and A is a(n)I for minimizing J; for N > 2, or b(n)I for minimizing J;
for N =1 or for minimizing J;). X can only be considered as a subset of Y if one can avoid the use of the
rotation R, i.e. in the case where M; = u; I for ¢ = 1,...,r; however, even in this case, the problem is not a
completion, except for N = 1, where there is a formula for A%ff, as A¢ff = b(n).

Coming back to the general case, one wants now to write that the optimal mixture using the proportions
n,...,ny (with A* corresponding to a layered material) is better than any other mixture using different
proportions 7, . . ., 7, and for this task one follows the arguments used in Lemma 44 (or the variant before
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Proposition 45), but one starts now from A € K(n1,...,n,; M1,...,M,), with proportions 7, ..., 7, satis-
fying (9.9). By mixing then A with A* in an adapted way one will create an admissible differentiable path

n(e) = n*+edn+o(e), A(e) = A*+edA+o0(e), u(e) = u*+edu+to(e), j(n(s), Ae)) = J(n*, A*)+e6J +o(e),
with Ju and JA still related by (9.17), but with §J given now by

7= [Z b ) + (Z o )] g, (10.6)

and using the definition (9.12) of the adjoint state p* and (9.17), one finds
§J = / [Z on; Fi(z,u*) — (5Agrad(u*).grad(p*))} de. (10.7)
Q%=1

Proposition 48: Let n},...,n}, A* satisfy (9.9) and
j(nf, e, AY) < ~(171, .., 0p, A) for all my, ..., n,, A satisfying (9.9), (10.8)

with J defined by (9.10). For N > 2, (10.8) implies

/Q[Z n; Fi(z,u*) — (A* grad(u*).grad(p*))} dz < /Q[Z n; Fi(z,u*) — (B grad(u*).grad(p*))] dz
i=1 i=1
for all 4, ..., n, satisfying (9.9), B € B(m1,...,n; M1, ..., M,),
(10.9)
with u*, p*, B(n1, ... ,mr; M1, ..., M,) defined by (9.3) (using A*), (9.12) (using A*), and (9.13). For N =1,
one has a* = b(n*) and (10.8) implies

[ (e Sy i) < [ [ (R G T Tl a0

i=1 i=1

for all #4, . ..,7n, satisfying (9.9).
Proof: Let n1,...,n, satisfy (9.9), and B € B(n1,...,0;Ma,..., M,). For € € (0,1), one defines 7(g) by
ni(e) = (1 —&)n; +emi, (10.11)

so that n(e) satisfies (9.9). Using Lemma 42 (and preceding remarks for constructing measurable liftings),
there exists A such that

Agrad(u*) = Bgrad(u*), A€ K(m,...,n0; M1,...,M,), a.e. z € Q. (10.12)

For a nonvanishing e € L*®(Q; RY) one defines A(¢) by layering A* and A with respective proportions 1 — ¢
and ¢, in layers orthogonal to e, and Lemma 34 gives

e®e i
(A*e.e)+(1_5)(Ae_e)(A—A )

Ale) = (1—¢e)A* —|—aA—a(1—a)(A—A*)6 (10.13)
and by construction one has A(e) € K(n1(¢), ..., n(¢); My, ..., M,) a.e. in Q. Of course, (10.8) implies that
dJ > 0, for which one uses (10.7); the value of dn; following from (10.11) is dn; = n; — 0}, and the value
of §A following from (10.13) is §A = A — A* — (A — A*)52%;(A — A*), so that (6Agrad(u*).grad(p*)) =
((A—A*)grad(u*).grad(p*)) — ﬁ ((A—A*)grad(u*).e) ((A—A*)e.grad(p*)), and by choosing e orthogonal
to (A — A*)grad(u*), one has (§A grad(u*).grad(p*)) = ((4 — A*)grad(u*).grad(p*)), which by (10.12) is
((B — A*)grad(u*).grad(p*)), and §J > 0 is then exactly (10.9).
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In the case N = 1, A € K(n1,..-,00; M1,...,M,) means A = b(n), with b defined in (9.13), and

therefore 64 =), Ba—nbjn,-; (9.13) implies that g—nbi = —)\(b—;[i) (where A(M;) is the value of the coefficient for
the material M;), and therefore one has
,,
- . (a*)2 du* dp*
- Fy(z. .| d 10.14
67 /Q[;( (@u)+ 300 @ 4o )om] o (10.14)

from which one immediately deduces (10.10). =

Inequality (10.9) consists in minimizing a linear functional on a convex set, and it can be further simpli-
fied by noticing that B € B(n1,...,n,; M1,..., M,) only enters (10.9) through D = B grad(u*), and when B
runs through B(n,...,n,; Mi,..., M,), D spans the closed ball of diameter [b(n) grad(u*), a(n) grad(u*)],
and therefore (10.9) is equivalent to

/Q[i m; Fy(z,u”) — (A* grad(u*).grad(p*))] dz < /ﬂ[zr: n; Fi(z,u*) — (D.grad(p*))} dz

for all 7y, ...,7n, satisfying (9.9), (D —b(n) grad(u*).D — a(n) grad(u*)) <0,

(10.15)

and the convexity of the set of 71,...,7,, D used in (10.15) follows from Lemma 19, and the convexity of
the functions a and %, consequence of their definition in (9.13).

One can go further in the analysis of the necessary conditions obtained, (10.9) or (10.15) for the case
N > 2, or (10.10) for the case N = 1, as they consist in minimizing linear functionals on convex sets defined
by linear constraints, and LAGRANGE multipliers can then be used for making these conditions more precise,
but I will not describe this question here as it is a more classical subject.

11. Conclusion

I have now completed the description of the particular subject of this course, which was to show how
questions of Homogenization appear in Optimal Design problems, following the work which I had pioneered
in the early 70s with Francois MURAT.

It is time now that I describe the intuitive ideas behind the necessary conditions of optimality obtained
by Konstantin LURIE, as they were explained to me in the early 80s by Jean-Louis ARMAND, after he
had visited LUR’IE in Leningrad, where he had been told about my work [Ta2]. As I do not read much, I
do not know where these ideas have appeared in print,”?> and although the idea is quite natural, it seems
hard to transform into sound mathematical estimates.”> Assume that we consider a problem involving two
(isotropic) materials, with imposed global proportions, and that we want to test the optimality of a given
classical design, with a smooth interface between the two materials; the classical idea, which goes back to
HADAMARD," consists in pushing the interface along its normal of variable amounts (with one constraint
related to the global proportion imposed), and computing the change in the cost function leads to a necessary
condition of optimality valid along the interface; LUR’IE’s first idea was to work away from the interface,
taking a small sphere imbedded in one material and an identical one imbedded in the other material and

72 Having learned about some ideas of LUR'IE, I do not need a published reference in order to attribute
these ideas to him (and I could not remember of anyone else claiming them as his/hers, although I have
not checked the work of Richard DUFFIN, as I mention in footnote 75). I may be alone in thinking that
if a new idea is only mentioned orally by someone who does not put it in print immediately it should be
attributed to this person, eventually with the names of those who would have found the same idea later but
independently, but not with the names of those who had heard about the idea and had put it in print under
their name, expecting to acquire fame for an idea which was not theirs.

73 1 wonder then if LUR'IE had been able to carry out these computations in a mathematician’s way, or if
he had just acquired convincing evidence that some formulas must hold, as nonmathematicians often do.

7 1 have already mentioned the precise analysis along this line of thought, carried out by Francois MURAT
and Jacques SIMON in [Mué&Si].
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exchanging their content, and computing the change in the cost function leads to a necessary condition of
optimality valid everywhere;”®> LUR'IE’s second idea was to consider ellipsoids of the same volume instead
of spheres, and his new necessary conditions of optimality were stronger; as he could now play with the
orientation of the ellipsoids and the ratio of the axes, he realized that it was better to take them very
slender, and in the limit he could understand that layered materials were important for his problem. As
I have mentioned earlier, this was a quite good extension of the ideas of PONTRYAGUIN to a setting of
partial differential equations, but not quite the right way to discover the analysis which I had performed
with Frangois MURAT, which was in some way a good extension of the better ideas of Laurence C. YOUNG.

The description of the method developed in this course, which corresponds in part to results which I had
obtained with Frangois MURAT in the 70s, is analogous to what I had already taught in 1983 at the CEA -
EDF - INRIA Summer course at Bréau-sans-Nappe, written in [Mu&Tal], and similar to what I had taught
again in 1986 in Durham [Tall]. I have included here much more of the basic results on Homogenization,
which I had only alluded to before, and actually the description of the original method which I had followed
with Francois MURAT in the early 70s had never appeared in print before, the reason being that it had been
greatly simplified by my method of oscillating test functions which extends easily to all (linear) variational
formulations; because I had decided to use a chronological point of view in this course, in order to show how
new ideas had appeared, it was natural that I should describe first our original ideas, even though I had
improved them later. I have added a few simplifications, which I had first written in 1995 in [Tal4], and
which were therefore not included in my previous courses on the subject.

As T have mentioned earlier, some people have led a campaign of misattribution of my ideas which seems
to have intensified around 1983. I may have inadvertently added to the confusion by forgetting to mention
the reference [Ta7] of my second method for obtaining bounds on effective coefficients,”® and I did not think
that it had any importance because I could not imagine that there were people ready to steal an idea that
they would have heard if they thought that it had not been written yet.”” Unfortunately, the confusion may
also have increased because Graeme MILTON called my method the “translation method”,”® and many have
used the possibility of quoting my method by this new name, without attributing it correctly.

I have been told that Alexandre GROTHENDIECK has analyzed in an unpublished book a few ways in
which misattribution of ideas is organized,” I have not read it and I cannot assert that my observations
on this unfortunate aspect of academic behaviour coincide or not with his own. This “book” had first been
mentioned to me in 1984 by Jean LERAY, who had pointed out that it was a good sign that my ideas were
stolen, and that many who steal others ideas would probably like that some of their ideas be stolen too, as it
would prove that they had had some of their own; Jean LERAY also had to face such an adverse behaviour,
but if some of his ideas had been “borrowed” by a famous mathematician who had shown enough creativity
of his own, for political reasons which were not too dissimilar to those which I had encountered myself more
than thirty years later, I have not found myself as fortunate and many who use my ideas without saying it
present such a distorted view that one does not have to be a very good student in Mathematics for performing

5 In the late 80s, my late colleague Richard DUFFIN had mentioned to me that he had worked on questions
of Optimal Design, and he used to call such necessary conditions a “principle of democracy”. Unfortunately,
as I knew about such questions, I failed to enquire about his precise results, so that I do not know if his
conditions were of the HADAMARD type, or the LUR’IE type, and I do not know when he had first obtained
such results.

76 The reason for not giving the reference of that 1977 conference in Versailles was that the organizers
had forgotten to send me a copy of the proceedings, and therefore I did not know the exact reference of my
article.

"7 Tt had not been my intention to hide the existence of a written reference in order to confront later those
who were ready to steal my ideas.

78 T do not find that name so well adapted to what my method is about. On the other hand, when I was
a student (in Paris in the late 60s), this precise term was used for describing a method of Louis NIRENBERG
for proving regularity of solutions of elliptic equations in smooth domains.

™ Laurent SCHWARTZ told me recently that the publication of GROTHENDIECK’s book, “Récoltes et
Semailles”, was not possible because of the numerous personal attacks that it contains. It is nevertheless
available on the Internet, in Russian translation!
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the small detective work of identifying those who have stolen ideas that they do not even understand well
enough.

This being said, I must say that I think that the worst sin of a teacher is to induce students in error,
and I do consider it actually a minor sin to forget to name the inventor of an idea,®® but a major sin to give a
bad explanation of what an idea is, or to forget mentioning an important idea on a subject. In consequence,
if someone would feel such a pressure for avoiding to mention the author of one of the ideas that I have
described in this course, it would be better if he/she would start by learning well the content of this course,
and then teach an improved version of it.
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