Day 9

Friday June 1, 2012

1 Containment Proofs

It is often necessary to prove that one set is contained in another. These are call containment proofs. This amount to proving

$$
\forall x \in A . x \in B
$$

That is, if x is in A then x is in B.
Question 1. What do you think the first line and last lines of such a proof should be?
Answer 1. Take $x \in A$ arbitrary
Then $x \in B$.
Recall we have defined the following operations so far:

- $A \cup B$ is the set of all elements that are in A or in B. That is:

$$
\forall x \cdot x \in A \cup B \longleftrightarrow(x \in A \vee x \in B)
$$

Therefore, how do you think you use the information that $x \in A \cup B$?
You do cases on whether $x \in A$ or $x \in B$.

- $A \cap B$ is the set of all elements that are in both A and B. That is:

$$
\forall x \cdot x \in A \cap B \longleftrightarrow(x \in A \wedge x \in B)
$$

How do we use the information that $x \in A \cap B$?
You know that $x \in A$ and $x \in B$
Example 1. For any set A and B we have

$$
A \cap B \subseteq A \cup B
$$

Proof. Take $x \in A \cap B$ arbitrary. So $x \in A$ and $x \in B$. In particular, $x \in A$, so $x \in A \cup B$.
For equality remember

$$
(A=B) \Longleftrightarrow A \subseteq B \text { and } B \subseteq A
$$

Therefore, there are two directions to $A=B$; one when you take an element of A and show it is in B, and the other when you take one in B and show it's in A. We will see more example of this soon, but we need a few more ways to build sets.

Question 2. What would it take to show that $\neg(A \subseteq B)$?
Answer 2. You would have to show an x that is in A but is not in B. We will see some examples later.

1.1 Comprehension

Say we have some logical stuff, and we wish to form a new set by taking all thing things that satisfy this. For instance, maybe I want to take all the natural numbers n that are even, ie. satisfy $\exists m \in \mathbb{N} .2 m=n$.

This is called comphrension, seperation, or specification depending on who you talk to. The notation that we use for this is called set builder notation. In this instance, we would write

$$
\{x \in \mathbb{N} \mid \exists m \in \mathbb{N} \cdot 2 m=n\}
$$

We read this as "the set of all natural numbers such that there exists an m in the naturals such that $2 m$ equal n."

Note, in this case we are carving a smaller set out of a larger set. When doing this comphrension, as with relative complements, it doesn't make sense without specifying a larger set.

In general, set builder notation looks like

$$
B=\{x \in A \mid P(x)\}
$$

where $P(x)$ is some formula with only x free. Then, to check membership in this set, one "loops through" the member of A,

```
New Set B = \emptyset;
foreach(x in A) {
    if ( P(x) ) {
        Put x in B;
        next;
    }
    else {
        next;
    }
}
```

Question 3. If $P(x)$ is always false, what would B be?
Answer 3. The emptyset!
Example 2. - $\{n \in \mathbb{N} \mid \exists m \in \mathbb{N} .2 m=n\}=$ even naturals

- $\{n \in \mathbb{Z} \mid n \geq 0\}=\mathbb{N}$
- $\{n \in \mathbb{R} \mid n=\lceil n\rceil\}=\mathbb{Z}$
- $\left\{n \in \mathbb{N} \mid(n \neq 1) \wedge \forall p_{1}, p_{2} \cdot n=p_{1} \cdot p_{2} \rightarrow\left(\left(p_{1}=1\right) \vee\left(p_{2}=1\right)\right)\right\}=$ set of primes.

1.2 Relative Complements

So, one may ask the question: What is the compliment of a set, ie. the set of all elements not in that set? What is the problem with asking this?

Well, the color blue is an object, and it is not a natural number, so would the color blue be in the complement on \mathbb{N} ? It's hard to peg down exactly the larger universe we are dealing with here, so it's not natural to take a compliment of a set.

To fix this problem we talk about the relative complement or set difference. The set difference, which we say A take away B or A minus B, is the things which are in A but not in B. We write this is

$$
A \backslash B
$$

(in $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$, this is \backslash setminus)
Logically, we write

$$
\forall x \cdot(x \in A \backslash B) \longleftrightarrow((x \in A) \wedge(x \notin B))
$$

Note: I used some 'slang' notation here. If $\neg(x \in B)$ we usually write $x \notin B$.

1.3 Examples of Containment Proofs

Example 3. 1. $(A \backslash B) \cup(C \backslash B)=(A \cup C) \backslash B$
Proof. (\subseteq) First, take $x \in(A \backslash B) \cup(C \backslash B)$. We do cases on whether $x \in A \backslash B$ or $x \in C \backslash B$.
Case 1: $x \in A \backslash B$. then $x \in A$ and $x \notin B$. So, as $x \in A$ we know $x \in A \cup C$ as this is a larger set. So $x \in(A \cup C) \backslash B$ as $x \notin B$, which is what we want.
Case 2: $x \in C \backslash B$, then $x \in C$ and $x \notin B$. So as $x \in C$ we know $x \in A \cup C$ as this is a larger set. So $x \in(A \cup C \backslash B$ as $x \notin B$, which is what we want.
(\supseteq) Take $x \in(A \cup C) \backslash B$. Then $x \in(A \cup C)$ and $x \notin B$. Do cases on whether $x \in A$ or $x \in C$.
Case 1: $x \in A$. Then $x \in A$ and $x \notin B$, so $x \in A \backslash B$. so $x \in(A \backslash B) \cup(C \backslash B)$.
Case 2: $x \in C$. Then $x \in C$ and $x \notin B$, so $x \in C \backslash B$. So $x \in(A \backslash B \cup(C \backslash B)$.
2. $(A \backslash B) \cap C=(A \cap C) \backslash B$.

Proof. (〇) First take $x \in(A \cap C) \backslash B$. Then $x \in A \cap C$ and $x \notin B$. So $x \in A$ and $x \in C$ and $x \notin B$. So, $x \in A \backslash B$, so we are done as x is also in C so $x \in(A \backslash B) \cap C$
(\subseteq) Take $x \in(A \backslash B) \cap C$. then $x \in A \backslash B$ and $x \in C$. So $x \in A$ and $x \in C$ but $x \notin B$. So $x \in A \cap C$. So $x \in(A \cap C) \backslash B$
3. $A \backslash(B \cup C) \subseteq A \backslash B$ but equality need not hold.

Proof. Take $x \in A \backslash(B \cup C)$. Then $x \in A$ and $x \notin B \cup C$. Then $x \notin B$, as otherwise x would be in $B \cup C$. So $x \in A \backslash B$.
Equality need not hold; For instance, if $A=\{1\} B=\emptyset$ and $C=A$, the lefthand side is empty, but the righthand side is $\{1\}$.
4. $\{n \in \mathbb{R} \mid n=\lceil n\rceil\}=\mathbb{Z}$

Proof. Take x in the left hand side. Then $x=\lceil x\rceil$. As $\lceil x\rceil$ is an integer by definition, $x \in \mathbb{Z}$.
Take x in the right hand side. x is an integer, so $x \in\lceil x\rceil$. So x is the left hand side.

2 Indexed Families

Let Λ be a set. We can talk about a family of sets X_{α} where each $\alpha \in \Lambda$. That is to say, that there are a bunch of sets X_{α} one for each $\alpha \in \Lambda$. Then, we can take the union of all of these sets by

$$
\bigcup_{\alpha \in \Lambda} X_{\alpha}
$$

And similarly the intersection

$$
\bigcap_{\alpha \in \Lambda} X_{\alpha}
$$

Think of these a lot like summations. For instance, if $\Lambda=[5]$ then really

$$
\bigcup_{\alpha \in[5]} X_{\alpha}=X_{1} \cup X_{2} \cup X_{3} \cup X_{4} \cup X_{5}
$$

If you know $x \in \bigcup_{\alpha \in \Lambda} X_{\alpha}$ then you know there is some $\alpha \in \Lambda$ such that $x \in X_{\alpha}$. Similarly, if you know $x \in \bigcap_{\alpha \in \Lambda} X_{\alpha}$ then you know that for every $\alpha \in \Lambda, x \in X_{\alpha}$.

Does this seem familiar?

$$
\forall x \cdot\left(\left(x \in \bigcup_{\alpha \in \Lambda} X_{\alpha}\right) \longleftrightarrow\left(\exists \alpha \in \Lambda \cdot x \in X_{\alpha}\right)\right)
$$

And

$$
\forall x \cdot\left(\left(x \in \bigcap_{\alpha \in \Lambda} X_{\alpha}\right) \longleftrightarrow\left(\forall \alpha \in \Lambda \cdot x \in X_{\alpha}\right)\right)
$$

Example 4.

$$
\text { Primes } \subseteq \bigcup p \in \text { Primes }\left\{n \in \mathbb{N} \mid n=p^{k} \text { for some } k \in \mathbb{N}\right\}
$$

Proof. Take x a prime number. Then $p=p^{1}$. Therefore $x \in\left\{n \in \mathbb{N} \mid n=x^{k}\right.$ for some $\left.k \in \mathbb{N}\right\}$

Example 5.

$$
\{1\}=\bigcap_{i \in \mathbb{N} ; i>1}\{n \in \mathbb{N} \mid \neg(i \mid n)\}
$$

Proof. (\subseteq) Take x in the left hand side. It must be 1 . We want to show that 1 is in the right hand side; so it suffices to show for every $i \in \mathbb{N} i>1$ that $1 \in\{n \in \mathbb{N} \mid \neg(i \mid 1)\}$. Let i be arbitrary natural larger than 1. Then i does not divide 1 , so 1 is in that set.
(ِ) Take $x \in \bigcap_{i \in \mathbb{N} ; i>1}\{n \in \mathbb{N} \mid \neg(i \mid n)\}$. Well, x is a natural, and we we know that for every $i \in \mathbb{N}$ where $i>1$ that $\neg(i \mid x)$. Suppose that x is natural and not equal to 1 for contradiction. If $x=0$ then we get an immediate contradiction because every i in \mathbb{N} divides 0 , in particular, 2 does.

Otherwise, $x>1$. Then, as we know for every $i \in \mathbb{N}$ where $i>1$ that $\neg(i \mid x)$, we know in particular $\neg(x \mid x)$. But this is a contradiction.

