Assignment 4

Friday June 8, 2012

1 Set Theory

This material is intended to be completed Tuesday June 5th. Here will fully cement our knowledge of basic operations on sets.

Problem 1. Prove or disprove the following:

- 1. $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$
- 2. $(A \setminus B) \cap C = A \setminus (B \cap C)$

Problem 2.

1. Prove:

$$\bigcap_{\alpha \in (A \cup B)} A_{\alpha} \subseteq \big(\bigcap_{\alpha \in A} A_{\alpha}\big) \cup \big(\bigcap_{\alpha \in B} A_{\alpha}\big)$$

2. Show equality need not hold.

Problem 3. Let A and B be sets.

1. Prove

$$\wp(A) \cup \wp(B) \subseteq \wp(A \cup B)$$

2. Show that equality need not hold.

2 Relations

2.1 Basics

This material is intended to be completed on Wednesday June 6th.

Problem 4. For each of the following relations, determine if they are reflexive, symmetric, and transitive; justify your answers

- 1. Define R on \mathbb{R} such that aRb if and only if ab = 0.
- 2. Define S on \mathbb{R} such that aSb if and only if $ab \neq 0$.
- 3. Define d on \mathbb{R} such that d(a, b) if and only if $|a b| < \frac{1}{2}$.
- 4. Define T on \mathbb{Z} such that nTm if and only if n m is even.

2.2 Equivalence Relations

This section is intended to be completed on Wednesday June 6th. Here we will take a look at equivalence relations.

Recall that we proved that a equivalence relation yields a partition of **equivalence classes**. That is, if \sim is an equivalence relation on S, then for every element $a \in S$ we have a corresponding equivalence class

$$[a]_{\sim} = \{ b \in S \mid a \sim b \}$$

Problem 5. In this problem we prove the converse of the above; that is, we prove that given a partition of a set we can "read off" an equivalence relation.

Let S be a set, and P a partition of S. Recall that P partitions S if and only if

- $A \in P \implies A \in \wp(S)$ ie. P is a set of subsets of A.
- $A, B \in P \implies A \cap B = \emptyset$, i.e. every two members of the partition are disjoint.
- $x \in S \implies \exists A \in P \cdot x \in P$, i.e. every member of S is in some element of the partition.
- 1. Give a partition of the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.
- 2. Fix S and P as above. Define a relation \sim on S by $a \sim b$ if and only if there is a $A \in P$ such that $a, b \in A$. Prove that the relation is an equivalence relation.
- 3. Consider the partition of \mathbb{N} into the following 3 sets:

$$\{0, 3, 6, 9, 12, 15, \ldots\} \\ \{1, 4, 7, 10, 13, 16, \ldots\} \\ \{2, 5, 8, 11, 14, 17, \ldots\}$$

Take \sim to be the corresponding relation that you get from this partition (from part 2). Give a necessary and sufficient condition for deciding if $a \sim b$ that does not refer to the partition. (i.e. $a \sim b$ if and only if ...)

Problem 6. Prove that each of the following are equivalence relations:

- 1. Define ~ on $\mathbb{Z}^+ \times \mathbb{Z}^+$ by $(a, b) \sim (c, d)$ if and only if ad = bc.
- 2. Define \cong on \mathbb{R} by $a \cong b$ if and only if $\frac{a}{b} \in \mathbb{Q}$.

2.3 Preview of Modular Arithmetic

This material is intended to be completed on Thursday June 7th. This is a preview section. Here, we will preview Modular Arithmetic, which we will talk about in great detail on Friday.

Problem 7. Prove

$$\forall n, d \in \mathbb{N}$$
. $\exists r, q \in \mathbb{N}$. $(n = dq + r) \land (0 \le r < n)$

Hint: Take d arbitrary and do induction on n; consider cases: what if d is smaller than n? What if it is larger?

Tomorrow in class we will prove that r and d are **unique**

Problem 8. Find the r and q for the given n and d.

- n = 5, d = 3.
 n = 123, d = 6.
- 3. $n = 10^{10}, d = 2.$

Definition 1. For a fixed n, the q in the theorem above is call the **quotient**, the d the **divisor**, and r the **remainder**. So, this says that any given a number and a divisor d, there is a unique quotient and remainder.

Problem 9. Fix $n \in \mathbb{N}$. Define a relation \sim where $p \sim q$ if and only if p and q have the same remainder when you divide by n. Prove this is an equivalence relation. Moreover, determine how many equivalence classes does this relation have (this will depend on n of course) and prove it.

Problem 10. What are the equivalence classes in the above defined relation when n = 2?