Assignment 4

Friday June 8, 2012

1 Set Theory

This material is intended to be completed Tuesday June 5th. Here will fully cement our knowledge of basic operations on sets.

Problem 1. Prove or disprove the following:

1. $(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$
2. $(A \backslash B) \cap C=A \backslash(B \cap C)$

Problem 2.

1. Prove:

$$
\bigcap_{\alpha \in(A \cup B)} A_{\alpha} \subseteq\left(\bigcap_{\alpha \in A} A_{\alpha}\right) \cup\left(\bigcap_{\alpha \in B} A_{\alpha}\right)
$$

2. Show equality need not hold.

Problem 3. Let A and B be sets.

1. Prove

$$
\wp(A) \cup \wp(B) \subseteq \wp(A \cup B)
$$

2. Show that equality need not hold.

2 Relations

2.1 Basics

This material is intended to be completed on Wednesday June 6th.
Problem 4. For each of the following relations, determine if they are reflexive, symmetric, and transitive; justify your answers

1. Define R on \mathbb{R} such that $a R b$ if and only if $a b=0$.
2. Define S on \mathbb{R} such that $a S b$ if and only if $a b \neq 0$.
3. Define d on \mathbb{R} such that $d(a, b)$ if and only if $|a-b|<\frac{1}{2}$.
4. Define T on \mathbb{Z} such that $n T m$ if and only if $n-m$ is even.

2.2 Equivalence Relations

This section is intended to be completed on Wednesday June 6th. Here we will take a look at equivalence relations.

Recall that we proved that a equivalence relation yields a partition of equivalence classes. That is, if \sim is an equivalence relation on S, then for every element $a \in S$ we have a corresponding equivalence class

$$
[a]_{\sim}=\{b \in S \mid a \sim b\}
$$

Problem 5. In this problem we prove the converse of the above; that is, we prove that given a partition of a set we can "read off" an equivalence relation.

Let S be a set, and P a partition of S. Recall that P partitions S if and only if

- $A \in P \Longrightarrow A \in \wp(S)$ ie. P is a set of subsets of A.
- $A, B \in P \Longrightarrow A \cap B=\emptyset$, ie. every two members of the partition are disjoint.
- $x \in S \Longrightarrow \exists A \in P . x \in P$, ie. every member of S is in some element of the partition.

1. Give a partition of the set $\{1,2,3,4,5,6,7,8,9,10\}$.
2. Fix S and P as above. Define a relation \sim on S by $a \sim b$ if and only if there is a $A \in P$ such that $a, b \in A$. Prove that the relation is an equivalence relation.
3. Consider the partition of \mathbb{N} into the following 3 sets:

$$
\begin{array}{r}
\{0,3,6,9,12,15, \ldots\} \\
\{1,4,7,10,13,16, \ldots\} \\
\{2,5,8,11,14,17, \ldots\}
\end{array}
$$

Take \sim to be the corresponding relation that you get from this partition (from part 2). Give a necessary and sufficient condition for deciding if $a \sim b$ that does not refer to the partition. (ie. $a \sim b$ if and only if ...)

Problem 6. Prove that each of the following are equivalence relations:

1. Define \sim on $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$by $(a, b) \sim(c, d)$ if and only if $a d=b c$.
2. Define \cong on \mathbb{R} by $a \cong b$ if and only if $\frac{a}{b} \in \mathbb{Q}$.

2.3 Preview of Modular Arithmetic

This material is intended to be completed on Thursday June 7th. This is a preview section. Here, we will preview Modular Arithmetic, which we will talk about in great detail on Friday.

Problem 7. Prove

$$
\forall n, d \in \mathbb{N} \cdot \exists r, q \in \mathbb{N} \cdot(n=d q+r) \wedge(0 \leq r<n)
$$

Hint: Take d arbitrary and do induction on n; consider cases: what if d is smaller than n ? What if it is larger?

Tomorrow in class we will prove that r and d are unique
Problem 8. Find the r and q for the given n and d.

1. $n=5, d=3$.
2. $n=123, d=6$.
3. $n=10^{10}, d=2$.

Definition 1. For a fixed n, the q in the theorem above is call the quotient, the d the divisor, and r the remainder. So, this says that any given a number and a divisor d, there is a unique quotient and remainder.

Problem 9. Fix $n \in \mathbb{N}$. Define a relation \sim where $p \sim q$ if and only if p and q have the same remainder when you divide by n. Prove this is an equivalence relation. Moreover, determine how many equivalence classes does this relation have (this will depend on n of course) and prove it.

Problem 10. What are the equivalence classes in the above defined relation when $n=2$?

