Problem. For

$$
f(x)=\cos ^{2}(x)-2 \sin (x)
$$

Find the following:-

1. All local maximums and minimums
2. The absolute maximum and minimum on the interval $[0,2 \pi]$.

Solution. Taking the first derivative, we have

$$
f^{\prime}(x)=-2 \cos (x) \sin (x)-2 \cos (x)
$$

After factoring, and setting to 0 , we have

$$
-2 \cos (x)(\sin (x)+1)=0
$$

Notice, $\cos (x)=0$ on $\frac{\pi}{2}+2 \pi n$ and $\frac{3 \pi}{2}+2 \pi n$. Another way to write this is $\frac{\pi}{2}+\pi n$. For the other zeros, we have to solve when $\sin (x)=-1$. This happens only at $\frac{3 \pi}{2}+2 \pi n$, which was already covered by the other zeros. Thus we conclude that the critical points are $\frac{\pi}{2}+\pi n$ for any $n \in \mathbb{Z}$.

Now we ask, which of these are positive, and which negative? To do this easily, we note that $\sin (x)+1$ is never negative, and -2 is always negative. Thus the entire expression will be negative when $\cos (x)$ is positive (Quadrants I and IV) and positive when $\cos (x)$ is negative (Quadrants II and III).

$$
0-\frac{\pi}{2}-\frac{3 \pi}{2}-2 \pi
$$

So we see that $\frac{3 \pi}{2}+2 \pi n$ is where there local maximums occurs and $\frac{\pi}{2}+2 \pi n$ is where the local minimums occur. Now these values will be calculated.

Now, we need to find the values at these two critcal points, and the endpoints.

$$
\begin{aligned}
f(0) & =1 \\
f\left(\frac{\pi}{2}\right) & =-2 \\
f\left(\frac{3 \pi}{2}\right) & =2 \\
f(2 \pi) & =1
\end{aligned}
$$

Therefore, the location of all local mins and maxs are $\left(\frac{3 \pi}{2}+2 \pi n, 2\right)$ and $\left(\frac{\pi}{2}+2 \pi n,-2\right)$. Also, we know that the absolute minimum is -2 and absolute maximum is 2 on the interval $[0,2 \pi]$ (and actually in the whole graph since it's periodic).

