Problem. A circle is growing with a radius increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. Find a function (of the radius r) that gives the rate of change of the area of the circle.

Solution. The area of a circle is given by $A=\pi r^{2}$. Therefore, differentiating both sides with respect to t we get

$$
\frac{d A}{d t}=2 \pi r \cdot \frac{d r}{d t}
$$

We are given that $\frac{d r}{d t}=3 \mathrm{~cm} / \mathrm{s}$. By substituting this in we get

$$
\frac{d A}{d t}=6 \pi r
$$

