Problem. Find the area bounded by the curves

$$
\begin{gathered}
y=x^{2} \\
y=4 x-x^{2}
\end{gathered}
$$

Solution. Here is the graph of this boundary:

We need to know where they intersect. So, we set them equal, and solve.

$$
\begin{aligned}
& x^{2}=4 x-x^{2} \\
\Longrightarrow & 2 x^{2}-4 x=0 \\
\Longrightarrow & 2 x(x-2)=0 \\
\Longrightarrow & x=0 \text { or } x=2
\end{aligned}
$$

Thus, the points of intersection are $(0,0)$ and $(2,4)$. We make slices perpendicular to the x-axis (for no other reason other than to avoid having to find the inverse of $y=4 x-x^{2}$) and note that $y=4 x-x^{2}$ is the top function. Thus, to find the area we integrate

$$
\begin{aligned}
\int_{0}^{2}\left(\left(4 x-x^{2}\right)-\left(x^{2}\right)\right) d x & =\int_{0}^{2}\left(4 x-2 x^{2}\right) d x \\
& =\left[2 x^{2}-\frac{2}{3} x^{3}\right]_{0}^{2} \\
& =2(2)^{2}-\frac{2}{3}(8) \\
& =8\left(1-\frac{2}{3}\right) \\
& =\frac{8}{3}
\end{aligned}
$$

