
Combinatorial Optimization

Problem set 7: solutions

1. Formulate and solve an integer program for the following scenario.

A trader of unusual objects is traveling with a caravan that begins in city A,
proceeds through cities B, C, and D, in order, and ends in city E. The trader
knows of some items in each city that can be purchased and later sold in other
cities. The following table lists these items, their weights, their current locations,
and the profit that can be gained by selling each item in later cities along the
caravan route.

Profit if sold in
Item Weight In city B C D E

1 43 A $200 $300 — $450
2 26 A $150 — $250 $375
3 14 B $85 $130 —
4 19 B $110 — $120
5 35 C $225 $340
6 23 D $260

The trader’s camel can carry a maximum weight of 60. What items should the
trader purchase, and where should the items be sold, in order to maximize profit
by the end of the caravan route?

. Solution. For 1 ≤ i ≤ 6 and j ∈ {B,C,D,E}, let xij ∈ {0, 1} denote whether item i is to
be sold in city j. Our objective is to maximize profit:

maximize 200x1B + 300x1C + 450x1E

+ 150x2B + 250x2D + 375x2E

+ 85x3C + 130x3D

+ 110x4C + 120x4E

+ 225x5D + 340x5E

+ 260x6E.

The constraints must ensure that each item is sold at most once:

x1B + x1C + x1E ≤ 1

x2B + x2D + x2E ≤ 1

x3C + x3D ≤ 1

x4C + x4E ≤ 1

x5D + x5E ≤ 1.

Furthermore, we cannot exceed the camel’s capacity on any leg of the journey:

43(x1B + x1C + x1E) + 26(x2B + x2D + x2E) ≤ 60 [A→ B]

43(x1C + x1E) + 26(x2D + x2E) + 14(x3C + x3D) + 19(x4C + x4E) ≤ 60 [B→ C]

43x1E + 26(x2D + x2E) + 14x3D + 19x4E + 35(x5D + x5E) ≤ 60 [C→ D]

43x1E + 26x2E + 19x4E + 35x5E + 23x6E ≤ 60. [D→ E]

The variable domains are xij ∈ {0, 1} for all 1 ≤ i ≤ 6 and all j ∈ {B,C,D,E}.

1



The following Maple worksheet solves this integer program.

> restart;

> with(Optimization);

[ImportMPS , Interactive,LPSolve,LSSolve,Maximize,Minimize,NLPSolve,

QPSolve]

> profit:=(x1b,x1c,x1e,x2b,x2d,x2e,x3c,x3d,x4c,x4e,x5d,x5e,x6e)->

200*x1b+300*x1c+450*x1e+150*x2b+250*x2d+375*x2e+85*x3c+130*x3d

+110*x4c+120*x4e+225*x5d+340*x5e+260*x6e;

profit := (x1b, x1c, x1e, x2b, x2d , x2e, x3c, x3d , x4c, x4e, x5d , x5e, x6e)→ 200 x1b

+ 300 x1c + 450 x1e + 150 x2b + 250 x2d + 375 x2e + 85 x3c + 130 x3d

+ 110 x4c + 120 x4e + 225 x5d + 340 x5e + 260 x6e

> sellonce:=[x1b+x1c+x1e<=1,x2b+x2d+x2e<=1,x3c+x3d<=1,x4c+x4e<=1,

x5d+x5e<=1];

sellonce := [x1b + x1c + x1e ≤ 1, x2b + x2d + x2e ≤ 1, x3c + x3d ≤ 1, x4c + x4e ≤ 1,

x5d + x5e ≤ 1]

> capacity:=[43*(x1b+x1c+x1e)+26*(x2b+x2d+x2e)<=60,

43*(x1c+x1e)+26*(x2d+x2e)+14*(x3c+x3d)+19*(x4c+x4e)<=60,

43*x1e+26*(x2d+x2e)+14*x3d+19*x4e+35*(x5d+x5e)<=60,

43*x1e+26*x2e+19*x4e+35*x5e+23*x6e<=60];

capacity := [43 x1b + 43 x1c + 43 x1e + 26 x2b + 26 x2d + 26 x2e ≤ 60,

43 x1c + 43 x1e + 26 x2d + 26 x2e + 14 x3c + 14 x3d + 19 x4c + 19 x4e ≤ 60,

43 x1e + 26 x2d + 26 x2e + 14 x3d + 19 x4e + 35 x5d + 35 x5e ≤ 60,

43 x1e + 26 x2e + 19 x4e + 35 x5e + 23 x6e ≤ 60]

> LPSolve(profit(x1b,x1c,x1e,x2b,x2d,x2e,x3c,x3d,x4c,x4e,x5d,x5e,

x6e),[op(sellonce),op(capacity)],’maximize’,assume=binary);[
1040, [x1b = 1, x1c = 0, x1e = 0, x2b = 0, x2d = 0, x2e = 0, x3c = 0, x3d = 1,

x4c = 1, x4e = 0, x5d = 0, x5e = 1, x6e = 1]
]

So the optimal strategy for the trader is to buy item 1 in city A; sell item 1 and buy items
3 and 4 in city B; sell item 4 and buy item 5 in city C; sell item 3 and buy item 6 in city D;
and sell items 5 and 6 in city E. This will yield a total profit of $1040.

2



2. A propositional formula with the Boolean operators ∧, ∨, and ¬, meaning AND, OR, and
NOT, respectively, can be defined inductively as follows:

(i) A literal (i.e., a variable or its negation) is a propositional formula.

(ii) If P and Q are propositional formulas, then the conjunction (P )∧(Q) is a propositional
formula.

(iii) If P and Q are propositional formulas, then the disjunction (P )∨ (Q) is a propositional
formula.

(iv) If P is a propositional formula, then the negation ¬(P ) is a propositional formula.

Recall that a propositional formula is in conjunctive normal form (CNF) if it is a conjunction
of disjunctions of literals. For example, the propositional formula

(x1 ∨ x̄2) ∧ (x̄2 ∨ x̄3) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x3)

is in conjunctive normal form.

(a) Prove that any propositional formula with the Boolean operators ∧, ∨, and ¬ can be
rewritten as an equivalent formula, on the same set of variables, in conjunctive normal
form. (Equivalent means that the two formulas have the same set of satisfying variable
assignments.)

(b) Suppose we introduce the Boolean operators ⊕ and →, having the meanings “exclu-
sive OR” and “implies,” respectively. Show that any propositional formula with the
Boolean operators ∧, ∨, ¬, ⊕, and → can be rewritten as an equivalent formula in
conjunctive normal form.

. Solution. Here is one approach. Suppose the variables in the given propositional formula F
are x1, . . . , xn. Construct a truth table for F , with one row for each of the 2n possible
assignments of truth values to the n variables.

For each assignment of truth values to the variables that makes F false, write a conjunc-
tion in which each variable appears positively if it is assigned the value TRUE and negatively
if it is assigned the value FALSE. For example, for n = 3, if the assignment x1 = TRUE,
x2 = FALSE, x3 = TRUE causes F to be false, then form the conjunction x1 ∧ x̄2 ∧ x3.

Next, negate each of these conjunctions, and then form the conjunction of the negations.
The resulting formula disallows exactly those variable assignments that do not satisfy F . For
instance, if the only two non-satisfying variable assignments are x1 = TRUE, x2 = FALSE,
x3 = TRUE and x1 = FALSE, x2 = FALSE, x3 = FALSE then the resulting formula is

¬(x1 ∧ x̄2 ∧ x3) ∧ ¬(x̄1 ∧ x̄2 ∧ x̄3).

Now apply De Morgan’s law to each of the negations:

(x̄1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x2 ∨ x3).

The resulting formula F ′ is in conjunctive normal form and is equivalent to F , because an
assignment of truth values to the variables satisfies F ′ if and only if it does not cause F to
be false.

Nothing in this construction depends on what Boolean operators appear in the for-
mula F , so it works for both parts (a) and (b).

3



3. Formulate and solve an integer program to determine truth values for the Boolean variables
x1, x2, x3, x4, and x5 so that the propositional formula

(x1 ⊕ x2) ∧ (x3 ∨ x4 ∨ x5) ∧ ¬[x3 ∧ (x4 ∨ x5)] ∧ (x̄4 ∨ x̄5)

∧ (x1 ∨ x4 ∨ x5) ∧ (x̄1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x̄2 ∨ x3 ∨ x5)

is satisfied, or determine that the formula is unsatisfiable.

. Solution. First we convert the formula to conjunctive normal form. The subformula x1⊕x2

is equivalent to (x1 ∨ x2) ∧ (x̄1 ∨ x̄2), and the subformula ¬[x3 ∧ (x4 ∨ x5)] is equivalent to

¬[(x3 ∧ x4) ∨ (x3 ∧ x5)] ≡ [¬(x3 ∧ x4)] ∧ [¬(x3 ∧ x5)] ≡ (x̄3 ∨ x̄4) ∧ (x̄3 ∨ x̄5)

by the distributive law and De Morgan’s laws. So the given formula is equivalent to

(x1 ∨ x2) ∧ (x̄1 ∨ x̄2) ∧ (x3 ∨ x4 ∨ x5) ∧ (x̄3 ∨ x̄4) ∧ (x̄3 ∨ x̄5) ∧ (x̄4 ∨ x̄5)

∧ (x1 ∨ x4 ∨ x5) ∧ (x̄1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x̄2 ∨ x3 ∨ x5).

An integer program to find a solution for this instance of the Boolean satisfiability problem
appears below.

maximize 0

subject to x1 + x2 ≥ 1

(1− x1) + (1− x2) ≥ 1

x3 + x4 + x5 ≥ 1

(1− x3) + (1− x4) ≥ 1

(1− x4) + (1− x5) ≥ 1

x1 + x4 + x5 ≥ 1

(1− x1) + x3 + x5 ≥ 1

x2 + x4 + x5 ≥ 1

(1− x2) + x3 + x5 ≥ 1

xi ∈ {0, 1} for 1 ≤ i ≤ 5.

The following Maple worksheet solves this integer program.

> restart;

> with(Optimization);

[ImportMPS , Interactive,LPSolve,LSSolve,Maximize,Minimize,NLPSolve,

QPSolve]

> clauses:=[x1+x2>=1,(1-x1)+(1-x2)>=1,x3+x4+x5>=1,(1-x3)+(1-x4)>=1,

(1-x3)+(1-x5)>=1,(1-x4)+(1-x5)>=1,x1+x4+x5>=1,(1-x1)+x3+x5>=1,

x2+x4+x5>=1,(1-x2)+x3+x5>=1];

clauses := [1 ≤ x1 + x2 , 0 ≤ 1− x1 − x2 , 1 ≤ x3 + x4 + x5 , 0 ≤ 1− x3 − x4 ,

0 ≤ 1− x3 − x5 , 0 ≤ 1− x4 − x5 , 1 ≤ x1 + x4 + x5 , 0 ≤ −x1 + x3 + x5 ,

1 ≤ x2 + x4 + x5 , 0 ≤ −x2 + x3 + x5 ]

> LPSolve(0,clauses,assume=binary);

[0, [x1 = 0, x2 = 1, x3 = 0, x4 = 0, x5 = 1]
]

So an assignment of truth values to variables that satisfies the given formula is x1 = FALSE,
x2 = TRUE, x3 = FALSE, x4 = FALSE, x5 = TRUE.

[The other satisfying assignment is x1 = TRUE, x2 = FALSE, x3 = FALSE, x4 = FALSE,
x5 = TRUE.]

4



4. Is there a maximum possible (Euclidean) distance between the optimal solution of an integer
program and the optimal solution of its LP relaxation? If so, give an upper bound for this
distance and prove that it is an upper bound. If not, show how to construct, given any
positive real number M , an integer program whose optimal solution is at least distance M
from the optimal solution of its LP relaxation.

. Solution. No, there is no maximum possible distance between the optimal solution of an
integer program and the optimal solution of its LP relaxation.

Here is one construction. Let M > 0. Let N be an integer greater than or equal to M
(for example, N = dMe). Consider the integer program

maximize x1 + 4Nx2

subject to x1 + 2Nx2 ≤ N

x1 ≥ 0, x2 ≥ 0

x1, x2 integer.

The LP relaxation is
maximize x1 + 4Nx2

subject to x1 + 2Nx2 ≤ N

x1 ≥ 0, x2 ≥ 0.

The feasible region of the LP relaxation is shaded in the figure below. Note that the
corners of the feasible region are (0, 0), (N, 0), and (0, 1/2). Two level curves are drawn:
x1 + 4Nx2 = N and x1 + 4Nx2 = 2N .

x1

x2

(0, 0) (N, 0)

(0, 1/2)

(0, 1/4)

x1 + 4Nx2 = 2N

x1 + 4Nx2 = N
x1 + 2Nx2 ≤ N

The (unique) optimal solution to the LP relaxation is x1 = 0, x2 = 1/2, with objective
value 2N . This can be seen to be optimal by multiplying the constraint by 2:

2x1 + 4Nx2 ≤ 2N.

So, since x1 and x2 are nonnegative, this implies

x1 + 4Nx2 ≤ 2x1 + 4Nx2 ≤ 2N.

Hence a solution that achieves the objective value 2N must be optimal.
Note that the domain x1 ≥ 0 and the constraint x1 + 2Nx2 ≤ N together imply

2Nx2 ≤ N , that is, x2 ≤ 1/2. So all feasible integer solutions must have x2 = 0. Therefore
the optimal integer solution is x1 = N , x2 = 0, having objective value N .

The x1-coordinates of these two solutions differ by N ≥M , so certainly their distance
apart is at least M .

5



5. Solve the following integer program using the branch-and-bound technique.

maximize 2x1 + 3x2

subject to x1 + x2 ≤ 6

2x1 + 4x2 ≤ 17

x1 ≥ 0, x2 ≥ 0

x1, x2 integer.

. Solution. The feasible region of the LP relaxation appears below.

x1

1 2 3 4 5 6 7 8 9

x2

1

2

3

4

5

6
x
1 +

x
2 ≤

6

2x
1 + 4x

2 ≤ 17

(0, 0)

(6, 0)

(3.5, 2.5)

(0, 4.25)

node 0

This will correspond to node 0 of our branch-and-bound tree. We solve the LP relaxation
by evaluating the objective function at the corners of the feasible region.

Corner Obj. value

(0, 0) 0
(6, 0) 12

(3.5, 2.5) 14.5
(0, 4.25) 12.75

So the optimal solution to the LP relaxation is x1 = 3.5, x2 = 2.5, with objective value 14.5.
Unfortunately, this is not a feasible solution to the integer program, because neither

x1 nor x2 has an integer value. So we will choose a variable with a non-integer value and
branch on it.

If we choose to branch on x1 first, we will build the following branch-and-bound tree.
The nodes are numbered in the order they are created. The top line of each node label spec-
ifies the constraint that has been added to the LP relaxation (in addition to the constraints
for nodes higher up in the tree), and the bottom line gives the optimal solution and optimal
objective value for the corresponding linear program with the added constraints.

6



LP relaxation
(3.5, 2.5): 14.5

node 0

x1 ≤ 3
(3, 2.75): 14.25

node 1
x1 ≥ 4

(4, 2): 14

node 2

x2 ≤ 2
(3, 2): 12

node 3
x2 ≥ 3

(2.5, 3): 14

node 4

x1 ≤ 2
(2, 3.25): 13.75

node 5
x1 ≥ 3

INFEASIBLE

node 6

We begin by excluding the fractional value x1 = 3.5 by adding one of two new con-
straints to the LP relaxation: x1 ≤ 3 or x1 ≥ 4. Any feasible integer solution must satisfy
one or the other of these two constraints. This gives us two new LPs to solve, represented
by nodes 1 and 2 in the branch-and-bound tree above. The feasible regions for these LPs
are shown below.

x1

1 2 3 4 5 6 7 8 9

x2

1

2

3

4

5

6
x
1 +

x
2 ≤

6

2x
1 + 4x

2 ≤ 17

(0, 0)

(3, 0)

(3, 2.75)

(0, 4.25)

node 1

(4, 0) (6, 0)

(4, 2)

node 2

The objective function has already been evaluated at some of the corners in this picture;
the objective values at the new corners are given in the table below.

Corner Obj. value

(3, 0) 6
(3, 2.75) 14.25

(4, 0) 8
(4, 2) 14

So the optimal solution to the LP for node 1 is x1 = 3, x2 = 2.75, with objective value 14.25,
and the optimal solution to the LP for node 2 is x1 = 4, x2 = 2, with objective value 14.

7



Now, node 1 has the larger optimal objective value, but in the optimal solution the
value of x2 is not an integer. So we must branch on x2 next. We exclude the fractional
value x2 = 2.75 by adding one of two new constraints: x2 ≤ 2 or x2 ≥ 3. This gives us two
new LPs, represented by nodes 3 and 4 in the branch-and-bound tree. The feasible regions
for these LPs are shown below.

x1

1 2 3 4 5 6 7 8 9

x2

1

2

3

4

5

6
x
1 +

x
2 ≤

6

2x
1 + 4x

2 ≤ 17

(0, 0)

(3, 0)

(3, 2)

(0, 2)

node 3

(0, 3) (2.5, 3)

(0, 4.25)

node 4

The objective values at the new corners are given in the table below.

Corner Obj. value

(3, 2) 12
(0, 2) 6

(2.5, 3) 14
(0, 3) 9

So the optimal solution to the LP for node 3 is x1 = 3, x2 = 2, with objective value 12, and
the optimal solution to the LP for node 4 is x1 = 2.5, x2 = 3, with objective value 14.

Now, at this point we have a feasible integer solution with objective value 14 (the
optimal solution to the LP for node 2), and at the other leaf nodes (nodes 3 and 4) the
optimal objective values for the LPs are no greater than 14, so we can conclude that the
solution x1 = 4, x2 = 2 found at node 2 is optimal, because there cannot be a better solution
anywhere else in the branch-and-bound tree.

[In fact, with slightly more clever reasoning, we could have stopped earlier: Because
the objective function coefficients are integers, the objective value of any integer solution
must be an integer. Therefore, the bound of 14.25 at node 1 really means that the best
possible objective value for an integer solution below that node is b14.25c = 14, so we cannot
possibly do better than the objective value 14 achieved by the integer solution at node 2. So
we didn’t really need to search below node 1. And actually, we knew at the very beginning
(at node 0) that no integer solution could have objective value better than 14, because the
optimal objective value of the LP relaxation was 14.5, so the objective value of any integer
solution can be no greater than b14.5c = 14.]

If we want to make sure that we have all optimal solutions to the integer program,
we must continue exploring below node 4, because there may be another integer solution
with objective value as good as 14 in that part of the tree. So we explore below node 4
by branching on x1. We exclude the fractional value x1 = 2.5 by adding one of two new
constraints: x1 ≤ 2 or x1 ≥ 3. This gives us two new LPs, represented by nodes 5 and 6 in

8



the branch-and-bound tree. The feasible regions of these new LPs are shown below. Note
that the constraint x1 ≥ 3, in conjunction with the constraints added in higher nodes in the
branch-and-bound tree, makes the LP infeasible (because no part of the feasible region for
node 4 has x1 ≥ 3).

x1

1 2 3 4 5 6 7 8 9

x2

1

2

3

4

5

6
x
1 +

x
2 ≤

6

2x
1 + 4x

2 ≤ 17

(0, 3) (2, 3)

(2, 3.25)

(0, 4.25)

node 5

The objective values at the new corners are given in the table below.

Corner Obj. value

(2, 3) 13
(2, 3.25) 13.75

So the optimal solution to the LP for node 5 is x1 = 2, x2 = 3.25, with objective value 13.75.
Now we know that the integer solution found at node 2 is the unique optimal integer solution,
because all of the other leaves in the branch-and-bound tree (nodes 3, 5, and 6) either have
strictly smaller bounds or are infeasible.

Alternatively, at the beginning, after node 0, we could have chosen to branch on x2

rather than x1. In that case, we would have built the following branch-and-bound tree.

LP relaxation
(3.5, 2.5): 14.5

node 0

x2 ≤ 2
(4, 2): 14

node 1′

x2 ≥ 3
(2.5, 3): 14

node 2′

x1 ≤ 2
(2, 3.25): 13.75

node 3′

x1 ≥ 3
INFEASIBLE

node 4′

In this case, we begin by excluding the fractional value x2 = 2.5 by adding one of
two new constraints: x2 ≤ 2 or x2 ≥ 3. This gives us two new LPs, represented by nodes
1′ and 2′ in the branch-and-bound tree. The feasible regions of these new LPs are shown
below.

9



x1

1 2 3 4 5 6 7 8 9

x2

1

2

3

4

5

6
x
1 +

x
2 ≤

6

2x
1 + 4x

2 ≤ 17

(0, 0)

(6, 0)

(4, 2)

(0, 2)

node 1′

(0, 3) (2.5, 3)

(0, 4.25)

node 2′

The objective values of the corners not evaluated for node 0 are given in the table below.

Corner Obj. value

(4, 2) 14
(0, 2) 6

(2.5, 3) 14
(0, 3) 9

So the optimal solution to the LP for node 1′ is x1 = 4, x2 = 2, with objective value 14, and
the optimal solution for the LP for node 2′ is x1 = 2.5, x2 = 3, also with objective value 14.

At node 1′ we have an integer solution with objective value 14, and at the other leaf
node, node 2′, we have a bound of 14, meaning that no solution below that node in the tree
can have an objective value better than 14. Hence the solution x1 = 4, x2 = 2 is optimal.

However, as before, if we want to make sure we have all optimal integer solutions, then
we can continue to explore below node 2′. We branch on x1, excluding the fractional value
x1 = 2.5 by adding one of two new constraints: x1 ≤ 2 or x1 ≥ 3. This gives us two new
LPs, represented by the nodes 3′ and 4′ in the branch-and-bound tree above. The feasible
regions of these new LPs are shown below. Note that the LP for node 4′ is infeasible.

x1

1 2 3 4 5 6 7 8 9

x2

1

2

3

4

5

6
x
1 +

x
2 ≤

6

2x
1 + 4x

2 ≤ 17

(0, 3) (2, 3)

(2, 3.25)

(0, 4.25)

node 3′

10



The objective values at the new corners are given in the table below.

Corner Obj. value

(2, 3) 13
(2, 3.25) 13.75

So the optimal solution to the LP for node 3′ is x1 = 2, x2 = 3.25. Now we know that
the integer solution found at node 1′ is the unique optimal integer solution, because all of
the other leaves in the branch-and-bound tree (nodes 3′ and 4′) either have strictly smaller
bounds or are infeasible.

6. In the CUBIC SUBGRAPH problem, the input is a graph G = (V,E), and the question to be
answered is whether there exists a subgraph H = (V ′, E′) of G that is cubic, meaning that
every vertex in the graph H has degree 3. Describe how to formulate an integer program to
solve this problem, given a graph G = (V,E). Justify that your formulation correctly solves
the problem.

. Solution. For each vertex v ∈ V , let xv ∈ {0, 1} indicate whether v ∈ V ′. For each edge
e ∈ E, let ye ∈ {0, 1} indicate whether e ∈ E′. For a vertex v ∈ V , let Ev = { e ∈ E : v ∈ e }
denote the set of edges incident upon v. The following integer program can be used to solve
this problem.

maximize 0

subject to
∑
v∈V

xv ≥ 1∑
e∈Ev

ye = 3xv for all v ∈ V

xv ∈ {0, 1} for all v ∈ V

ye ∈ {0, 1} for all e ∈ E.

The objective function is 0 because we are not minimizing or maximizing anything; we are
merely searching for a feasible solution (which corresponds to a cubic subgraph of G). The
first constraint ensures that not all of the variables xv will be 0, so that V ′ will be nonempty.
The remaining constraints ensure that if xv = 1 then exactly three edges incident upon v are
chosen to be in E′ (so v has degree 3 in H), and if xv = 0 then no edges incident upon v are
chosen to be in E′. Therefore every feasible solution to this integer program corresponds to
a cubic subgraph of G, and vice versa, so this integer program will be feasible if and only if
G has a cubic subgraph.

11


