
Combinatorial Optimization
Problem set 5: solutions

1. Consider the problem of determining the least expensive way to complete a project by a
given deadline. When the linear program is formulated, the objective function has a constant
term. For instance, if activities A, B, and C have usual times of 8, 5, and 7 days and can be
sped up at a cost of $200, $150, and $225 per day, respectively, then the objective function
(i.e., the total speedup cost) is

200(8− dA) + 150(5− dB) + 225(7− dC),

where dA, dB, and dC are duration variables for the three activities. When expanded, this
objective function becomes

3925− 200dA − 150dB − 225dC,

which has the constant term 3925. Describe a way to handle an objective function with a
constant term in the simplex algorithm.

. Solution. Here are three possible ways to handle an objective function with a constant
term in the simplex algorithm. For an illustration, we will use the following maximization
LP (because we discussed the simplex algorithm as a maximization algorithm):

maximize 3x1 + 5x2 + 17

subject to x1 + x2 ≤ 8

2x1 + x2 ≤ 12

x1 ≥ 0, x2 ≥ 0.

1. Replace the constant term with a variable K and add an equality constraint to force
K to have the correct value:

maximize 3x1 + 5x2 +K

subject to x1 + x2 ≤ 8

2x1 + x2 ≤ 12

K = 17

x1 ≥ 0, x2 ≥ 0, K ≥ 0.

2. In the equation represented by the objective row in the initial simplex tableau, the
constant term will appear on the right-hand side. In the example here, we have z =
3x1 + 5x2 + 17, so the equation represented by the objective row in the initial simplex
tableau will be −3x1−5x2 +z = 17. So, when writing the initial simplex tableau, enter
the constant term at the top of the RHS column (instead of zero):

x1 x2 s1 s2 z RHS

−3 −5 0 0 1 17

1 1 1 0 0 8
2 1 0 1 0 12

3. Ignore the constant term entirely during the simplex algorithm and just remember to
add it to the optimal objective value at the end. For the example, solve the following
linear program instead, and then add 17 to the optimal objective value:

maximize 3x1 + 5x2

subject to x1 + x2 ≤ 8

2x1 + x2 ≤ 12

x1 ≥ 0, x2 ≥ 0.
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2. What is the greatest possible number of critical paths in a project with n activities? Describe
a family of examples for infinitely many values of n that attain this number of critical paths.

. Solution. Consider a project with n activities. We shall make the following assumptions:
First, there are no circular dependencies, so that the CPM network contains no directed
cycles (i.e., it is a directed acyclic graph). This is a reasonable assumption, because if a
project contains circular dependencies among its activities then it can never be completed.
Second, all project durations are positive (specifically, nonzero). This is also a reasonable
assumption for real-world projects.

Define an activity chain to be a sequence (a1, a2, . . . , ar) of activities such that ai is an
immediate prerequisite of ai+1 for all 1 ≤ i < r. Then a critical path is an activity chain
such that the total duration of a1, a2, . . . , ar is maximized. Observe that because we are
assuming that all project durations are positive, no proper subsequence of a critical path is
itself a critical path.

Partition the set of activities as follows: Let A1 be the set of all activities having
no prerequisites, and for i ≥ 2 let Ai be the set of all activities not in

⋃i−1
j=1Aj all of

whose prerequisites are in
⋃i−1

j=1Aj . Let k be the number of nonempty subsets of activities
constructed in this way (so A1, A2, . . . , Ak is a partition of the set of activities). Because the
project has no circular dependencies, every activity is an element of one of these subsets Ai.
Also, for i ≥ 2, every activity in Ai has at least one immediate prerequisite in Ai−1 (otherwise

all of its prerequisites would be in
⋃i−2

j=1Aj , so it would not be in Ai; it would be in Aj for
some j < i).

Lemma. Let ai ∈ Ai and aj ∈ Aj for some j ≥ i + 2. If there exists a critical path P in
which ai is immediately followed by aj , then for every i < h < j there exists ah ∈ Ah such
that no critical path includes both ai and ah.

Proof. For h = j − 1, j − 2, . . . , i+ 1, let ah be an immediate predecessor of ah+1 in Ah+1.
Suppose for the sake of contradiction that there exists i < h < j such that both ai and ah
are included in some critical path P ′. But then the portion of P ending with ai, followed
by the portion of P ′ from ai to ah, followed by (ah+1, ah+2, . . . , aj), followed by the portion
of P after aj , yields an activity chain, and the total duration of this activity chain is strictly
larger than that of P because P is a proper subsequence. This contradicts the fact that P
is a critical path.

Lemma. If a is the last activity in a critical path P , then no critical path contains a followed
by another activity a′.

Proof. Otherwise appending a′ to P would produce an activity chain with strictly larger
total duration.

Corollary. The number of critical paths is bounded above by |A1| · |A2| · · · · · |Ak|.

Proof. Observe that every critical path has the form of a sequence of activities produced by
choosing one activity from A1, followed by zero or one activity from A2, followed by zero or
one activity from A3, . . . , followed by zero or one activity from Ak. (Not all such sequences
of activities are critical paths, or even just paths in the CPM network, but all critical
paths have this form.) So every critical path (along with possibly some other sequences of
activities) can be constructed as a sequence S of activities in the following way:

0. Initialize S to be the empty sequence.

1. Choose one activity a1 ∈ A1 and append a1 to S.

2. Optionally, choose one activity a2 ∈ A2 and append a2 to S.

3. Optionally, choose one activity a3 ∈ A3 and append a3 to S.

...

k. Optionally, choose one activity ak ∈ Ak and append ak to S.
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There are |A1| ways to perform step 1. For 2 ≤ i ≤ k, there are |Ai| + 1 ways to perform
step i (one of which is to skip the step, i.e., choose zero activities from Ai). But by the two
preceding lemmas, if, given a partially constructed sequence S after steps 1 through i − 1,
there is a way to extend S to a critical path by skipping step i, then there exists at least one
activity ai ∈ Ai such that appending ai to S cannot produce a critical path. Therefore, given
any combination of ways to perform the first i−1 steps, there are at most (|Ai|+1)−1 = |Ai|
ways to perform the ith step that will lead to a critical path. Hence there are no more than
|A1| · |A2| · · · · · |Ak| critical paths in all.

Now observe that
∑k

i=1|Ai| = n, because each activity is in exactly one of the subsets Ai.
So the question becomes: How can n be expressed as a sum of positive integers having the
greatest possible product?

Theorem. For a fixed positive integer value of n, if
∑k

i=1 ci = n for positive integers ci,

then the maximum value of
∏k

i=1 ci is
1, if n = 1;
3m, if n = 3m;
4 · 3m−1, if n = 3m+ 1 ≥ 4;
2 · 3m, if n = 3m+ 2.

Proof. The cases n ∈ {1, 2, 3, 4} are easy to verify by inspection.
If n ≥ 5, then 2(n − 2) = 2n − 4 > n, so writing n as the single-term sum n is not

optimal, because writing it as 2 + (n − 2) produces a strictly larger product. Suppose n
is written as a sum c1 + c2 + · · · + ck of positive integers, with k ≥ 2. If any term ci is
greater than 4, then ci can be replaced by a sum of smaller positive integers whose product
is greater than ci [e.g., 2 + (ci − 2)], so such a sum cannot be optimal. If any term ci is 1,
then that term can be removed and another term increased by 1, which will strictly increase
the product, so a sum containing the term 1 cannot be optimal either. If the sum contains
three terms that are 2, then those terms can be replaced by 3+3, which will strictly increase
the product (because 3× 3 > 2× 2× 2), so a sum containing three or more 2’s also cannot
be optimal. Lastly, if any term ci is 4, then that term can be replaced by 2 + 2 without
changing the product. Therefore, there is an optimal sum consisting solely of 2’s and 3’s,
with no more than two 2’s. Consequently, for n ≥ 5, an optimal sum is

3 + · · ·+ 3︸ ︷︷ ︸
m terms

, if n = 3m;

2 + 2 + 3 + · · ·+ 3︸ ︷︷ ︸
m−1 terms

, if n = 3m+ 1;

2 + 3 + · · ·+ 3︸ ︷︷ ︸
m terms

, if n = 3m+ 2.

Thus the number of critical paths in a project with n activities is bounded by the expression
in this theorem. Moreover, this bound can be achieved as follows.

• For n = 1, any project with a single activity (necessarily having no prerequisites) has
one critical path.

3



• For n = 3m, a project of the following form has 3m critical paths.

Immediate
Activity prerequisites Duration

a1 — 1
a2 — 1
a3 — 1

a4 a1, a2, a3 1
a5 a1, a2, a3 1
a6 a1, a2, a3 1

a7 a4, a5, a6 1
a8 a4, a5, a6 1
a9 a4, a5, a6 1

...
...

...

a3m−2 a3m−5, a3m−4, a3m−3 1
a3m−1 a3m−5, a3m−4, a3m−3 1
a3m a3m−5, a3m−4, a3m−3 1

The CPM network of a project of this form is shown below.

a 1

a2

a
3

a 4

a5

a
6

a 3
m
−2

a3m−1

a
3m

. . .

All activities have duration 1, and therefore, as a consequence of the structure of the
project, every activity is critical. Hence any path from the beginning of the project
to the end is a critical path. There are m “layers” in this CPM network: these are
the sets A1 = {a1, a2, a3}, A2 = {a4, a5, a6}, . . . , Am = {a3m−2, a3m−1, a3m}. Each of
these layers contains three activities, so there are 3m critical paths.
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• For n = 3m+ 1 ≥ 4, a project of the following form has 4 · 3m−1 critical paths.

Immediate
Activity prerequisites Duration

a1 — 1
a2 — 1

a3 a1, a2 1
a4 a1, a2 1

a5 a3, a4 1
a6 a3, a4 1
a7 a3, a4 1

a8 a5, a6, a7 1
a9 a5, a6, a7 1
a10 a5, a6, a7 1

a11 a8, a9, a10 1
a12 a8, a9, a10 1
a13 a8, a9, a10 1

...
...

...

a3m−1 a3m−4, a3m−3, a3m−2 1
a3m a3m−4, a3m−3, a3m−2 1
a3m+1 a3m−4, a3m−3, a3m−2 1

The CPM network of a project of this form is shown below.

a 1

a
2

a 3

a
4

a 5

a6

a
7

a 8

a9

a
10

a 3
m
−1

a3m

a
3m

+
1

. . .

Again, every activity is critical, so any path from the beginning of the project to the
end is a critical path. There are m+1 “layers” in this CPM network; the first two layers
contain two activities each, and the remaining m−1 layers contain three activities each,
so there are 4 · 3m−1 critical paths.
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• For n = 3m+ 2, a project of the following form has 2 · 3m critical paths.

Immediate
Activity prerequisites Duration

a1 — 1
a2 — 1

a3 a1, a2 1
a4 a1, a2 1
a5 a1, a2 1

a6 a3, a4, a5 1
a7 a3, a4, a5 1
a8 a3, a4, a5 1

a9 a6, a7, a8 1
a10 a6, a7, a8 1
a11 a6, a7, a8 1

...
...

...

a3m a3m−3, a3m−2, a3m−1 1
a3m+1 a3m−3, a3m−2, a3m−1 1
a3m+2 a3m−3, a3m−2, a3m−1 1

The CPM network of a project of this form is shown below.

a 1

a
2

a 3

a4

a
5

a 6

a7

a
8

a 3
m

a3m+1

a
3m

+
2

. . .

Again, every activity is critical, so any path from the beginning of the project to the
end is a critical path. There are m + 1 “layers” in this CPM network; the first layer
contains two activities, and the remaining m layers contain three activities each, so
there are 2 · 3m critical paths.

3. Consider a directed graph G = (V,E) with nonnegative edge weights cij ≥ 0 and specified
nodes s, t ∈ V . For each node i ∈ V , let πi be the distance of a shortest (directed) path
from i to t. (Assume that every node i has such a path to t.) Show that π is an optimal
feasible solution to the dual of the node-arc LP formulation for the shortest path problem
on G from s to t. Is the assumption cij ≥ 0 necessary?

. Solution. The dual of the node-arc LP formulation for the shortest path problem on G
from s to t is as follows:

maximize πs − πt
subject to πi − πj ≤ cij for all arcs (i, j) ∈ E

all variables unrestricted.

For each node i ∈ V , let πi be the shortest distance from i to t. Then for each arc (i, j) ∈ E,
the constraint πi ≤ πj + cij is satisfied, because the shortest distance from i to t can-
not be greater than the shortest distance from j to t plus the length of the arc joining
i and j (by the triangle inequality). In more detail, we know that there exists a directed
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path (j = w0, w1, w2, . . . , wk = t) from j to t of total distance
∑k−1

p=0 cwpwp+1 = πj . So
(i, j, w1, w2, . . . , wk−1, t) is a directed walk from i to t of total distance cij +πj . This implies
that there is a directed path from i to t of total distance no greater than cij + πj , which
means that the shortest distance πi from i to t cannot be greater than this. Therefore, all
of the constraints are satisfied by this solution π. Clearly the domains place no restrictions
on π, so π is a feasible solution.

Now consider any (directed) path P = (s = v0, v1, v2, . . . , vl−1, vl = t) from s to t. Add
the corresponding constraints:

πs − πv1 ≤ csv1

πv1 − πv2 ≤ cv1v2

πv2 − πv3 ≤ cv2v3
. . .

...

πvl−1
− πt ≤ cvl−1t

πs − πt ≤
l−1∑
p=0

cvpvp+1
.

The expression on the right-hand side of the resulting inequality is the length of the path P .
Therefore, the objective value πs − πt cannot be greater than the length of P . Since P was
an arbitrary path from s to t, the value of πs − πt cannot be greater than the length of any
path from s to t; in particular, it cannot be greater than the length of a shortest path from
s to t. So the solution π given in this problem, in which πs is the length of a shortest path
from s to t and πt is zero, must be optimal.

No part of the reasoning above used the assumption that cij ≥ 0, so this assumption
is not necessary. However, if there is a cycle with negative total weight

[
say, (v0, v1, v2, . . . ,

vk−1, vk = v0) with
∑k−1

i=0 cvivi+1
= C < 0

]
, then we can add the corresponding constraints

to get

πv0 − πv1 ≤ civ1

πv1 − πv2 ≤ cv1v2

πv2 − πv3 ≤ cv2v3
. . .

...

πvk−2
− πvk−1

≤ cvk−2vk−1

−πv0 + πvk−1
≤ cvk−1v0

0 ≤ C,

which is a contradiction, so the dual LP is infeasible. (Note that this is a consequence of
the fact that the primal is unbounded.)

Therefore the statement in the problem is still true and meaningful when the assumption
cij ≥ 0 is removed, as long as there are no cycles with negative total weight.
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4. Use Dijkstra’s algorithm (or the primal-dual algorithm) to find a shortest path from s to t
in the following undirected graph.

s

a

b

c

d

e

f

g

t

8

9

10

9

9

6

8

11

7

4

10

8

7

. Solution. We show the iterations of Dijkstra’s algorithm in the figures below. In each figure,
the edge weights are circled, the vertex labels (denoting the tentative distance from s) are
shown in red, the current set W of vertices whose distances from s have definitely been
determined is outlined in light blue, and the vertex x outside W with the smallest vertex
label is boxed in green.
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(Note: At this stage c and d tie for the minimum vertex label. Here we chose x = d
arbitrarily, but it is equally valid to choose x = c.)
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Now all vertices are included in W , so the labels give the shortest distance from s
for each vertex. To find a shortest path from s to any vertex, we identify the admissible
edges, which are those edges whose weight equals the difference of the vertex labels at their
endpoints. The admissible edges are shown as double green lines in the figure below.
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From this figure, we see that there are four shortest paths from s to t: s–a–c–e–t, s–a–c–f–t,
s–b–c–e–t, and s–b–c–f–t. Each of these paths has total weight 34.

Alternatively, we can use the primal-dual algorithm directly. The figures below show
the iterations of the primal-dual algorithm. In each figure, the values of the dual solution π
are written in green above each vertex, the admissible edges J are drawn as double green
lines, the set W of vertices from which t is reachable using only edges in J is outlined in light
blue, the values of the optimal solution π̄ to the dual of the restricted primal are written
in red below each vertex, the candidate edges K are drawn with red hash marks, and the
values of cij−(πi−πj) are written in blue below the candidate edges. The value of θ1, which
is the minimum value of cij − (πi− πj) over all candidate edges, is shown to the lower right
of the figure; this is the amount by which the dual values will be increased for all vertices
not in W .
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At this stage t is reachable from s using only edges in J , so the optimal solution to
the dual of the restricted primal is π̄ = 0, which indicates that the current dual solution
is optimal. Therefore, the shortest distance from s to t is 34, and any path from s to t
using only admissible edges is a shortest path. Again we see that there are four such paths:
s–a–c–e–t, s–a–c–f–t, s–b–c–e–t, and s–b–c–f–t.

5. Give an example of a simple graph with at least two vertices such that no two vertices have
the same degree, or explain why this is impossible.

. Solution. This is impossible for a finite graph. Suppose that G = (V,E) is a simple finite
graph with |V | = n ≥ 2 such that no two vertices have the same degree. The possible vertex
degrees in G are 0, 1, 2, . . . , n− 1, so, since all n vertices of G have different degrees, each
one of these possible degrees must occur exactly once. Therefore G contains a vertex u of
degree 0 and also a vertex v of degree n− 1. These are not the same vertex, because n ≥ 2
(so n− 1 6= 0). Now the vertex v must be adjacent to every other vertex, including u. On
the other hand, the vertex u cannot be adjacent to any other vertex, including v. This is a
contradiction, so such a graph cannot exist.

However, it is possible if we consider graphs with infinitely many vertices. For example,
here is a graph on the vertex set N = {0, 1, 2, . . .} in which each vertex n has degree n:

0

1

2

3

4 5

6 7 8 9 10 11 12

Ignoring the isolated vertex 0, this graph is a rooted tree on the vertex set N in which 1 is the
root and has exactly one child, and every vertex n other than 1 has exactly n− 1 children.

Here is another construction of a graph on the vertex set N in which each vertex n
has degree n; this construction has a very close connection to the golden ratio. Let φ =
(
√

5 − 1)/2 = 0.618 . . . and Φ = (
√

5 + 1)/2 = 1.618 . . . . Note that φ and Φ are irrational,
and they satisfy the equations Φ = φ+ 1 and φ = 1/Φ. For 0 ≤ x ∈ R, define

[[x]] =

{
bxc, if x− bxc < 1− φ;
dxe, if x− bxc > 1− φ.
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In other words, [[x]] rounds x down if the fractional part of x is less than 1−φ and up if the
fractional part is greater than 1− φ. For our purposes, we need not define what happens if
the fractional part is equal to 1−φ, because we are going to be applying the function [[·]] only
to expressions of the form φn and Φn for n ∈ N. For all n ∈ N we have φn− bφnc 6= 1− φ,
for if φn− bφnc = 1− φ then bφnc = φn+ φ− 1 = φ(n+ 1)− 1, and hence φ(n+ 1) ∈ Z,
which cannot be true because φ /∈ Q. Likewise, for all n ∈ N we have Φn − bΦnc 6= 1 − φ,
for if Φn− bΦnc = 1− φ then bΦnc = Φn+ φ− 1 = Φn+ Φ− 2 = Φ(n+ 1)− 2, and hence
Φ(n + 1) ∈ Z, which cannot be true because Φ /∈ Q. Therefore, [[φn]] and [[Φn]] are well
defined for all n ∈ N.

Next we see that for m,n ∈ N, m ≥ [[φn]] if and only if n ≤ [[Φm]]. Note that [[x]] = k if
and only if k − φ < x < k + 1− φ. So

m ≥ [[φn]] ⇐⇒ φn < m+ 1− φ
⇐⇒ n < Φ(m+ 1− φ)

⇐⇒ n < Φm+ Φ− 1

⇐⇒ n < Φm+ φ

⇐⇒ n− φ < Φm

⇐⇒ n ≤ [[Φm]].

Now, for n ∈ N, define the neighborhood of n to be the set

N(n) =
{
m ∈ N : [[φn]] ≤ m ≤ [[Φn]]

}
\ {n}.

Observe that Φn = (1 + φ)n = n + φn, so the fractional parts of φn and Φn are equal.
Therefore the function [[ · ]] rounds φn and Φn either both up or both down, which means
that [[Φn]] − [[φn]] = Φn − φn = (Φ − φ)n = n. The endpoints of the interval

[
[[φn]], [[Φn]]

]
are nonnegative integers, so this interval contains n+1 elements of N, and then we remove n
to form N(n). So |N(n)| = n.

Finally, for m,n ∈ N, we have m ∈ N(n) if and only if n ∈ N(m), because for m 6= n,

m ∈ N(n) ⇐⇒ [[φn]] ≤ m ≤ [[Φn]] ⇐⇒ [[φm]] ≤ n ≤ [[Φm]] ⇐⇒ n ∈ N(m).

Therefore, the relation ∼ defined on N by

m ∼ n if and only if m ∈ N(n)

is symmetric (and antireflexive), so we may define a graph on the vertex set N by specifying
that two vertices m and n are adjacent if and only if m ∈ N(n). Since |N(n)| = n for all n,
each vertex n has degree n.
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6. Let G = (V,E) be a simple undirected graph, and let n = |V |. Prove that all of the following
statements are equivalent.

(a) G is a tree (that is, G is connected and acyclic).

(b) For any two distinct vertices u, v ∈ V , there exists a unique path in G between u and v.

(c) G is minimally connected: G is connected, but if any edge is removed from G then the
resulting graph is disconnected.

(d) G is maximally acyclic: G is acyclic, but if any edge is added joining nonadjacent
vertices of G then the resulting graph has a cycle.

(e) G is connected and has n− 1 edges.

(f) G is acyclic and has n− 1 edges.

. Solution. First we prove the following useful counting lemma.

Vertices–edges–components lemma. If G = (V,E) is a simple undirected graph with
n vertices and m edges, then G has at least n−m connected components, with equality if
and only if G is acyclic.

Proof. By induction on m. If m = 0, then G consists of n isolated vertices, so it has
n = n−m connected components, and clearly G is acyclic.

Suppose m ≥ 1. Let e = {u, v} ∈ E, and consider the graph H = (V,E \ {e}) formed
from G by removing the edge e. The graph H has m − 1 edges, so by induction H has at
least n−m+ 1 connected components, with equality if and only if H is acyclic.

If u and v are in the same connected component in H, then G has the same number
of connected components as H, i.e., at least n − m + 1. Furthermore, there is a path
(u = w0, w1, w2, . . . , wk−1, wk = v) in H between u and v, and k ≥ 2 because u and v are
not adjacent in H. So (u = w0, w1, w2, . . . , wk−1, wk = v, u) is a cycle in G, which means G
is not acyclic.

Otherwise, u and v are in different connected components in H, so when the edge {u, v}
is added to H to form G, those two connected components are joined. Hence G has exactly
one fewer connected component than H, i.e., at least n − m connected components. In
this case, the edge {u, v} cannot be part of a cycle in G (because this would imply a path
between u and v that does not use the edge {u, v}, which would be a path between u and v
in H), so G is acyclic if and only if H is acyclic, and therefore G has n − m connected
components if and only if G is acyclic.

Now we can begin proving implications among the six statements. More proofs are
presented below than are necessary to prove the equivalence of the six statements; all that
is necessary is to prove a set of implications such that any statement can be reached from
any other statement by following a chain of implications in the set.

(a) =⇒ (b). Suppose G is a tree, i.e., is connected and acyclic. Let u, v ∈ V be distinct
vertices. Then there exists a path between u and v, because G is connected. Suppose for the
sake of contradiction that this path is not unique, i.e., that there exist two distinct paths
(u = w0, w1, w2, . . . , wp−1, wp = v) and (u = x0, x1, x2, . . . , xq−1, xq = v) for some p, q ≥ 1.
Let r ≥ 1 be the least positive integer such that wr 6= xr; such an integer exists because
the two paths are distinct (in particular, 1 ≤ r ≤ min{p, q}). Let s ≥ r be the least integer
greater than or equal to r such that ws = xt for some t; such an integer exists because
wp = v = xq. Then (wr−1, wr, wr+1, . . . , ws−1, ws = xt, xt−1, . . . , xr−1 = wr−1) is a cycle,
because wr, wr+1, . . . , ws−1 are distinct from all xi’s by the definition of s, so no vertices are
repeated in this walk (except the beginning and end, wr−1 = xr−1). Also, the length of this
walk is at least 3: we have s ≥ r, so there are at least two distinct wi’s in the walk; we have
xt = ws, so xt 6= wi = xi for 0 ≤ i ≤ r−1, so there are at least two distinct xi’s in the walk;
and wr 6= xr, so either the walk contains at least three distinct wi’s or it contains at least
three distinct xi’s (or both). So G contains a cycle, which is a contradiction. Therefore, for
any two distinct vertices u, v ∈ V , there exists a unique path in G between u and v.
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(a) =⇒ (c). Suppose G is a tree. Then certainly G is connected. Let e = {u, v} ∈ E
be any edge in G. Consider the graph H = (V,E \ {e}) formed from G by removing
the edge e. If there exists a path (u = w0, w1, w2, . . . , wk−1, wk = v) in H between
u and v, then its length k must be at least 2 because {u, v} is not an edge in H; so
(u = w0, w1, w2, . . . , wk−1, wk = v, u) is a cycle in G. But this contradicts the fact that G is
acyclic. So there can be no path in H between u and v, which means that H is disconnected.
As the edge e ∈ E was arbitrary, this shows that G is minimally connected.

(a) =⇒ (d). Suppose G is a tree. Then certainly G is acyclic. If G has no two nonadjacent
vertices, then statement (d) is vacuously true, and there is nothing more to show, so suppose
this is not the case. Let u and v be any two nonadjacent vertices in G, and consider the
graph H =

(
V,E∪

{
{u, v}

})
formed from G by adding the edge {u, v}. Since G is connected,

there exists a path (u = w0, w1, w2, . . . , wk−1, wk = v) in G between u and v, and k ≥ 2
because u and v are not adjacent in G. So (u = w0, w1, w2, . . . , wk−1, wk = v, u) is a cycle
in H. As u and v were arbitrary nonadjacent vertices in G, this shows that G is maximally
acyclic.

(a) =⇒ (e). Suppose G is a tree. Then certainly G is connected. Hence G has exactly one
connected component and is acyclic, so by the vertices–edges–components lemma G must
have n− 1 edges.

(a) =⇒ (f). Suppose G is a tree. Then certainly G is acyclic. And G has exactly one
connected component because it is connected, so by the vertices–edges–components lemma
G must have n− 1 edges.

The following lemma is used many times to prove the implications in which state-
ment (b) is the hypothesis.

Lemma. [Unique paths imply acyclicity.] If G = (V,E) is a simple undirected graph such
that for any two distinct vertices u, v ∈ V there exists a unique path in G between u and v,
then G is acyclic.

Proof. Suppose for the sake of contradiction that G contains a cycle (v0, v1, v2, . . . , vk−1,
vk = v0), where k ≥ 3. Then there are two distinct paths (v0, v1, v2, . . . , vk−1) and
(v0 = vk, vk−1) between v0 and vk−1, which is a contradiction. So G is acyclic.

(b) =⇒ (a). Suppose that for any two distinct vertices u, v ∈ V there exists a unique path
in G between u and v. Then G is connected, and by the preceding lemma G is also acyclic.

(b) =⇒ (c). Suppose that for any two distinct vertices u, v ∈ V there exists a unique path
in G between u and v. Then G is connected. Suppose an edge e = {u, v} ∈ E is removed
from G to form the graph H = (V,E \ {e}). In G, (u, v) was the unique path between
u and v; this path does not exist in H. Any path in H is also a path in G, so in H there
can be no path between u and v, so H is not connected. As the edge e ∈ E was arbitrary,
this shows that the removal of any edge from G produces a disconnected graph. So G is
minimally connected.

(b) =⇒ (d). Suppose that for any two distinct vertices u, v ∈ V there exists a unique
path in G between u and v. By the preceding lemma, G is acyclic. If G has no two
nonadjacent vertices, then statement (d) is vacuously true, and there is nothing more to
show, so suppose this is not the case. Let u and v be any two nonadjacent vertices in G,
and consider the graph H =

(
V,E ∪

{
{u, v}

})
formed from G by adding the edge {u, v}.

By assumption, there exists a unique path (u = w0, w1, w2, . . . , wk−1, wk = v) in G between
u and v, and the length k of this path must be at least 2 because {u, v} is not an edge
in G. So (u = w0, w1, w2, . . . , wk−1, wk = v, u) is a cycle in H. As u and v were arbitrary
nonadjacent vertices in G, this shows that G is maximally acyclic.

(b) =⇒ (e). Suppose that for any two distinct vertices u, v ∈ V there exists a unique path
in G between u and v. Then G is connected, i.e., it has exactly one connected component.
By the preceding lemma, G is acyclic, so by the vertices–edges–components lemma it must
have n− 1 edges.
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(b) =⇒ (f). Exactly the same proof as for (b) =⇒ (e).

A similar lemma is useful to prove the implications in which statement (c) is the hy-
pothesis.

Lemma. [Minimal connectivity implies acyclicity.] If G = (V,E) is a simple undirected
minimally connected graph, then G is acyclic.

Proof. Suppose for the sake of contradiction thatG has a cycle (v0, v1, v2, . . . , vk−1, vk = v0)
of length k, where k ≥ 3. Let e be the edge {v0, v1}, and consider the graph H = (V,E \
{e}) formed from G by removing the edge e. We claim that H is still connected: Let
u, v ∈ V be distinct vertices. Since G is connected, there exists a path P = (u = w0,
w1, w2, . . . , wp−1, wp = v) of length p in G between u and v. If P does not use the edge
{v0, v1}, then it is still a path inH. Otherwise, let q ≥ 0 be the least nonnegative integer such
that wq ∈ {v0, v1, v2 . . . , vk−1}, and let r ≤ p be the greatest integer no more than p such
that wr ∈ {v0, v1, v2, . . . , vk−1}. We must have q < r, because P contains both v0 and v1.
Say wq = vs and wr = vt, for some 0 ≤ s < k and 0 ≤ t < k. We must have s 6= t because
q 6= r and the path P contains no repeated vertices. Without loss of generality, assume that
s < t. If s 6= 0, then

(u = w0, w1, . . . , wq−1, wq = vs, vs+1, . . . , vt−1, vt = wr, wr+1, . . . , wp−1, wp = v)

is a path in H between u and v. Otherwise, s = 0, and

(u = w0, w1, . . . , wq−1, wq = vs = v0 = vk, vk−1, . . . , vt+1, vt = wr, wr+1, . . . , wp−1, wp = v)

is a path in H between u and v. As u and v were arbitrary vertices, this shows that H is
connected. Therefore, G is not minimally connected, which is a contradiction. So G cannot
have a cycle, which means that it is acyclic.

(c) =⇒ (a). Suppose G is minimally connected. Then certainly G is connected. By the
preceding lemma, G is also acyclic, and hence a tree.

(c) =⇒ (d). Suppose G is minimally connected. Then it is connected, so it has exactly
one connected component, and by the preceding lemma it is acyclic. By the vertices–edges–
components lemma, then, G has n−1 edges. If an edge is added joining nonadjacent vertices
of G, then the resulting graph H must still be connected (because adding an edge cannot
disconnect a graph), and H has n edges, so by the vertices–edges–components lemma it
cannot be acyclic. Therefore G is maximally acyclic.

(c) =⇒ (e). Suppose G is minimally connected. Then it is connected, so it has exactly one
connected component, and by the preceding lemma it is acyclic. By the vertices–edges–
components lemma, then, G has n− 1 edges.

(c) =⇒ (f). Exactly the same proof as for (c) =⇒ (e).

The next lemma is useful when proving the implications in which statement (d) is the
hypothesis.

Lemma. [Maximal acyclicity implies connectivity.] If G = (V,E) is a simple undirected
maximally acyclic graph, then G is connected.

Proof. Let u, v ∈ V be two distinct vertices in G. If u and v are adjacent, then (u, v)
is a path in G from u to v. Otherwise, because G is maximally acyclic, adding the edge
e = {u, v} to G produces the graph H = (V,E ∪ {e}) and H has a cycle (w0, w1, w2, . . . ,
wk−1, wk = w0). This cycle must include the edge e, for otherwise it would be a cycle in G,
but G is acyclic. Without loss of generality, we may assume that w0 = u and w1 = v. Then
(u = w0 = wk, wk−1, wk−2, . . . , w2, w1 = v) is a path from u to v in G. As u and v were
arbitrary vertices in G, this shows that every two distinct vertices in G have a path between
them, which is to say, G is connected.
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(d) =⇒ (a). Suppose G is maximally acyclic. Then certainly G is acyclic. By the preceding
lemma, G is also connected, and hence a tree.

(d) =⇒ (e). Suppose G is maximally acyclic. Then certainly G is acyclic, and by the
preceding lemma, G is connected, i.e., it has exactly one connected component. Therefore,
by the vertices–edges–components lemma, G has n− 1 edges.

(d) =⇒ (f). Exactly the same proof as for (d) =⇒ (e).

(e) =⇒ (a). Suppose G is connected and has m = n − 1 edges. Then G has exactly one
connected component, and 1 = n−m, so by the vertices–edges–components lemma, G must
be acyclic.

(e) =⇒ (c). Suppose G is connected and has n − 1 edges. If any edge is removed from G,
then the resulting graph H has n − 2 edges, so by the vertices–edges–components lemma
H has at least two connected components, which is to say, H is disconnected. Therefore G
is minimally connected.

(e) =⇒ (d). Suppose G is connected and has m = n − 1 edges. Then G has exactly one
connected component, and 1 = n−m, so by the vertices–edges–components lemma, G must
be acyclic. If any edge is added joining nonadjacent vertices of G, then the resulting graph H
is still connected (because adding an edge cannot disconnect a graph), so H still has exactly
one connected component, but H has n edges, so by the vertices–edges–components lemma,
H cannot be acyclic. Therefore G is maximally acyclic.

(e) =⇒ (f). Exactly the same proof as for (e) =⇒ (a).

(f) =⇒ (a). Suppose G is acyclic and has n − 1 edges. By the vertices–edges–components
lemma, G has exactly one connected component, i.e., G is connected.

(f) =⇒ (c). Suppose G is acyclic and has n − 1 edges. By the vertices–edges–components
lemma, G has exactly one connected component, i.e., G is connected. If any edge is removed
from G, then the resulting graph H has n − 2 edges, so by the vertices–edges–components
lemma H has at least two connected components, which is to say, H is disconnected. There-
fore G is minimally connected.

(f) =⇒ (d). Suppose G is acyclic and has n−1 edges. If any edge is added joining nonadja-
cent vertices of G, then the resulting graph H will have n edges. If H is acyclic, then by the
vertices–edges–components lemma it has zero connected components, which is impossible.
Thus H has a cycle, and therefore G is maximally acyclic.

(f) =⇒ (e). Exactly the same proof as for (f) =⇒ (a).
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