
Combinatorial Optimization

Problem set 4: solutions

1. Consider a project consisting of the following nine activities.

Immediate Usual time Crash time Cost per day
Activity prerequisites (days) (days) to speed up

A — 2 — —
B — 6 3 $180
C A 4 2 $150
D B 2 1 $200
E B 4 1 $ 75
F C, D 3 1 $250
G D 1 — —
H F 3 2 $100
I E, F, G 4 1 $140

(a) Draw a CPM network for this project.

(b) Using the usual times:

(i) Determine the earliest and latest times for each node.

(ii) Determine the float for each activity.

(iii) Determine the critical path.

(c) Formulate a linear program to determine the least expensive way to reduce the length
of the project by 4 days. Solve your linear program (with Maple or otherwise) and
interpret your results.

(d) Formulate a linear program to determine the shortest possible completion time that
can be achieved with a budget of $900. Solve your linear program and interpret your
results.

. Solution.

(a) A CPM network for this project is shown below. Solid arrows represent activities. The
edge label for an activity that cannot be sped up gives the duration of the activity; the
label for an activity that can be sped up gives the interval of possible durations (from
the crash time to the usual time) and the per-day speedup cost. This drawing also
incorporates the information from part (b): the earliest time for each node (using the
usual times) is shown in green above the node, the latest time for each node is shown in
red below the node, the float for each activity is shown in blue below the corresponding
arrow, and the critical path is highlighted in yellow.
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(b) Let ui denote the usual time of activity i. Let ej and lj denote the earliest time and
latest time of node j, respectively, using the usual times.

(i) The earliest time of node 0 is 0. For j 6= 0 the earliest time of node j is found
as follows: for each incoming edge (including dummy edges), add the earliest time
of the edge’s start node to the duration (i.e., the usual time) of the corresponding
activity; and then take the maximum of all of these sums. Note that the duration
of a dummy edge is zero.

Node Earliest time

0 0
1 e0 + uA = 0 + 2 = 2
2 e0 + uB = 0 + 6 = 6
3 e1 + uC = 2 + 4 = 6
4 e2 + uD = 6 + 2 = 8
5 e2 + uE = 6 + 4 = 10
6 max{e3 + 0, e4 + 0} = max{6, 8} = 8
7 e6 + uF = 8 + 3 = 11
8 e4 + uG = 8 + 1 = 9
9 e7 + uH = 11 + 3 = 14

10 max{e5 + 0, e7 + 0, e8 + 0} = max{10, 11, 9} = 11
11 e10 + uI = 11 + 4 = 15
12 max{e9 + 0, e11 + 0} = max{14, 15} = 15

The latest time of the last node is equal to its earliest time. For each other node, the
latest time is found as follows: for each outgoing edge (including dummy edges),
subtract the duration of the corresponding activity from the latest time of the
edge’s end node; and then take the minimum of all of these differences.

Node Latest time

12 e12 = 15
11 l12 − 0 = 15
10 l11 − uI = 15− 4 = 11
9 l12 − 0 = 15
8 l10 − 0 = 11
7 min{l9 − uH, l10 − 0} = min{15− 3, 11} = 11
6 l11 − uF = 11− 3 = 8
5 l10 − 0 = 11
4 min{l6 − 0, l8 − uG} = min{8, 11− 1} = 8
3 l6 − 0 = 8
2 min{l4 − uD, l5 − uE} = min{8− 2, 11− 4} = 6
1 l3 − uC = 8− 4 = 4
0 min{l1 − uA, l2 − uB} = min{4− 2, 6− 6} = 0

(ii) The float of an activity is equal to the latest time of its end node, minus the earliest
time of its start node, minus its duration.

Activity Float

A l1 − e0 − uA = 4− 0− 2 = 2
B l2 − e0 − uB = 6− 0− 6 = 0
C l3 − e1 − uC = 8− 2− 4 = 2
D l4 − e2 − uD = 8− 6− 2 = 0
E l5 − e2 − uE = 11− 6− 4 = 1
F l7 − e6 − uF = 11− 8− 3 = 0
G l8 − e4 − uG = 11− 8− 1 = 2
H l9 − e7 − uH = 15− 11− 3 = 1
I l11 − e10 − uI = 15− 11− 4 = 0
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For completeness, we can also compute the floats for the dummy activities, even
though they do not represent actual activities in the project:

Dummy activity Float

3→ 6 l6 − e3 − 0 = 8− 6− 0 = 2
4→ 6 l6 − e4 − 0 = 8− 8− 0 = 0
5→ 10 l10 − e5 − 0 = 11− 10− 0 = 1
7→ 10 l10 − e7 − 0 = 11− 11− 0 = 0
8→ 10 l10 − e8 − 0 = 11− 9− 0 = 2
9→ 12 l12 − e9 − 0 = 15− 14− 0 = 1

11→ 12 l12 − e11 − 0 = 15− 15− 0 = 0

(iii) A critical path is a path from the beginning of the project (node 0) to the com-
pletion of the project (node 12) consisting entirely of critical activities. There is a
unique critical path in this project, consisting of the activities B—D—F—I.

(c, d) First we define the variables and their domains. For i ∈ {B,C,D,E,F,H, I}, let di
denote the duration of activity i (possibly sped up from its usual time). For 0 ≤ j ≤ 12,
let tj denote the time at which node j occurs. All of these variables are nonnegative.

Next we list the network constraints, because we will need the network constrains in
any linear program for this project, and these constraints come from the CPM network
we drew in part (a). Each activity gives us a sequence constraint:

t1 − t0 ≥ 2

t2 − t0 ≥ dB

t3 − t1 ≥ dC

t4 − t2 ≥ dD

t5 − t2 ≥ dE

t7 − t6 ≥ dF

t8 − t4 ≥ 1

t9 − t7 ≥ dH

t11 − t10 ≥ dI

Each dummy edge gives us a dummy constraint:

t6 − t3 ≥ 0

t6 − t4 ≥ 0

t10 − t5 ≥ 0

t10 − t7 ≥ 0

t10 − t8 ≥ 0

t12 − t9 ≥ 0

t12 − t11 ≥ 0

Each activity that can be sped up gives us a pair of duration constraints:

3 ≤ dB ≤ 6

2 ≤ dC ≤ 4

1 ≤ dD ≤ 2

1 ≤ dE ≤ 4

1 ≤ dF ≤ 3

2 ≤ dH ≤ 3

1 ≤ dI ≤ 4

Now, our objective in part (c) is to minimize the total speedup cost, which is

180(6−dB)+150(4−dC)+200(2−dD)+75(4−dE)+250(3−dF)+100(3−dH)+140(4−dI).

The usual project completion time is 15 days, so reducing the length of the project by
4 days means completing it in 11 days, which gives us the deadline constraint t12 ≤ 11.
Therefore our linear program for part (c) is

minimize [total speedup cost]

subject to [all network constraints]

t12 ≤ 11

all variables nonnegative.
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Our objective in part (d) is to minimize the project completion time, which is t12,
subject to the budget constraint [total speedup cost] ≤ 900. So our linear program for
part (d) is

minimize t12

subject to [all network constraints]

[total speedup cost] ≤ 900

all variables nonnegative.

The following Maple worksheet solves both of these linear programs. (It is convenient
to solve them together because they share almost all of their constraints.)

> restart;

> with(Optimization);

[ImportMPS , Interactive,LPSolve,LSSolve,Maximize,Minimize,NLPSolve,

QPSolve]

> sequence:=[t1-t0>=2,t2-t0>=dB,t3-t1>=dC,t4-t2>=dD,t5-t2>=dE,

t7-t6>=dF,t8-t4>=1,t9-t7>=dH,t11-t10>=dI];

sequence := [2 ≤ t1 − t0 , dB ≤ t2 − t0 , dC ≤ t3 − t1 , dD ≤ t4 − t2 ,

dE ≤ t5 − t2 , dF ≤ t7 − t6 , 1 ≤ t8 − t4 , dH ≤ t9 − t7 , dI ≤ t11 − t10 ]

> dummy:=[t6-t3>=0,t6-t4>=0,t10-t5>=0,t10-t7>=0,t10-t8>=0,

t12-t9>=0,t12-t11>=0];

dummy := [0 ≤ t6 − t3 , 0 ≤ t6 − t4 , 0 ≤ t10 − t5 , 0 ≤ t10 − t7 , 0 ≤ t10 − t8 ,

0 ≤ t12 − t9 , 0 ≤ t12 − t11 ]

> duration:=[3<=dB,dB<=6,2<=dC,dC<=4,1<=dD,dD<=2,1<=dE,dE<=4,

1<=dF,dF<=3,2<=dH,dH<=3,1<=dI,dI<=4];

duration := [3 ≤ dB , dB ≤ 6, 2 ≤ dC , dC ≤ 4, 1 ≤ dD , dD ≤ 2, 1 ≤ dE ,

dE ≤ 4, 1 ≤ dF , dF ≤ 3, 2 ≤ dH , dH ≤ 3, 1 ≤ dI , dI ≤ 4]

> network:=[op(sequence),op(dummy),op(duration)];

network := [2 ≤ t1−t0 , dB ≤ t2−t0 , dC ≤ t3−t1 , dD ≤ t4−t2 , dE ≤ t5−t2 ,
dF ≤ t7 − t6 , 1 ≤ t8 − t4 , dH ≤ t9 − t7 , dI ≤ t11 − t10 , 0 ≤ t6 − t3 ,

0 ≤ t6 − t4 , 0 ≤ t10 − t5 , 0 ≤ t10 − t7 , 0 ≤ t10 − t8 , 0 ≤ t12 − t9 ,

0 ≤ t12 − t11 , 3 ≤ dB , dB ≤ 6, 2 ≤ dC , dC ≤ 4, 1 ≤ dD , dD ≤ 2,

1 ≤ dE , dE ≤ 4, 1 ≤ dF , dF ≤ 3, 2 ≤ dH , dH ≤ 3, 1 ≤ dI , dI ≤ 4]

> cost:=(dB,dC,dD,dE,dF,dH,dI)->180*(6-dB)+150*(4-dC)

+200*(2-dD)+75*(4-dE)+250*(3-dF)+100*(3-dH)+140*(4-dI);

cost := (dB , dC , dD , dE , dF , dH , dI )→ 3990− 180 dB − 150 dC − 200 dD

− 75 dE − 250 dF − 100 dH − 140 dI

> constraintsC:=[op(network),t12<=11];

constraintsC := [2 ≤ t1 − t0 , dB ≤ t2 − t0 , dC ≤ t3 − t1 , dD ≤ t4 − t2 ,

dE ≤ t5 − t2 , dF ≤ t7 − t6 , 1 ≤ t8 − t4 , dH ≤ t9 − t7 , dI ≤ t11 − t10 ,

0 ≤ t6− t3, 0 ≤ t6 − t4 , 0 ≤ t10 − t5 , 0 ≤ t10 − t7 , 0 ≤ t10 − t8 ,

0 ≤ t12 − t9 , 0 ≤ t12 − t11 , 3 ≤ dB , dB ≤ 6 , 2 ≤ dC , dC ≤ 4 , 1 ≤ dD ,

dD ≤ 2, 1 ≤ dE , dE ≤ 4, 1 ≤ dF , dF ≤ 3, 2 ≤ dH , dH ≤ 3, 1 ≤ dI ,

dI ≤ 4, t12 ≤ 11]
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> LPSolve(cost(dB,dC,dD,dE,dF,dH,dI),constraintsC,

assume=nonnegative);[
739.99999883316, [dB = 4.00000000068840, dC = 4.,

dD = 2.00000000034420, dE = 4., dF = 3., dH = 2.00000000275359,

dI = 2.00000000499089, t0 = 0., t1 = 2., t10 = 8.99999999535331,

t11 = 11.0000000003442, t12 = 11., t2 = 3.99999999965580,

t3 = 5.99999999896740, t4 = 5.99999999896740, t5 = 8.99999999569751,

t6 = 5.99999999862320, t7 = 8.99999999759060, t8 = 6.99999999896740,

t9 = 11.]
]

> constraintsD:=[op(network),cost(dB,dC,dD,dE,dF,dH,dI)<=900];

constraintsD := [2 ≤ t1 − t0 , dB ≤ t2 − t0 , dC ≤ t3 − t1 , dD ≤ t4 − t2 ,

dE ≤ t5 − t2 , dF ≤ t7 − t6 , 1 ≤ t8 − t4 , dH ≤ t9 − t7 , dI ≤ t11 − t10 ,

0 ≤ t6− t3, 0 ≤ t6 − t4 , 0 ≤ t10 − t5 , 0 ≤ t10 − t7 , 0 ≤ t10 − t8 ,

0 ≤ t12 − t9 , 0 ≤ t12 − t11 , 3 ≤ dB , dB ≤ 6 , 2 ≤ dC , dC ≤ 4 , 1 ≤ dD ,

dD ≤ 2, 1 ≤ dE , dE ≤ 4, 1 ≤ dF , dF ≤ 3, 2 ≤ dH , dH ≤ 3, 1 ≤ dI , dI ≤ 4,

−180dB − 150dC − 200dD − 75dE − 250dF − 100dH − 140dI ≤ −3090]

> LPSolve(t12,constraintsD,assume=nonnegative);[
10.3599999956080, [dB = 4.00000000034420, dC = 4.,

dD = 2.00000000000000, dE = 4., dF = 2.35999999801741, dH = 2.,

dI = 2.00000000309779, t0 = 0., t1 = 2., t10 = 8.35999999560802,

t11 = 10.3599999956080, t12 = 10.3599999956080, t2 = 4.,

t3 = 5.99999999965580, t4 = 5.99999999965580, t5 = 7.99999999965580,

t6 = 5.99999999965580, t7 = 8.35999999664062, t8 = 6.99999999965580,

t9 = 10.3599999966406]
]

The optimal activity durations in part (c) are dB = 4, dC = 4, dD = 2, dE = 4,
dF = 3, dH = 2, and dI = 2. This means that the least expensive way to reduce the
length of the project by 4 days is to speed up activity B by 2 days from its usual time,
activity H by 1 day from its usual time, and activity I by 2 days from its usual time.
The optimal objective value (i.e., the minimum total speedup cost) is $740.

The optimal activity durations in part (d) are dB = 4, dC = 4, dD = 2, dE = 4,
dF = 2.36, dH = 2, and dI = 2, with an optimal objective value of 10.36 days. This
means that the best way to apply the budget of $900 in order to reduce the project
completion time is to speed up activity B by 2 days from its usual time, activity F by
0.64 day from its usual time, activity H by 1 day from its usual time, and activity I by
2 days from its usual time.
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2. Rural Residence, Inc. (RRI) manufactures and builds prefab log homes. The logs are cut at
their plant and delivered to the site. All other materials, such as roofing, doors, windows,
etc., are purchased from other companies. The tasks involved in building one of their homes
are shown in the table below.

Immediate Usual time Crash time Cost per day
Activity prerequisites (days) (days) to speed up

A. Prepare site — 2 — —
B. Adjust design to site A 2 1 $300
C. Cut logs for house A 3 2 $250
D. Obtain other materials B 7 — —
E. Excavate basement B 2 1 $700
F. Pour foundation E 3 2 $350
G. Ship logs C 5 3 $125
H. Assemble logs F, G 8 5 $150
I. Complete roof, doors, etc. D, H 5 4 $250
J. Prepare for utilities D, H 5 3 $300
K. Connect utilities J 2 — —
L. Finish interior J 7 4 $200

M. Landscape lot I, K 2 — —

In addition to the tasks above, RRI must maintain a trailer and security guard at the job
site from the time that the excavation of the basement begins until the interior is finished,
at a cost of $210 per day.

Determine a project schedule that will minimize the total cost of the project.

. Solution. A CPM network for this project is shown below. Note that we can reuse node 10
as the start node for both activities I and J, because they have the same prerequisites. The
excavation of the basement (activity E) begins at node 2, and the finishing of the interior
(activity L) ends at node 14, so the trailer and security guard must be maintained between
the two times represented by those nodes.
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We will formulate a linear program for this problem, based on the CPM network. For
i ∈ {B,C,E,F,G,H, I, J,L}, let di denote the duration of activity i (possibly sped up from
its usual time). For 0 ≤ j ≤ 17, let tj denote the time at which node j occurs. All of these
variables are nonnegative.

The network constraints come from the CPM network. Each activity gives us a sequence
constraint:

t1 − t0 ≥ 2

t2 − t1 ≥ dB

t3 − t1 ≥ dC

t4 − t2 ≥ 7

t5 − t2 ≥ dE

t6 − t5 ≥ dF

t7 − t3 ≥ dG

t9 − t8 ≥ dH

t11 − t10 ≥ dI

t12 − t10 ≥ dJ

t13 − t12 ≥ 2

t14 − t12 ≥ dL

t16 − t15 ≥ 2
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Each dummy edge gives us a dummy constraint:

t8 − t6 ≥ 0

t8 − t7 ≥ 0

t10 − t4 ≥ 0

t10 − t9 ≥ 0

t15 − t11 ≥ 0

t15 − t13 ≥ 0

t17 − t14 ≥ 0

t17 − t16 ≥ 0

Each activity that can be sped up gives us a pair of duration constraints:

1 ≤ dB ≤ 2

2 ≤ dC ≤ 3

1 ≤ dE ≤ 2

2 ≤ dF ≤ 3

3 ≤ dG ≤ 5

5 ≤ dH ≤ 8

4 ≤ dI ≤ 5

3 ≤ dJ ≤ 5

4 ≤ dL ≤ 7

Our objective is to minimize the total project cost. The portion of the project cost under
our control is the speedup cost, plus the cost of maintaining the trailer and security guard
from the time of node 2 until the time of node 14 at $210 per day. Therefore, the quantity
we aim to minimize is

300(2− dB) + 250(3− dC) + 700(2− dE) + 350(3− dF) + 125(5− dG)

+ 150(8− dH) + 250(5− dI) + 300(5− dJ) + 200(7− dL) + 210(t14 − t2).

Our linear program is

minimize [cost]

subject to [all network constraints]

all variables nonnegative.

The following Maple worksheet solves this linear program.

> restart;

> with(Optimization);

[ImportMPS , Interactive,LPSolve,LSSolve,Maximize,Minimize,NLPSolve,

QPSolve]

> sequence:=[t1-t0>=2,t2-t1>=dB,t3-t1>=dC,t4-t2>=7,t5-t2>=dE,

t6-t5>=dF,t7-t3>=dG,t9-t8>=dH,t11-t10>=dI,t12-t10>=dJ,

t13-t12>=2,t14-t12>=dL,t16-t15>=2];

sequence := [2 ≤ t1 − t0 , dB ≤ t2 − t1 , dC ≤ t3 − t1 , 7 ≤ t4 − t2 , dE ≤ t5 − t2 ,

dF ≤ t6 − t5 , dG ≤ t7 − t3 , dH ≤ t9 − t8 , dI ≤ t11 , t10 , dJ ≤ t12 − t10 ,

2 ≤ t13 − t12 , dL ≤ t14 − t12 , 2 ≤ t16 − t15 ]

> dummy:=[t8-t6>=0,t8-t7>=0,t10-t4>=0,t10-t9>=0,t15-t11>=0,

t15-t13>=0,t17-t14>=0,t17-t16>=0];

dummy := [0 ≤ t8 − t6 , 0 ≤ t8 − t7 , 0 ≤ t10 − t4 , 0 ≤ t10 − t9 , 0 ≤ t15 − t11 ,

0 ≤ t15 − t13 , 0 ≤ t17 − t14 , 0 ≤ t17 − t16 ]

> duration:=[1<=dB,dB<=2,2<=dC,dC<=3,1<=dE,dE<=2,2<=dF,dF<=3,3<=dG,

dG<=5,5<=dH,dH<=8,4<=dI,dI<=5,3<=dJ,dJ<=5,4<=dL,dL<=7];

duration := [1 ≤ dB , dB ≤ 2, 2 ≤ dC , dC ≤ 3, 1 ≤ dE , dE ≤ 2, 2 ≤ dF , dF ≤ 3,

3 ≤ dG , dG ≤ 5, 5 ≤ dH , dH ≤ 8, 4 ≤ dI , dI ≤ 5, 3 ≤ dJ , dJ ≤ 5, 4 ≤ dL,

dL ≤ 7]
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> network:=[op(sequence),op(dummy),op(duration)];

network := [2 ≤ t1 − t0 , dB ≤ t2 − t1 , dC ≤ t3 − t1 , 7 ≤ t4 − t2 , dE ≤ t5 − t2 ,

dF ≤ t6 − t5 , dG ≤ t7 − t3 , dH ≤ t9 − t8 , dI ≤ t11 , t10 , dJ ≤ t12 − t10 ,

2 ≤ t13 − t12 , dL ≤ t14 − t12 , 2 ≤ t16 − t15 , 0 ≤ t8 − t6 , 0 ≤ t8 − t7 ,

0 ≤ t10 − t4 , 0 ≤ t10 − t9 , 0 ≤ t15 − t11 , 0 ≤ t15 − t13 , 0 ≤ t17 − t14 ,

0 ≤ t17 − t16 , 1 ≤ dB , dB ≤ 2, 2 ≤ dC , dC ≤ 3, 1 ≤ dE , dE ≤ 2, 2 ≤ dF ,

dF ≤ 3, 3 ≤ dG , dG ≤ 5, 5 ≤ dH , dH ≤ 8, 4 ≤ dI , dI ≤ 5, 3 ≤ dJ , dJ ≤ 5,

4 ≤ dL, dL ≤ 7]

> cost:=(dB,dC,dE,dF,dG,dH,dI,dJ,dL,t2,t14)->300*(2-dB)+250*(3-dC)

+700*(2-dE)+350*(3-dF)+125*(5-dG)+150*(8-dH)+250*(5-dI)

+300*(5-dJ)+200*(7-dL)+210*(t14-t2);

cost := (dB , dC , dE , dF , dG , dH , dI , dJ , dL, t2 , t14 )→ 9775− 300 dB − 250 dC

−700 dE−350 dF−125 dG−150 dH−250 dI−300 dJ−200 dL+210 t14−210 t2

> LPSolve(cost(dB,dC,dE,dF,dG,dH,dI,dJ,dL,t2,t14),network,

assume=nonnegative);[
5039.99999877809, [dB = 2.00000000137680, dC = 3.00000000034420, dE = 2.,

dF = 3., dG = 5., dH = 5., dI = 5., dJ = 5., dL = 4., t0 = 0., t1 = 2.,

t10 = 14.9999999977627, t11 = 21.9999999974185, t12 = 19.9999999974185,

t13 = 21.9999999974185, t14 = 23.9999999970743, t15 = 21.9999999970743,

t16 = 23.9999999970743, t17 = 23.9999999967301, t2 = 5.00000000051630,

t3 = 4.99999999931160, t4 = 14.9999999981069, t5 = 6.99999999948370,

t6 = 9.99999999845110, t7 = 9.99999999827900, t8 = 9.99999999810690,

t9 = 14.9999999977627]
]

The optimal activity durations are dB = 2, dC = 3, dE = 2, dF = 3, dG = 5, dH = 5,
dI = 5, dJ = 5, and dL = 4. This means that the way to minimize the total cost of the
project is to speed up each of activities H and L by 3 days from their usual times. The
optimal objective value (i.e., the minimum total speedup cost and maintenance cost for the
trailer and security guard) is $5040. The project will be completed in 24 days under this
schedule.

3. The ABC Co. manufactures its product in two plants, A and B, and sells its product in
four markets, W, X, Y, and Z. The capacity in Plant A is 300 units, and in Plant B it is
350 units. The demands and per-unit shipping costs for the four markets are shown below.

Markets
W X Y Z

Demand: 155 230 225 160
Per-unit shipping cost from A: $10 $20 $15 $25
Per-unit shipping cost from B: $ 5 $15 $10 $20

The usual per-unit labor cost is $95 in either plant. The other costs per unit are $50 in
Plant A and $70 in Plant B. Overtime labor can be hired only at Plant A at a per-unit
cost of $140. If the capacity is not adequate to meet demand, additional items can be
manufactured at Plant A using overtime labor.

(a) Formulate a linear program to determine how ABC should schedule its production
to meet all demand while minimizing its total costs. Solve your LP (with Maple or
otherwise) and interpret the results.
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(b) Solve this problem using the specialized transportation algorithm described in class.
Compare this result to your result from part (a).

. Solution. We can view this as an instance of the transportation problem. We have three
origins: usual production in Plant A, usual production in Plant B, and overtime production
in Plant A. We shall label these origins A, B, and O, respectively. We have four destinations:
the markets W, X, Y, and Z.

The total demand is 155 + 230 + 225 + 160 = 770 units, but the total supply at origins
A and B (that is, the total capacity of both plants) is only 650 units. Therefore, we will
need to produce 120 units using overtime labor, so the supply at origin O is 120.

The total per-unit production costs at each origin are $145 at A, $165 at B, and $190
at O. Combining these with the shipping costs, we get the per-unit costs from each source
to each destination shown in the following table.

W X Y Z

A $155 $165 $160 $170
B $170 $180 $175 $185
O $200 $210 $205 $215

(a) For i ∈ {A,B,O} and j ∈ {W,X,Y,Z}, let xij denote the number of units to be
produced at origin i and shipped to market j. All of these variables are nonnegative.

Our objective is to minimize total cost, subject to the constraints that the supply
at each origin is exhausted and the demand at each destination is satisfied. Thus we
have the following linear program.

maximize 155xAW + 165xAX + 160xAY + 170xAZ

+ 170xBW + 180xBX + 175xBY + 185xBZ

+ 200xOW + 210xOX + 205xOY + 215xOZ

subject to xAW + xAX + xAY + xAZ = 300

xBW + xBX + xBY + xBZ = 350

xOW + xOX + xOY + xOZ = 120

xAW + xBW + xOW = 155

xAX + xBX + xOX = 230

xAY + xBY + xOY = 225

xAZ + xBZ + xOZ = 160

all variables nonnegative.

The following Maple worksheet solves this linear program.

> restart;

> with(Optimization);

[ImportMPS , Interactive,LPSolve,LSSolve,Maximize,Minimize,NLPSolve,

QPSolve]

> cost:=(AW,AX,AY,AZ,BW,BX,BY,BZ,OW,OX,OY,OZ)->155*AW+165*AX

+160*AY+170*AZ+170*BW+180*BX+175*BY+185*BZ+200*OW+210*OX

+205*OY+215*OZ;

cost := (AW ,AX ,AY ,AZ ,BW ,BX ,BY ,BZ ,OW ,OX ,OY ,OZ )→
155AW + 165AX + 160AY + 170AZ + 170BW + 180BX + 175BY

+ 185BZ + 200OW + 210OX + 205OY + 215OZ
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> supply:=[AW+AX+AY+AZ=300,BW+BX+BY+BZ=350,OW+OX+OY+OZ=120];

supply := [AW + AX + AY + AZ = 300,BW + BX + BY + BZ = 350,

OW + OX + OY + OZ = 120]

> demand:=[AW+BW+OW=155,AX+BX+OX=230,AY+BY+OY=225,AZ+BZ+OZ=160];

demand := [AW + BW + OW = 155,AX + BX + OX = 230,

AY + BY + OY = 225,AZ + BZ + OZ = 160]

> constraints:=[op(supply),op(demand)];

constraints := [AW + AX + AY + AZ = 300,BW + BX + BY + BZ = 350,

OW + OX + OY + OZ = 120,AW + BW + OW = 155,

AX + BX + OX = 230,AY + BY + OY = 225,AZ + BZ + OZ = 160]

> LPSolve(cost(AW,AX,AY,AZ,BW,BX,BY,BZ,OW,OX,OY,OZ),constraints,

assume=nonnegative);[
1.35825 105, [AW = 0.,AX = 110.000000000000,AY = 30.0000000000000,

AZ = 160.000000000000,BW = 155.000000000000,BX = 0.,

BY = 195.,BZ = 0.,OW = 0.,OX = 120.,OY = 0.,OZ = 0.]
]

So an optimal production and shipping plan is as shown in the table below:

W X Y Z

A 110 30 160
B 155 195
O 120

The objective value of this solution (i.e., the total cost of production and shipping) is
$135,825.

(b) Shown below is the initial transportation tableau, with the initial basic feasible solution
constructed using the method described in the lecture: satisfy demands one by one, left
to right, using the supplies top to bottom. The values of the basic squares are shown
in bold in the lower left corners. Then the values of the dual variables are calculated,
starting with v1 = 0 arbitrarily, and these dual values are used to compute the test
values for the nonbasic squares (shown in red in the lower right corners).

W: 155 X: 230 Y: 225 Z: 160

A: 300
155 165 160 170

v1 = 0
155 145 0 0

B: 350
170 180 175 185

v2 = 15
0 85 225 40

O: 120
200 210 205 215

v3 = 45
0 0 0 120

w1 = 155 w2 = 165 w3 = 160 w4 = 170

Since all the test values are nonnegative, this solution is already optimal. So we have
another optimal production and shipping plan:

W X Y Z

A 155 145
B 85 225 40
O 120

The objective value of this solution is 155($155) + 145($165) + 85($180) + 225($175) +
40($185) + 120($215) = $135,825, which matches the objective value of the optimal
solution found by Maple. (In fact, as it turns out, all feasible solutions are optimal for
this particular instance.)
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4. A manufacturer can ordinarily produce 300 units of a certain product each month and needs
to schedule production for a three-month period in which the orders exceed this capacity.
Inventory at the beginning of the first month is 120 units, and the demands for the successive
three months are 420, 360, and 450 units. Monthly production capacity can be increased
by up to 100 units at an additional cost of $8 per unit. Holding costs to manufacture in one
month and ship during a later month are $2 per unit per month.

Determine a production schedule that will minimize the total cost of exceeding the
usual monthly capacity and holding costs.

. Solution. We can formulate this as an instance of the transportation problem. There are
seven origins: with labels and their supplies, they are the starting inventory (I, 120), first
month usual production (A, 300), first month increased production (AA, 100), second month
usual production (B, 300), second month increased production (BB, 100), third month usual
production (C, 300), and third month increased production (CC, 100). Three destinations
are explicitly stated in the problem: with labels and their demands, they are the first
month (X, 420), second month (Y, 360), and third month (Z, 450). However, the total
supply is 120 + 300 + 100 + 300 + 100 + 300 + 100 = 1320, while the total demand is only
420 + 360 + 450 = 1230, so we will add a fictitious fourth destination, “unused” (U, 90), to
make total supply and total demand equal.

The per-unit costs from each origin to each destination are shown in the following table.

X Y Z U

I $0 $2 $4 $6
A $0 $2 $4 $0

AA $8 $10 $12 $0
B ∞ $0 $2 $0

BB ∞ $8 $10 $0
C ∞ ∞ $0 $0

CC ∞ ∞ $8 $0

Some of the costs in this table are given as ∞, because they represent impossible
origin-destination combinations. For example, it is impossible to use ordinary production
in the third month (C) to satisfy demand in the first month (X). Because our objective is
to minimize total cost, setting the costs of these impossible combinations to ∞ will make
them prohibitively expensive to use in an optimal solution. (If ∞ causes implementation
difficulties because arithmetic with ∞ is not well defined, then a very large finite cost, such
as $10,000, could be used instead; it would achieve the same result.)

Most of the entries in the U column of this cost table are zero, because they represent
origin-destination combinations for which items would not be produced in the first place.
For example, if a solution calls for 10 units to be “shipped” from origin AA to destination U,
then the meaning is that 10 units that could be produced using increased production in the
first month will go unused—they will not be used to satisfy demand. In that case, there
is no need to produce them at all, so only 90 units will be produced from AA, and those
10 units that are never produced will incur no cost. However, the IU entry in the cost table
is $6, because the items from origin I (the starting inventory) have already been produced,
and not using them to satisfy one of the demands will incur three months of holding costs.
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The initial transportation tableau appears below.

X: 420 Y: 360 Z: 450 U: 90

I: 120
0 2 4 6

v1 = 0
120 0 0 10

A: 300
0 2 4 0

v2 = 0
300 0 0 4

AA: 100
8 10 12 0

v3 = 8
0 100 0 −4

B: 300
∞ 0 2 0

v4 = −2∞ 260 40 6

BB: 100
∞ 8 10 0

v5 = 6∞ 0 100 −2

C: 300
∞ ∞ 0 0

v6 = −4∞ ∞ 300 8

CC: 100
∞ ∞ 8 0

v7 = 4∞ ∞ 10 90

w1 = 0 w2 = 2 w3 = 4 w4 = −4

Note that the AAX square has been made basic, with a value of 0, to complete the “stair-
step” pattern from the upper left to the lower right. This is important because it gives us
the correct number of basic squares and causes the basic squares to correspond to the edges
of a tree in the bipartite graph whose vertices are the origins and destinations.

This tableau contains negative test values, so it is not optimal. The most negative test
value occurs in the AAU square, so this will be our pivot square. The corresponding pivot
circuit goes AAU—CCU—CCZ—BZ—BY—AAY—AAU, so we will add t to the flows in the
AAU, CCZ, and BY squares and subtract t from the flows in the CCU, BZ, and AAY squares.
Therefore the largest allowable value of t (without causing a negative flow in the CCU, BZ,
or AAY square) is t = 40. We adjust the flows around the pivot cycle; the flow in the
BZ square becomes zero, so that square falls out of the basis. Then we construct the next
tableau.

X: 420 Y: 360 Z: 450 U: 90

I: 120
0 2 4 6

v1 = 0
120 0 4 14

A: 300
0 2 4 0

v2 = 0
300 0 4 8

AA: 100
8 10 12 0

v3 = 8
0 60 4 40

B: 300
∞ 0 2 0

v4 = −2∞ 300 4 10

BB: 100
∞ 8 10 0

v5 = 10∞ −4 100 −2

C: 300
∞ ∞ 0 0

v6 = 0∞ ∞ 300 8

CC: 100
∞ ∞ 8 0

v7 = 8∞ ∞ 50 50

w1 = 0 w2 = 2 w3 = 0 w4 = −8

The most negative test value in this tableau occurs in the BBY square, for which the
pivot circuit is BBY—AAY—AAU—CCU—CCZ—BBZ—BBY. In the pivot we will add t
to the flows in the BBY, AAU, and CCZ squares and subtract t from the flows in the
AAY, CCU, and BBZ squares, so the largest permissible value of t is t = 50. When we
adjust the flows, the flow in the CCU square becomes zero, so it falls out of the basis. The
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next tableau appears below.

X: 420 Y: 360 Z: 450 U: 90

I: 120
0 2 4 6

v1 = 0
120 0 0 14

A: 300
0 2 4 0

v2 = 0
300 0 0 8

AA: 100
8 10 12 0

v3 = 8
0 10 0 90

B: 300
∞ 0 2 0

v4 = −2∞ 300 0 10

BB: 100
∞ 8 10 0

v5 = 6∞ 50 50 2

C: 300
∞ ∞ 0 0

v6 = −4∞ ∞ 300 12

CC: 100
∞ ∞ 8 0

v7 = 4∞ ∞ 100 4

w1 = 0 w2 = 2 w3 = 4 w4 = −8

In this tableau, all test values are nonnegative, so we have reached an optimal solution.
In the first month, the manufacturer should use all of the starting inventory and usual pro-
duction to meet demand and should use increased production to produce an extra 10 units.
Those 10 units will be used to satisfy the demand in the second month, along with all of
the usual production and 50 extra units produced using increased production in the second
month. An additional 50 extra units should also be produced using increased production
in the second month to satisfy the demand in the third month, together with all of the
usual production and 100 extra units of increased production. The cost of this solution is
120($0)+300($0)+0($8)+10($10)+90($0)+300($0)+50($8)+50($10)+300($0)+100($8) =
$1800.

Alternatively, we may formulate this problem as a linear program. For i ∈ {I,A,AA,
B,BB,C,CC} and j ∈ {X,Y,Z,U}, let xij denote the number of units to be taken from
origin i and used to satisfy demand at destination j. These variables are all nonnegative.
Actually, we do not need the variables xBX, xBBX, xCX, xCCX, xCY, and xCCY, because
these origin-destination combinations are impossible. We also do not need the variables
xAU, xAAU, xBU, xBBU, xCU, and xCCU if we do not require that total supply equal total
demand, and we can remove that requirement by formulating the constraints as inequalities.
The linear program is shown below.

minimize 2xIY + 4xIZ + 6xIU + 2xAY + 4xAZ + 8xAAX + 10xAAY

+ 12xAAZ + 2xBZ + 8xBBY + 10xBBZ + 8xCCZ

subject to xIX + xIY + xIZ + xIU = 120

xAX + xAY + xAZ ≤ 300

xAAX + xAAY + xAAZ ≤ 100

xBY + xBZ ≤ 300

xBBY + xBBZ ≤ 100

xCZ ≤ 300

xCCZ ≤ 100

xIX + xAX + xAAX ≥ 420

xIY + xAY + xAAY + xBY + xBBY ≥ 360

xIZ + xAZ + xAAZ + xBZ + xBBZ + xCZ + xCCZ ≥ 450

all variables nonnegative.
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The following Maple worksheet solves this linear program.

> restart;

> with(Optimization);

[ImportMPS , Interactive,LPSolve,LSSolve,Maximize,Minimize,NLPSolve,

QPSolve]

> cost:=(IY,IZ,IU,AY,AZ,AAX,AAY,AAZ,BZ,BBY,BBZ,CCZ)->2*IY+4*IZ+6*IU

+2*AY+4*AZ+8*AAX+10*AAY+12*AAZ+2*BZ+8*BBY+10*BBZ+8*CCZ;

cost := (IY , IZ , IU ,AY ,AZ ,AAX ,AAY ,AAZ ,BZ ,BBY ,BBZ ,CCZ )→ 2 IY

+ 4 IZ + 6 IU + 2AY + 4AZ + 8AAX + 10AAY + 12AAZ + 2BZ + 8BBY

+ 10BBZ + 8CCZ

> supply:=[IX+IY+IZ+IU=120,AX+AY+AZ<=300,AAX+AAY+AAZ<=100,

BY+BZ<=300,BBY+BBZ<=100,CZ<=300,CCZ<=100];

supply := [IX + IY + IZ + IU = 120,AX + AY + AZ ≤ 300,

AAX +AAY +AAZ ≤ 100,BY +BZ ≤ 300,BBY +BBZ ≤ 100,CZ ≤ 300,

CCZ ≤ 100]

> demand:=[IX+AX+AAX>=420,IY+AY+AAY+BY+BBY>=360,

IZ+AZ+AAZ+BZ+BBZ+CZ+CCZ>=450];

demand := [420 ≤ IX + AX + AAX , 360 ≤ IY + AY + AAY + BY + BBY ,

450 ≤ IZ + AZ + AAZ + BZ + BBZ + CZ + CCZ ]

> constraints:=[op(supply),op(demand)];

constraints := [IX + IY + IZ + IU = 120,AX + AY + AZ ≤ 300,

AAX +AAY +AAZ ≤ 100,BY +BZ ≤ 300,BBY +BBZ ≤ 100,CZ ≤ 300,

CCZ ≤ 100, 420 ≤ IX + AX + AAX , 360 ≤ IY + AY + AAY + BY + BBY ,

450 ≤ IZ + AZ + AAZ + BZ + BBZ + CZ + CCZ ]

> LPSolve(cost(IY,IZ,IU,AY,AZ,AAX,AAY,AAZ,BZ,BBY,BBZ,CCZ),

constraints,assume=nonnegative);[
1799.99999999174, [AAX = 0.,AAY = 0.,AAZ = 9.99999999896738,AX = 300.,

AY = 1.03259778874000 10−9,AZ = 0.,BBY = 59.9999999989674,

BBZ = 40.0000000010326,BY = 300.,BZ = 0.,CCZ = 100.,CZ = 300.,

IU = 0., IX = 120., IY = 0., IZ = 0.]
]

The optimal solution found by Maple is shown in the table below.

X Y Z

I 120
A 300

AA 10
B 300

BB 60 40
C 300

CC 100

This solution also has cost $1800.
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