
Combinatorial Optimization
Problem set 3: solutions

1. In class (and on the “Analysis of a simplex tableau” handout), I claimed that if a simplex
tableau (for a non-degenerate linear program) contains a column having a negative entry
in the objective row and no positive entries below, then the linear program is unbounded.
Prove this claim.

. Solution. Consider a simplex tableau with the variables x1, . . . , xn and objective func-
tion z. Let

• Ã = [ãij ] be the matrix of entries in the body of the tableau, below the objective row
and to the left of the RHS column, not including the z column;

• b̃ = [b̃1, . . . , b̃m]T be the column vector of entries in the RHS column below the objective
row;

• c̃T = [c̃1, . . . , c̃n] be the row vector of entries in the objective row to the left of the RHS
column, not including the z column;

• x be the column vector x = [x1, . . . , xn]T; and

• ζ be the entry in the objective row and the RHS column.

Without loss of generality, we may assume that the basis consists of the variables x1, . . . , xm,
that the columns Ã1, . . . , Ãm form the m×m identity matrix, and that the xm+1 column
is the one referred to in the problem, having a negative entry in the objective row with no
positive entries below it; if not, we can rearrange the columns and relabel the variables to
make this true.

So the tableau looks like this:

x1 x2 x3 . . . xm xm+1 xm+2 xm+3 . . . xn z RHS

0 0 0 . . . 0 c̃m+1 < 0 c̃m+2 c̃m+3 . . . c̃n 1 ζ

1 0 0 . . . 0 ã1(m+1) ≤ 0 ã1(m+2) ã1(m+3) . . . ã1n 0 b̃1
0 1 0 . . . 0 ã2(m+1) ≤ 0 ã2(m+2) ã2(m+3) . . . ã2n 0 b̃2
0 0 1 . . . 0 ã3(m+1) ≤ 0 ã3(m+2) ã3(m+3) . . . ã3n 0 b̃3
...

...
...

. . .
...

...
...

...
. . .

...
...

...

0 0 0 . . . 1 ãm(m+1) ≤ 0 ãm(m+2) ãm(m+3) . . . ãmn 0 b̃m

This tableau represents the system of equations

c̃Tx+ z = ζ,

Ãx = b̃,

and the system Ãx = b̃ is equivalent to the original set of constraints in the linear program.
From the equation c̃Tx+ z = ζ represented by the objective row, we see that

z = ζ −
n∑

i=1

c̃ixi. (1)

From the system of equations Ãx = b̃ represented by the body of the tableau, and from the
assumption that the columns Ã1, . . . , Ãm form the identity matrix, we see that

xi = b̃−
n∑

j=m+1

ãijxj for 1 ≤ i ≤ m. (2)

The value of xm+1 in the basic feasible solution corresponding to this tableau is zero,
because xm+1 is nonbasic. Suppose we change the value of xm+1 to t > 0. Then, by
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equation (2), in order to satisfy the constraints of the linear program, the value of xi (for
1 ≤ i ≤ m) must increase by −ãi(m+1)t, which is nonnegative because ãi(m+1) ≤ 0. So
the resulting solution will have all nonnegative entries, and therefore it will be feasible.
Moreover, by equation (1), the objective value will increase by −c̃m+1t, which is strictly
positive because c̃m+1 < 0 and can be made arbitrarily large by making t sufficiently large.
Hence the linear program has feasible solutions with arbitrarily large objective value, i.e.,
it is unbounded.

2. Here is a shortcut for determining the entries in the artificial objective row in an initial
(two-phase) simplex tableau:

1. Fill in the entries in the objective row and the rows that come from the constraints.

2. In the columns for artificial variables, enter zeroes in the artificial objective row. (Also,
if you are including the −ξ column, enter 1 in that column in the artificial objective
row.)

3. In every other column, compute the sum of the entries in the rows that come from con-
straints having artificial variables (i.e., the rows that come from ≥ and = constraints).
Negate this sum and enter it in the artificial objective row.

Justify this shortcut.

. Solution. There’s really nothing to justify in step 1, because clearly those rows have to be
filled in anyway.

The artificial columns are to be basic in the initial tableau (that is their entire purpose),
so the entries in the artificial objective row in columns corresponding to artificial variables
must be zero. Likewise, −ξ is to be basic, associated with the artificial objective row, so its
column must have 1 in the artificial objective row. This justifies step 2.

Let G denote the set of indices of rows that come from ≥ constraints, and let E be
those that come from = constraints. So step 3 says that each entry in the initial artificial
objective row, except the entries in columns corresponding to artificial variables and to −ξ,
should be the negation of the sum of the entries in that column in rows G ∪ E.

The initial artificial objective row represents an equation that is equivalent to∑
i∈G∪E

ai + (−ξ) = 0, (3)

but with
∑

i∈G∪E ai expressed in terms of nonbasic variables (i.e., variables other than slack
and artificial variables).

For g ∈ G, the gth row of the body of the initial tableau represents the equation

n∑
j=1

agjxj − pg + ag = bg.

For e ∈ E, the eth row of the body of the initial tableau represents the equation

n∑
j=1

aejxj + ae = be.

Solving these equations for ag and ae, respectively, yields

ag = bg −
n∑

j=1

agjxj + pg for g ∈ G,

ae = be −
n∑

j=1

aejxj for e ∈ E.
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So ∑
i∈G∪E

ai =
∑

i∈G∪E
bi −

n∑
j=1

∑
i∈G∪E

aijxj +
∑
g∈G

pg,

and hence equation (3) becomes

−
n∑

j=1

∑
i∈G∪E

aijxj +
∑
g∈G

pg + (−ξ) = −
∑

i∈G∪E
bi. (4)

In this equation:

• The coefficient of xj , −
∑

i∈G∪E aij , is the negation of the sum of the entries in the
xj column of the initial tableau in the rows G ∪ E.

• The coefficient of any slack variable sj is zero, and the entries in the sj column in
the sj column of the initial tableau in the rows G ∪ E are all zero (because ≥ and =
constraints do not have slack variables).

• The coefficient of any surplus variable pj is 1, and the entries in the pj column in
the pj column of the initial tableau in the rows G ∪ E are all zero except for a single
−1 entry in the row that comes from the ≥ constraint containing pj .

• The coefficient of every artificial variable is zero.

• The coefficient of −ξ is 1.

• The right-hand side is −
∑

i∈G∪E bi, which is the negation of the sum of the entries in
the RHS column of the initial tableau in the rows G ∪ E.

So equation (4) expresses equation (3) in terms of nonbasic variables (all slack and artificial
variables have coefficient zero), and each coefficient other than those for artificial variables
and −ξ is the negation of the sum of the entries in that column in the initial tableau in the
rows G ∪ E, which justifies step 3.

3. Solve the following linear program by hand, using the two-phase simplex algorithm.

maximize 3x1 − 8x2 + 10x3

subject to x1 + x2 + 3x3 ≤ 40

5x1 − x3 ≥ 10

2x1 − x2 + x3 = 12

x1 ≥ 0, x2 ≤ 0, x3 unrestricted.

. Solution. First we convert to standard variable domains. Let x̄2 = −x2 and let x3 =
x+3 − x

−
3 , where x+3 ≥ 0 and x−3 ≥ 0. After we make these substitutions, the linear program

becomes
maximize 3x1 + 8x̄2 + 10x+3 − 10x−3

subject to x1 − x̄2 + 3x+3 − 3x−3 ≤ 40

5x1 − x+3 + x−3 ≥ 10

2x1 + x̄2 + x+3 − x−3 = 12

x1 ≥ 0, x̄2 ≥ 0, x+3 ≥ 0, x−3 ≥ 0.

Now we insert slack, surplus, and artificial variables:

maximize 3x1 + 8x̄2 + 10x+3 − 10x−3

subject to x1 − x̄2 + 3x+3 − 3x−3 + s1 = 40

5x1 − x+3 + x−3 − p2 + a2 = 10

2x1 + x̄2 + x+3 − x−3 + a3 = 12

x1 ≥ 0, x̄2 ≥ 0, x+3 ≥ 0, x−3 ≥ 0, s1 ≥ 0, p2 ≥ 0, a2 ≥ 0, a3 ≥ 0.
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We begin Phase I, using the artificial objective row to guide our pivots. The sequence of
simplex tableaux for Phase I appears below. The pivot entry is indicated in each tableau.

x1 x̄2 x+3 x−3 s1 p2 a2 a3 z −ξ RHS

−3 −8 −10 10 0 0 0 0 1 0 0
−7 −1 0 0 0 1 0 0 0 1 −22

1 −1 3 −3 1 0 0 0 0 0 40
5 0 −1 1 0 −1 1 0 0 0 10
2 1 1 −1 0 0 0 1 0 0 12

x1 x̄2 x+3 x−3 s1 p2 a2 a3 z −ξ RHS

0 −8 −53/5 53/5 0 −3/5 3/5 0 1 0 6
0 −1 −7/5 7/5 0 −2/5 7/5 0 0 1 −8

0 −1 16/5 −16/5 1 1/5 −1/5 0 0 0 38
1 0 −1/5 1/5 0 −1/5 1/5 0 0 0 2
0 1 7/5 −7/5 0 2/5 −2/5 1 0 0 8

x1 x̄2 x+3 x−3 s1 p2 a2 a3 z −ξ RHS

0 −3/7 0 0 0 17/7 −17/7 53/7 1 0 466/7
0 0 0 0 0 0 1 1 0 1 0

0 −23/7 0 0 1 −5/7 5/7 −16/7 0 0 138/7
1 1/7 0 0 0 −1/7 1/7 1/7 0 0 22/7
0 5/7 1 −1 0 2/7 −2/7 5/7 0 0 40/7

After two pivots, we reach a tableau that has no negative entries in the artificial objective
row to the left of the RHS column, so Phase I is complete. The value of ξ in this tableau is 0,
so Phase I was successful. All artificial variables are nonbasic, so we can delete the artificial
objective row and the columns for the artificial variables and −ξ and go on to Phase II. The
sequence of simplex tableaux for Phase II appears below.

x1 x̄2 x+3 x−3 s1 p2 z RHS

0 −3/7 0 0 0 17/7 1 466/7

0 −23/7 0 0 1 −5/7 0 138/7
1 1/7 0 0 0 −1/7 0 22/7
0 5/7 1 −1 0 2/7 0 40/7

x1 x̄2 x+3 x−3 s1 p2 z RHS

0 0 3/5 −3/5 0 13/5 1 70

0 0 23/5 −23/5 1 3/5 0 46
1 0 −1/5 1/5 0 −1/5 0 2
0 1 7/5 −7/5 0 2/5 0 8

x1 x̄2 x+3 x−3 s1 p2 z RHS

3 0 0 0 0 2 1 76

23 0 0 0 1 −4 0 92
5 0 −1 1 0 −1 0 10
7 1 0 0 0 −1 0 22

After two more pivots, we reach a tableau that has no negative entries in the objective row
to the left of the RHS column, so the corresponding basic basic feasible solution is optimal.
This optimal solution is x1 = 0, x̄2 = 22, x+3 = 0, x−3 = 10, s1 = 92, p2 = 0. In terms of the
original variables, we have

x1 = 0, x2 = −22, x3 = −10

(and s1 = 92, p2 = 0). The optimal objective value is 76.
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4. In the description of the two-phase simplex algorithm in class, I omitted one possibility
that may occur at the end of Phase I: the value of ξ is 0, but at least one artificial variable
remains in the basis (having the value 0). If this happens, then we need to “drive the
artificial variable out of the basis” in order to get a basis consisting solely of non-artificial
variables, so that we can begin Phase II. Papadimitriou and Steiglitz discuss this case
(which they call “Case 3”) in Section 2.8, on page 56. Give an example of a linear program
for which this case occurs, and go through the full two-phase simplex algorithm to solve
your example.

. Solution. A very simple (and therefore pretty stupid) example is the linear program

maximize x

subject to −x = 0

x ≥ 0.

When we insert an artificial variable into the = constraint, we get

maximize x

subject to −x+ a1 = 0

x ≥ 0, a1 ≥ 0.

The initial (two-phase) simplex tableau is

x a1 z −ξ RHS

−1 0 1 0 0
1 0 0 1 0

−1 1 0 0 0

Phase I is done already. The value of ξ is 0, so Phase I was successful. However, the artificial
variable a1 is still basic. So we need to drive the artificial variable out of the basis. We do
this by pivoting on any nonzero (not necessarily positive) entry in the row corresponding
to a1 and in a column corresponding to a non-artificial variable:

x a1 z −ξ RHS

−1 0 1 0 0
1 0 0 1 0

−1 1 0 0 0

x a1 z −ξ RHS

0 −1 1 0 0
0 1 0 1 0

1 −1 0 0 0

Now a1 is nonbasic, so we can delete the artificial objective row and the columns for
a1 and −ξ and continue with Phase II:

x z RHS

0 1 0

1 0 0

Phase II is done immediately, and the optimal solution is (unsurprisingly) x = 0, with an
optimal objective value of 0.
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5. Write the dual of the following linear program.

maximize x1 − 2x2

subject to x1 + 2x2 + x3 + x4 ≥ 0

4x1 + 3x2 − 4x3 − 2x4 ≤ 3

−x1 − x2 − 2x3 + x4 = 1

x1 unrestricted, x2 ≥ 0, x3 ≤ 0, x4 unrestricted.

The optimal solution of the linear program above has x1 = 5/2, x2 = 0, x3 = 0, and
x4 = 7/2. Use complementary slackness to determine the optimal solution to the dual.
Verify that the two solutions are both feasible for their respective linear programs and that
they have the same objective value.

. Solution. The dual linear program is

minimize 3y2 + y3

subject to y1 + 4y2 − y3 = 1

2y1 + 3y2 − y3 ≥ −2

y1 − 4y2 − 2y3 ≤ 0

y1 − 2y2 + y3 = 0

y1 ≤ 0, y2 ≥ 0, y3 unrestricted.

First we apply complementary slackness to the primal constraints and the dual variables.

1. Either x1 + 2x2 + x3 + x4 = 0 or y1 = 0 (or both). The first equation is false, because
5/2 + 2(0) + 0 + 7/2 = 6 6= 0, so we can conclude that y1 = 0.

2. Either 4x1+3x2−4x3−2x4 = 3 or y2 = 0 (or both). The first equation is true, because
4(5/2) + 3(0)− 4(0)− 2(7/2) = 3, so we cannot conclude anything about y2.

3. Either −x1−x2− 2x3 +x4 = 1 or y3 = 0 (or both). The first equation is true, because
−(5/2)− 0− 2(0) + 7/2 = 1, so we cannot conclude anything about y3.

Then we apply complementary slackness to the dual constraints and the primal variables.

1. Either y1 + 4y2 − y3 = 1 or x1 = 0 (or both). The second equation is false, because
x1 = 5/2 6= 0, so we can conclude that y1 + 4y2 − y3 = 1.

2. Either 2y1 + 3y2 − y3 = −2 or x2 = 0 (or both). The second equation is true, because
x2 = 0, so we cannot conclude anything else.

3. Either y1 − 4y2 − 2y3 = 0 or x3 = 0 (or both). The second equation is true, because
x3 = 0, so we cannot conclude anything else.

4. Either y1 − 2y2 + y3 = 0 or x4 = 0 (or both). The second equation is false, because
x4 = 7/2 6= 0, so we can conclude that y1 − 2y2 + y3 = 0.

Therefore we know 
y1 = 0,

y1 + 4y2 − y3 = 1,

y1 − 2y2 + y3 = 0.

The solution to this system gives us the values of the dual variables: y1 = 0, y2 = 1/2, and
y3 = 1.
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We verify that the given solution (x1 = 5/2, x2 = 0, x3 = 0, x4 = 7/2) is feasible in
the primal linear program:

• It satisfies the constraints, because

5/2 + 2(0) + 0 + 7/2 = 6 ≥ 0,

4(5/2) + 3(0)− 4(0)− 2(7/2) = 3 ≤ 3, and

−5/2− 0− 2(0) + 7/2 = 1 = 1.

• It satisfies the variable domains, because x2 = 0 ≥ 0 and x3 = 0 ≤ 0. (The values of
x1 and x4 are unrestricted.)

We also verify that the solution we found to the dual linear program (y1 = 0, y2 = 1/2,
y3 = 1) is feasible:

• It satisfies the constraints, because

0 + 4(1/2)− 1 = 1 = 1,

2(0) + 3(1/2)− 1 = 1/2 ≥ −2,

0− 4(1/2)− 2(1) = −4 ≤ 0, and

0− 2(1/2) + 1 = 0 = 0.

• It satisfies the variable domains, because y1 = 0 ≤ 0 and y2 = 1/2 ≥ 0. (The value
of y3 is unrestricted.)

The objective value of the primal solution is x1− 2x2 = 5/2− 2(0) = 5/2, and the objective
value of the dual solution is 3y2 +y3 = 3(1/2) + 1 = 5/2, so the two solutions have the same
objective value.

This wasn’t part of the assigned problem, but perhaps it should have been:

Note that the optimal values of the dual variables are the coefficients in a linear com-
bination of the constraints in the primal linear program that proves the optimality of the
primal solution:

0( x1 + 2x2 + x3 + x4 ≥ 0)
1
2 ( 4x1 + 3x2 − 4x3 − 2x4 ≤ 3)

+ 1(−x1 − x2 − 2x3 + x4 = 1)

0( x1 + 2x2 + x3 + x4) ≤ 0(0)
1
2 ( 4x1 + 3x2 − 4x3 − 2x4) ≤ 1

2 (3)

+ 1(−x1 − x2 − 2x3 + x4) = 1(1)

x1 + 1
2x2 ≤ 5

2

Since x2 ≥ 0, we conclude from this inequality that every feasible value of the primal
objective function z must satisfy

z = x1 − 2x2 ≤ x1 + 1
2x2 ≤

5
2 .

Therefore, the feasible solution x = [5/2, 0, 0, 7/2]T, which yields the objective value 5/2,
must be optimal.

Likewise, the optimal values of the primal variables are the coefficients in a linear
combination of the constraints in the dual linear program that proves the optimality of the

7



dual solution:
5
2 ( y1 + 4y2 − y3 = 1)

0(2y1 + 3y2 − y3 ≥ −2)

0( y1 − 4y2 − 2y3 ≤ 0)

+ 7
2 ( y1 − 2y2 + y3 = 0
5
2 ( y1 + 4y2 − y3) = 5

2 (1)

0(2y1 + 3y2 − y3) ≥ 0(−2)

0( y1 − 4y2 − 2y3) ≥ 0(0)

+ 7
2 ( y1 − 2y2 + y3) = 7

2 (0)

3y1 + 3y2 + y3 ≥ 5
2

Since y1 ≤ 0, we conclude from this inequality that every feasible value of the dual objective
function w must satisfy

w = 3y2 + y3 ≥ 3y1 + 3y2 + y3 ≥ 5
2 .

Therefore, the feasible solution y = [0, 1/2, 1]T, which yields the objective value 5/2, must
be optimal.

6. Describe (at least) two essentially different ways to use the (maximizing) simplex algorithm
to solve a minimization linear program. What are the comparative advantages and disad-
vantages of each? Given a minimization linear program, what characteristics would indicate
that one method or the other may be a better approach?

. Solution. One method is simply to negate the objective function. Maximizing the negation
is equivalent to minimizing the original function. The main advantage of this method is that
it is simple and direct to understand and implement. One disadvantage is that minimization
LPs canonically have ≥ constraints, which will require the use of the two-phase simplex
algorithm.

Another method is to solve the dual maximization LP and then use complementary
slackness to solve for the optimal primal solution. One advantage of this approach is that
the dual of a minimization LP in canonical form is a maximization LP in canonical form,
which does not require the two-phase simplex algorithm (as long as the right-hand sides
of the constraints are nonnegative, i.e., if the primal minimization LP has nonnegative
coefficients in the objective function). A disadvantage of this method is that it requires
the computation of the dual LP; in addition to requiring additional time to write the dual,
this may introduce the complications of nonstandard variable domains if the constraints in
the primal LP are not in canonical form. Another disadvantage is the need to go through
the reasoning of complementary slackness and to solve a system of equations to obtain the
primal solution.

A third method is to solve the dual maximization LP using the simplex algorithm,
keeping the artificial variable columns (if any) through Phase II, and then read off the
solution to the primal minimization LP from the optimal tableau as the entries in the
objective row in the columns corresponding to slack and artificial variables. This method
shares with the second method the advantage that the dual of a minimization LP in canonical
form is a maximization LP in canonical form and the disadvantage that the dual must be
computed. However, an additional advantage is that we get the optimal primal solution
immediately upon solving the dual; no further work is necessary. On the other hand, an
additional disadvantage is the need to carry the artificial variable columns through Phase II
(and to remember not to pivot on them!).

If the minimization LP has many ≤ constraints (with nonnegative right-hand sides),
then simply negating the objective function might be a good approach, because such con-
straints in a maximization LP are easily handled directly by the simplex algorithm. If the
minimization LP is in canonical form and has nonnegative objective function coefficients,
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then one of the two approaches using the dual LP is probably best, because it will not be
necessary to use the two-phase simplex algorithm to solve the dual. The third approach is
likely to be computationally better than the second, because carrying the artificial variable
columns through the pivots really is equivalent to solving the system obtained from comple-
mentary slackness using row operations, so these steps might as well be done together. On
the other hand, the sequence of pivots taken in the simplex algorithm may not be the most
efficient sequence of row operations to solve that system, in which case the second approach
may be better (but this is not something that can be easily predicted ahead of time).
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