IP formulation examples

June 24, 2015

1. Machine shop reopening. A small machine shop is reopening after a fire had forced it to close for extensive repairs. The shop has three product lines: plates, gears, and housings. Each product line requires specialized equipment, and because of inactivity and possible damage all equipment must be serviced before it is used.

The shop plans to open on a limited basis for the first two weeks, employing only three workers, each for 40 hours per week. It has available 2800 units of metal and can purchase additional metal for $\$ 2$ per unit. The per-unit labor, metal, overhead costs, and selling prices for their products are shown below.

	Labor (minutes)	Metal (units)	Overhead (dollars)	Selling price (dollars)
Plates	10	4	6	24
Gears	30	1	9	32
Housings	20	6	8	30

The existing backlog of orders for gears includes mostly orders for large quantities. Therefore, management does not believe that it would be useful to make gears during the first two weeks unless the shop can produce at least 200 of them.

The servicing costs are $\$ 600$ for the plate equipment, $\$ 900$ for the gear equipment, and $\$ 700$ for the housing equipment. The shop does not expect to use all equipment in the first two weeks.

Management has $\$ 2000$ remaining from its fire insurance settlement, and plans to spend that sum on the necessary service and possibly additional metal stock. The large backlog of orders that accumulated while the shop was closed indicates that they can sell any products they make. The overhead is charged against the selling price.

Management's goal for the first two weeks is to maximize the profit so that they can afford to reopen full operations as quickly as possible.
2. Utility connections. Five major electrical consumers A, B, C, D, and E (e.g., manufacturing plants, hospitals, and housing developments) are to be added in a region served by three power plants X, Y, and Z. The connection costs to the new consumers (in millions of dollars) are given in the table below. The objective is to connect the new consumers to the generating plants in the most economical way possible.

	A	B	C	D	E
X	2	2	3	1	8
Y	3	7	2	6	4
Z	5	4	4	3	6

The needs of the new consumers are $12,10,15,16$, and 15 , respectively. The available capacities of the generating plants are 40,32 , and 30 , respectively.

Two of the new consumers, A and B, are hospitals. In order to lessen the possibility that both hospitals could be without power simultaneously, they cannot both be connected to the same power plant.

Determine which new consumers should be connected to which power plant in order to minimize the connection costs.
3. Product introduction. Esquire Products will produce four new product lines in the next month. The respective per-unit profits on the lines are $\$ 200, \$ 220, \$ 185$, and $\$ 190$. They are basically testing the market and do not wish to produce more than 700 of any one line. The respective fixed start-up costs for the products are $\$ 4000, \$ 5000, \$ 3000$, and $\$ 3500$. Each item produced will require a part called an autorhombulator. The supplier of the autorhombulators charges according to the following schedule:
$\left\{\begin{aligned} \$ 50 & \text { ordering charge, } \\ \$ 9 & \text { each for the first } 100 \text { units }, \\ \$ 6 & \text { each for all additional units. }\end{aligned}\right.$

Esquire has budgeted $\$ 20,500$ for the start-up costs and the purchase of the autorhombulators. Product lines 1 and 2 require a half hour of production time per item while lines 3 and 4 require 0.4 hour per item. There will be 800 hours of production time available during the month. How many of each line should they produce in order to maximize their profit?
4. Boolean satisfiability. Determine truth values for the Boolean variables x_{1}, x_{2}, and x_{3} so that the propositional formula

$$
\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{3}\right)
$$

is satisfied (i.e., evaluates to true), or determine that the formula is unsatisfiable. Here \wedge denotes AND, \vee denotes OR, and \bar{x}_{i} denotes NOT x_{i}.

24 June
Machine shop reopening
Variables and domains:
$p \geq 0$: number of plates to produce
$g \geq 0$: number of gears to produce
$h \geqslant 0$: number of housings to produce
$m \geqslant 0$: number of units of additional metal to buy
$S_{p} \in\{0,1\}$: whether to service plate equipment
$S_{g} \in\{0,1\}$: whether to service gear equipment
$s_{h} \in\{0,1\}$: Whether to service housing equipment
Objective: Maximize profit (selling price less overhead). $\max 18 p+23 g+22 h$
Constraints:

- Resource constraints for labor and metal.

$$
\begin{aligned}
& 10 p+30 g+20 h \leq 14400 \quad[1 a b o r] \\
& \times 3 \times(40 \mathrm{~h} / \mathrm{m} \mathrm{k}) \times(2 \mathrm{wk}) \times(60 \mathrm{~min} / \mathrm{mr}) \\
& 4 p+g+6 h \leqslant 2800+m \quad[\text { metal }]
\end{aligned}
$$

- Budget for servicing costs and additional metal.

$$
600 s_{p}+900 s_{g}+700 s_{h}+2 m \leqslant 2000 \text { [budget] }
$$

- Must service equipment in order to use it.
$\begin{array}{ll}p \leq 10000 s_{p} & \text { [If } s_{p}=0 \text {, then } p \text { must be } 0 . \\ q \leq 10000 s_{p} & \text { If } s_{p}=1 \text {, then } p \leq 10000 \text { which }\end{array}$
$g \leqslant 10000 s_{g} \quad$ If $s_{p}=1$, then $p \leqslant 10000$, which
$h \leq 10000 \mathrm{~s}_{h}$ is sufficiently large not to constrain p.]
- If any gears are made, then at least 200 must be made.
no constraint really
$g \geqslant 200 \mathrm{sg} \quad\left[\right.$ If $s_{g}=0$, this is $\tilde{g} \geqslant 0$.
If $s_{g}=1$, this is $g \geqslant 200$.]
(This is a minimum batch size constraint.)
Full formulation:

$$
\begin{array}{cc}
\text { max } 18 p+23 g+22 h & \text { [profit] } \\
\text { sit. } 10 p+30 g+20 h \leq 14400 & \text { [labor] } \\
4 p+g+h \leq 2800+m & \text { [metal] } \\
600 s_{p}+900 s_{g}+700 s_{h}+2 m \leq 2000 & \text { [budget] } \\
p \leqslant 10000 s_{p} & \} \begin{array}{l}
\text { service } \\
\text { requirements] }
\end{array}\right] \\
h \leq 10000 s_{g} \\
g \geq 10000 s_{h} & \text { [min batch size] } \\
g \geq 000 s_{g} & \\
p \geq 0, g \geq 0, h \geq 0, m \geq 0, s_{p} \in\{0,1\}, s_{g} \in\{0,1\}, \\
& s_{h} \in\{0,1\} .
\end{array}
$$

24 June
Utility connections
Variables and domains:
For $i \in\{A, B, C, D, E\}$ and $j \in\{X, Y, Z\}$:
$x_{i j} \in\{0,1\}$: whether to connect consumer i to plant j.
Objective: Minimize total connection cost.

$$
\begin{aligned}
& \min 2 x_{A X}+2 x_{B X}+3 x_{C X}+x_{D X}+8 x_{E X} \\
& +3 x_{A Y}+7 x_{B Y}+2 x_{C Y}+6 x_{D Y}+4 x_{E Y} \\
& \quad+5 x_{A Z}+4 x_{B Z}+4 x_{C Z}+3 x_{D Z}+6 x_{E Z}
\end{aligned}
$$

Constraints:

- Total demand connected to each plant cannot exceed available capacity.
- Every consumer must be connected to (exactly) one plant.

$$
\begin{aligned}
& x_{A X}+x_{A Y}+x_{A Z}=1 \\
& x_{B X}+x_{B Y}+x_{B Z}=1 \\
& x_{C X}+x_{C Y}+x_{C Z}=1 \\
& x_{D X}+x_{D Y}+x_{D Z}=1 \\
& x_{E X}+x_{E Y}+x_{E Z}=1
\end{aligned}
$$

- A and B cannot be connected to the Same plant.

$$
\begin{aligned}
& X_{A X}+X_{B X} \leq 1 \\
& X_{A Y}+x_{B Y} \leq 1 \\
& x_{A Z}+x_{B Z} \leq 1
\end{aligned}
$$

24 June
Product introduction
Variables and domains:

$$
\left.\begin{array}{l}
x_{1} \geq 0 \\
x_{2} \geq 0 \\
x_{3} \geq 0 \\
x_{4} \geq 0 \\
s_{1} \in\{0,1\} \\
s_{2} \in\{0,1\}
\end{array}\right\} \text { Numbers of units of each of the }
$$

$\left.s_{2} \in\{0,1\}\right\}$ Whether to pay start-up costs $s_{3} \in\{0,1\}$ (for each of the four lines.

$$
s_{4} \in\{0,1\}
$$

$a \geq 0$: Number of autorhombulators to buy. [… and some other, less obvious variables later.]

Objective: Maximize profit.

$$
\max 200 x_{1}+220 x_{2}+185 x_{3}+190 x_{4}
$$

Constraints:

- Production limit: No more than 700 of any one line.

$$
\begin{aligned}
& x_{1} \leqslant 700 \\
& x_{2} \leqslant 700 \\
& x_{3} \leqslant 700 \\
& x_{4} \leqslant 700
\end{aligned}
$$

- Resource constraints for production time and autorhombulators.

$$
\begin{aligned}
& 0.5 x_{1}+0.5 x_{2}+0.4 x_{3}+0.4 x_{4} \leq 800 \quad \text { [prod.time] } \\
& x_{1}+x_{2}+x_{3}+x_{4} \leq a \quad \text { [autorhombulators] }
\end{aligned}
$$

- Must pay start-up costs in order to produce each line.

$$
\begin{aligned}
& x_{1} \leq 10000 s_{1} \\
& x_{2} \leq 10000 s_{2} \\
& x_{3} \leq 10000 s_{3} \\
& x_{4} \leq 10000 s_{4}
\end{aligned}
$$

(Actually these can be combined with the production limit constraints from earlier: $x_{1} \leq 700 s_{1}$, etc. Then both sets of requirements are handled together.)

- Autorhombulator purchase cost.

This is tricky, because this cost is not linear it is piecewise linear. Here is how to handle a piecewise linear cost.
First, write a piecewise-defined mathematical function giving the cost of purchasing $a \geq 0$ autorhombulators.

Case 1: $a=0$. Easy, cost is $\$ 0$.

Product introduction - (2)
Case 2: $1 \leqslant a \leq 100$. We have to pay the $\$ 50$ ordering charge, plus \$9 for each unit. So the cost is $50+9 a$.

Case 3: $a \geqslant 100$. We have to pay the $\$ 50$ ordering charge, plus $\$ 900$ to buy the first 100 units, plus \$6 for each of the other a-100 units. So the cost is $950+6(a-100)=$ $350+6 a$.

Therefore, the cost $C(a)$ of purchasing $a \geq 0$ autorhombulators is

$$
C(a)=\left\{\begin{array}{ccc}
0, & \text { if } a=0 ; & \text { [case 1] } \\
50+9 a, & \text { if } 1 \leq a \leq 100 ; & \text { [ass 2] } \\
350+6 a, & \text { if } a \geq 100 . & \text { [case } 3]
\end{array}\right.
$$

Note that cases 2 and 3 overlap at $a=100$, but that's OK because both formulas give the same value there.

We introduce $\{0,1\}$ variables representing which case we are in.
$C_{1} \in\{0,1\}$: whether we are in case 1
$c_{2} \in\{0,1\}$: whether we are in case 2
$c_{3} \in\{0,1\}$: whether we are in case 3

We also introduce variables a_{1}, a_{2}, a_{3}, which will be the value of a if we are in the corresponding case or zero otherwise.
$a_{1} \geq 0$: the value of a if we are in case 1, or else zero.
$a_{2} \geq 0$: the value of a if we are in case 2, or else zero.
$a_{3} \geq 0$: the value of a if we are in case 3 , or else zeno.
[Note: these are not artificial variables. U]
Now we need some constraints.
We must be in exactly one case:

$$
c_{1}+c_{2}+c_{3}=1
$$

We need to enforce the intended meanings of the a_{i} 's, and put them in the correct ranges:

$$
\begin{aligned}
\text { rect ranges: } & \begin{array}{ll}
\text { (This is pretty silly for } \\
\text { this particular example, } \\
\text { because case } 1 \text { is } 0 \leq a \leq 0 .)
\end{array} \\
1 c_{1} \leq a_{1} \leq c_{1} \leq 100 c_{2} & (\text { Case } 2: 1 \leq a \leq 100) \\
100 c_{3} \leq a_{3} \leq 10000 c_{3} & (\text { Case } 3: 100 \leq a \leq 10000)
\end{aligned}
$$

This part is necessary in order to force a_{3} to be zero if $c_{3}=0$, but it shouldnit constrain a_{3} if $c_{3}=1$, so the coefficient 10000 is chosen to be sufficiently large that $a \leqslant 10000$ will never be a serious restriction.

Product introduction -(3)
We need to tie a_{1}, a_{2}, a_{3} to the previously defined variable a :

$$
a=a_{1}+a_{2}+a_{3}
$$

Now the expression for the cost $C(a)$ is

$$
\underbrace{O c_{1}}_{\text {case 1 }}+\underbrace{50 c_{2}+9 a_{2}}_{\text {case 2 }}+\underbrace{350 c_{3}+6 a_{3}}_{\text {case 3 }} .
$$

So the budget constraint for startup and autorhombulator purchase costs is

$$
\begin{aligned}
4000 s_{1} & +5000 s_{2}+3000 s_{3}+3500 s_{4} \\
& +50 c_{2}+9 a_{2}+350 c_{3}+6 a_{3}
\end{aligned}
$$

Full formulation: [removing a_{1} because it's always zero]

$$
\begin{aligned}
& \left.\begin{array}{l}
\max 200 x_{1}+220 x_{2}+185 x_{3}+190 x_{4} \quad \text { [profit] } \\
\text { s.t. } x_{1} \leq 700 s_{1} \\
x_{2} \leq 700 s_{2} \\
x_{3} \leq 700 s_{3} \\
x_{4} \leq 700 s_{4}
\end{array}\right\} \quad \begin{array}{c}
\text { [production limits and must } \\
\text { pay start-up costs] }
\end{array} \\
& \left.\begin{array}{l}
0.5 x_{1}+0.5 x_{2}+0.4 x_{3}+0.4 x_{4} \leq 800 \quad \text { [production time] } \\
x_{1}+x_{2}+x_{3}+x_{4} \leq a \\
c_{1}+c_{2}+c_{3}=1 \quad \text { [autorhombulators] } \\
c_{2} \leq a_{2} \leq 100 c_{2} \quad \text { exactly one case for piecenise function] } \\
100 c_{3} \leq a_{3} \leq 10000 c_{3}
\end{array}\right\} \text { [ranges in piecewise function] } \\
& a=a_{2}+a_{3} \\
& \text { [connect a to piecewise variables] } \\
& 4000 s_{1}+5000 s_{2}+3000 s_{3}+3500 s_{4} \\
& \\
& +50 c_{2}+9 a_{2}+350 c_{3}+6 a_{3} \leq 20500 \quad[\text { budget] } \\
& \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0, s_{1} \in\{0,1\}, s_{2} \in\{0,1\}, \\
& s_{3} \in\{0,1\}, s_{4} \in\{0,1\}, a \geq 0, c_{1} \in\{0,1\}, c_{2} \in\{0,1\}, \\
& c_{3} \in\{0,1\}, a_{2} \geq 0, a_{3} \geq 0 .
\end{aligned}
$$

24 June
Boolean satisfiability
Terminology used in the Boolean satisfiability (SAT) problem:

- Variable: X_{1}, X_{2}, \ldots
- Literal: a variable or its negation (e.g., x_{3}, \bar{x}_{5})
- Disjunction: things connected with v (OR)
- Conjunction: things connected with \wedge (AND)

A propositional formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals. In this case the disjunctions of literals are called clauses.

Theorem. Every propositional formula can be rewritten in conjunctive normal form.
Proof. Exercise.
The given propositional formula is in CNF. So we need to satisfy each clause.
Variables and domains:

$$
x_{1} \in\{0,1\}
$$

$x_{2} \in\{0,1\} \quad$ [O means false, 1 means true] $x_{3} \in\{0,1\}$

Constraints: Satisfy each clause.

$$
\begin{aligned}
x_{1}+\left(1-x_{2}\right) \geqslant 1 & {\left[x_{1} \vee \bar{x}_{2}\right] } \\
\left(1-x_{2}\right)+\left(1-x_{3}\right) \geqslant 1 & {\left[\bar{x}_{2} \vee \bar{x}_{3}\right] } \\
x_{1}+x_{2}+\left(1-x_{3}\right) \geqslant 1 & {\left[x_{1} \vee x_{2} \vee \bar{x}_{3}\right] } \\
\left(1-x_{1}\right)+x_{3} \geqslant 1 & {\left[\bar{x}_{1} \vee x_{3}\right] }
\end{aligned}
$$

Objective: We are not really optimizing anything here_ just seeking a feasible solution. So we can just use a constant function as the objective function, e.g.,
$\max 0$
Then the possible outcomes of the solution process are "optimal objective value is 0 " (so the formula is satisfiable, and the "optimal" values of the variables give a satisfying assignment of truth values) or else "infeasible."

