
Combinatorial Optimization
Midterm examination: solutions

1. Solve the following linear program. You may not use Maple for this problem.

minimize 3x1 + 2x2 − x3 − 4x4

subject to x1 + x2 + x3 + x4 = 10

2x1 + x3 − 2x4 ≥ 6

x1 + 3x4 ≤ 30

3x1 + x2 ≥ −8

x2 + 3x3 ≥ 3

x1 ≥ 0, x2 unrestricted, x3 ≤ 0, x4 ≥ 0.

. Solution. There are several possible approaches. One approach begins by writing the dual:

maximize 10y1 + 6y2 + 30y3 − 8y4 + 3y5

subject to y1 + 2y2 + y3 + 3y4 ≤ 3

y1 + y4 + y5 = 2

y1 + y2 + 3y5 ≥ −1

y1 − 2y2 + 3y3 ≤ −4

y1 unrestricted, y2 ≥ 0, y3 ≤ 0, y4 ≥ 0, y5 ≥ 0.

In order to make the right-hand sides nonnegative, we multiply the last two constraints
by −1. Then we convert to standard variable domains by making the substitutions y1 =
y+1 − y

−
1 and y3 = −ȳ3 with y+1 ≥ 0, y−1 ≥ 0, and ȳ3 ≥ 0:

maximize 10y+1 − 10y−1 + 6y2 − 30ȳ3 − 8y4 + 3y5

subject to y+1 − y−1 + 2y2 − ȳ3 + 3y4 ≤ 3

y+1 − y−1 + y4 + y5 = 2

−y+1 + y−1 − y2 − 3y5 ≤ 1

−y+1 + y−1 + 2y2 + 3ȳ3 ≥ 4

y+1 ≥ 0, y−1 ≥ 0, y2 ≥ 0, ȳ3 ≥ 0, y4 ≥ 0, y5 ≥ 0.

Next we insert slack, surplus, and artificial variables:

maximize 10y+1 − 10y−1 + 6y2 − 30ȳ3 − 8y4 + 3y5

subject to y+1 − y−1 + 2y2 − ȳ3 + 3y4 + s1 = 3

y+1 − y−1 + y4 + y5 + a2 = 2

−y+1 + y−1 − y2 − 3y5 + s3 = 1

−y+1 + y−1 + 2y2 + 3ȳ3 − p4 + a4 = 4

y+1 ≥ 0, y−1 ≥ 0, y2 ≥ 0, ȳ3 ≥ 0, y4 ≥ 0, y5 ≥ 0, s1 ≥ 0, a2 ≥ 0, s3 ≥ 0, p4 ≥ 0, a4 ≥ 0.

We form the initial tableau for the two-phase simplex algorithm:

y+1 y−1 y2 ȳ3 y4 y5 s1 a2 s3 p4 a4 z −ξ RHS

−10 10 −6 30 8 −3 0 0 0 0 0 1 0 0
0 0 −2 −3 −1 −1 0 0 0 1 0 0 1 −6

1 −1 2 −1 3 0 1 0 0 0 0 0 0 3
1 −1 0 0 1 1 0 1 0 0 0 0 0 2
−1 1 −1 0 0 −3 0 0 1 0 0 0 0 1
−1 1 2 3 0 0 0 0 0 −1 1 0 0 4
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Pivot on the 3 in the ȳ3 column:

y+1 y−1 y2 ȳ3 y4 y5 s1 a2 s3 p4 a4 z −ξ RHS

0 0 −26 0 8 −3 0 0 0 10 −10 1 0 −40
−1 1 0 0 −1 −1 0 0 0 0 1 0 1 −2

2/3 −2/3 8/3 0 3 0 1 0 0 −1/3 1/3 0 0 13/3
1 −1 0 0 1 1 0 1 0 0 0 0 0 2
−1 1 −1 0 0 −3 0 0 1 0 0 0 0 1
−1/3 1/3 2/3 1 0 0 0 0 0 −1/3 1/3 0 0 4/3

Pivot on the 1 in the y5 column:

y+1 y−1 y2 ȳ3 y4 y5 s1 a2 s3 p4 a4 z −ξ RHS

3 −3 −26 0 11 0 0 3 0 10 −10 1 0 −34
0 0 0 0 0 0 0 1 0 0 1 0 1 0

2/3 −2/3 8/3 0 3 0 1 0 0 −1/3 1/3 0 0 13/3
1 −1 0 0 1 1 0 1 0 0 0 0 0 2
2 −2 −1 0 3 0 0 3 1 0 0 0 0 7

−1/3 1/3 2/3 1 0 0 0 0 0 −1/3 1/3 0 0 4/3

All entries in the artificial objective row are nonnegative, so Phase I is complete. The
artificial objective value is 0, so Phase I was successful. All artificial variables are nonbasic,
so we can continue to Phase II. We delete the artificial objective row and the −ξ column,
but we will keep the artificial variable columns because we want the optimal solution to the
minimizing linear program (we are applying the simplex algorithm to the dual).

y+1 y−1 y2 ȳ3 y4 y5 s1 a2 s3 p4 a4 z RHS

3 −3 −26 0 11 0 0 3 0 10 −10 1 −34

2/3 −2/3 8/3 0 3 0 1 0 0 −1/3 1/3 0 13/3
1 −1 0 0 1 1 0 1 0 0 0 0 2
2 −2 −1 0 3 0 0 3 1 0 0 0 7

−1/3 1/3 2/3 1 0 0 0 0 0 −1/3 1/3 0 4/3

Pivot on the 8/3 in the y2 column:

y+1 y−1 y2 ȳ3 y4 y5 s1 a2 s3 p4 a4 z RHS

19/2 −19/2 0 0 161/4 0 39/4 3 0 27/4 −27/4 1 33/4

1/4 −1/4 1 0 9/8 0 3/8 0 0 −1/8 1/8 0 13/8
1 −1 0 0 1 1 0 1 0 0 0 0 2

9/4 −9/4 0 0 33/8 0 3/8 3 1 −1/8 1/8 0 69/8
−1/2 1/2 0 1 −3/4 0 −1/4 0 0 −1/4 1/4 0 1/4

Pivot on the 1/2 in the y−1 column:

y+1 y−1 y2 ȳ3 y4 y5 s1 a2 s3 p4 a4 z RHS

0 0 0 19 26 0 5 3 0 2 −2 1 13

0 0 1 1/2 3/4 0 1/4 0 0 −1/4 1/4 0 7/4
0 0 0 2 −1/2 1 −1/2 1 0 −1/2 1/2 0 5/2
0 0 0 9/2 3/4 0 −3/4 3 1 −5/4 5/4 0 39/4
−1 1 0 2 −3/2 0 −1/2 0 0 −1/2 1/2 0 1/2

All entries in the objective row are nonnegative, so this tableau is optimal. But this is the
optimal tableau for the dual, so the optimal solution to the primal is found in the objective
row in columns corresponding to slack and artificial variables (i.e., s1, a2, s3, and a4)—
except that we negated the third and fourth constraints in the dual, so we need to negate
the values at the top of the s3 and a4 columns. Therefore, the optimal solution to the primal
is x1 = 5, x2 = 3, x3 = 0, x4 = 2, which yields the objective value 13.
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Another approach is to negate the objective function in the original linear program
and maximize. Multiply the fourth constraint by −1 in order to make the right-hand side
nonnegative, and then convert to standard variable domains by making the substitutions
x2 = x+2 − x

−
2 and x3 = −x̄3 with x+2 ≥ 0, x−2 ≥ 0, and x̄3 ≥ 0. The result is the following

linear program.
maximize −3x1 − 2x+2 + 2x−2 − x̄3 + 4x4

subject to x1 + x+2 − x−2 − x̄3 + x4 = 10

2x1 − x̄3 − 2x4 ≥ 6

x1 + 3x4 ≤ 30

−3x1 − x+2 + x−2 ≤ 8

x+2 − x−2 − 3x̄3 ≥ 3

x1 ≥ 0, x+2 ≥ 0, x−2 ≥ 0, x̄3 ≥ 0, x4 ≥ 0.

(1)

Insert slack, surplus, and artificial variables:

maximize −3x1 − 2x+2 + 2x−2 − x̄3 + 4x4

subject to x1 + x+2 − x−2 − x̄3 + x4 + a1 = 10

2x1 − x̄3 − 2x4 − p2 + a2 = 6

x1 + 3x4 + s3 = 30

−3x1 − x+2 + x−2 + s4 = 8

x+2 − x−2 − 3x̄3 − p5 + a5 = 3

x1 ≥ 0, x+2 ≥ 0, x−2 ≥ 0, x̄3 ≥ 0, x4 ≥ 0, a1 ≥ 0, p2 ≥ 0, a2 ≥ 0, s3 ≥ 0, s4 ≥ 0, p5 ≥ 0, a5 ≥ 0.

Next we form the initial tableau for the two-phase simplex algorithm:

x1 x+2 x−2 x̄3 x4 a1 p2 a2 s3 s4 p5 a5 z −ξ RHS

3 2 −2 1 −4 0 0 0 0 0 0 0 1 0 0
−3 −2 2 5 1 0 1 0 0 0 1 0 0 1 −19

1 1 −1 −1 1 1 0 0 0 0 0 0 0 0 10
2 0 0 −1 −2 0 −1 1 0 0 0 0 0 0 6
1 0 0 0 3 0 0 0 1 0 0 0 0 0 30
−3 −1 1 0 0 0 0 0 0 1 0 0 0 0 8

0 1 −1 −3 0 0 0 0 0 0 −1 1 0 0 3

Pivot on the 2 in the x1 column:

x1 x+2 x−2 x̄3 x4 a1 p2 a2 s3 s4 p5 a5 z −ξ RHS

0 2 −2 5/2 −1 0 3/2 −3/2 0 0 0 0 1 0 −9
0 −2 2 7/2 −2 0 −1/2 3/2 0 0 1 0 0 1 −10

0 1 −1 −1/2 2 1 1/2 −1/2 0 0 0 0 0 0 7
1 0 0 −1/2 −1 0 −1/2 1/2 0 0 0 0 0 0 3
0 0 0 1/2 4 0 1/2 −1/2 1 0 0 0 0 0 27
0 −1 1 −3/2 −3 0 −3/2 3/2 0 1 0 0 0 0 17
0 1 −1 −3 0 0 0 0 0 0 −1 1 0 0 3
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Pivot on the 1 in the bottom row in the x+2 column:

x1 x+2 x−2 x̄3 x4 a1 p2 a2 s3 s4 p5 a5 z −ξ RHS

0 0 0 17/2 −1 0 3/2 −3/2 0 0 2 −2 1 0 −15
0 0 0 −5/2 −2 0 −1/2 3/2 0 0 −1 2 0 1 −4

0 0 0 5/2 2 1 1/2 −1/2 0 0 1 −1 0 0 4
1 0 0 −1/2 −1 0 −1/2 1/2 0 0 0 0 0 0 3
0 0 0 1/2 4 0 1/2 −1/2 1 0 0 0 0 0 27
0 0 0 −9/2 −3 0 −3/2 3/2 0 1 −1 1 0 0 20
0 1 −1 −3 0 0 0 0 0 0 −1 1 0 0 3

Pivot on the 5/2 in the x̄3 column:

x1 x+2 x−2 x̄3 x4 a1 p2 a2 s3 s4 p5 a5 z −ξ RHS

0 0 0 0 −39/5 −17/5 −1/5 1/5 0 0 −7/5 7/5 1 0 −143/5
0 0 0 0 0 1 0 1 0 0 0 1 0 1 0

0 0 0 1 4/5 2/5 1/5 −1/5 0 0 2/5 −2/5 0 0 8/5
1 0 0 0 −3/5 1/5 −2/5 2/5 0 0 1/5 −1/5 0 0 19/5
0 0 0 0 18/5 −1/5 2/5 −2/5 1 0 −1/5 1/5 0 0 131/5
0 0 0 0 3/5 9/5 −3/5 3/5 0 1 4/5 −4/5 0 0 136/5
0 1 −1 0 12/5 6/5 3/5 −3/5 0 0 1/5 −1/5 0 0 39/5

All entries in the artificial objective row are nonnegative, so Phase I is complete. The
artificial objective value is 0, so Phase I was successful. All artificial variables are nonbasic,
so we can continue to Phase II. We delete the artificial objective row, the artificial variable
columns, and the −ξ column.

x1 x+2 x−2 x̄3 x4 p2 s3 s4 p5 z RHS

0 0 0 0 −39/5 −1/5 0 0 −7/5 1 −143/5

0 0 0 1 4/5 1/5 0 0 2/5 0 8/5
1 0 0 0 −3/5 −2/5 0 0 1/5 0 19/5
0 0 0 0 18/5 2/5 1 0 −1/5 0 131/5
0 0 0 0 3/5 −3/5 0 1 4/5 0 136/5
0 1 −1 0 12/5 3/5 0 0 1/5 0 39/5

Pivot on the 4/5 in the x4 column:

x1 x+2 x−2 x̄3 x4 p2 s3 s4 p5 z RHS

0 0 0 39/4 0 7/4 0 0 5/2 1 −13

0 0 0 5/4 1 1/4 0 0 1/2 0 2
1 0 0 3/4 0 −1/4 0 0 1/2 0 5
0 0 0 −9/2 0 −1/2 1 0 −2 0 19
0 0 0 −3/4 0 −3/4 0 1 1/2 0 26
0 1 −1 −3 0 0 0 0 −1 0 3

All entries in the objective row are nonnegative, so this tableau is optimal. So the optimal
solution to the linear program (1) is x1 = 5, x+2 = 3, x−2 = 0, x̄3 = 0, x4 = 2, which
yields the objective value −13. This means that the optimal solution to the original linear
program is x1 = 5, x2 = 3, x3 = 0, x4 = 2, with objective value 13.
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2. Formulate a linear program for the following scenario. Then solve the linear program and
interpret your results.

Leisure Furniture, Inc. (LFI) makes outdoor chairs, tables, lounges, and benches.
The main resources required for production are plastic webbing, metal tubing, and
wood. The number of units of each resource required per item and the per-item
profit are given below.

Tubing Webbing Wood Per-unit
(feet) (yards) (board feet) profit

Chair 18 28 $11
Table 18 10 $18
Lounge 24 35 $14
Bench 20 14 $ 9

The main activities in production are tube bending and assembly. The number
of hours of each activity required per unit of each product are given in the table
below.

Chair Table Lounge Bench

Tube bending 1/3 1/8 1/4 1/8
Assembly 1/2 1/2 1/3 1/3

LFI is planning its first week’s production for the spring. Available during that
week are 120 hours of bending time, 160 hours of assembly time, 6,000 feet of
tubing, 5,000 yards of webbing, and 1,000 board feet of wood. The lounge is the
most popular product, so LFI wants to make at least 100 of them. Tables and
chairs are commonly sold in sets of two chairs and a table, so they want to make
at least twice as many chairs as tables. Otherwise they want to make the products
that will maximize their profit if sold.

. Solution. Let C, T , L, and B be the numbers of chairs, tables, lounges, and benches to
be made, respectively. All of these variables are nonnegative. The linear program below
represents the problem of maximizing profit subject to the constraints in the problem.

maximize 11C + 18T + 14L+ 9B [profit]

subject to 18C + 18T + 24L+ 20B ≤ 6000 [tubing]

28C + 35L ≤ 5000 [webbing]

10T + 14B ≤ 1000 [wood]
1
3C + 1

8T + 1
4L+ 1

8B ≤ 120 [bending]
1
2C + 1

2T + 1
3L+ 1

3B ≤ 160 [assembly]

L ≥ 100 [lounge production]

C − 2T ≥ 0 [chairs & tables]

C ≥ 0, T ≥ 0, L ≥ 0, B ≥ 0.

The following Maple worksheet solves this linear program.

> restart;

> with(Optimization);

[ImportMPS , Interactive,LPSolve,LSSolve,Maximize,Minimize,NLPSolve,

QPSolve]
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> profit:=(C,T,L,B)->11*C+18*T+14*L+9*B;

profit := (C, T, L,B)→ 11C + 18T + 14L+ 9B

> constraints:=[18*C+18*T+24*L+20*B<=6000,28*C+35*L<=5000,

10*T+14*B<=1000,C/3+T/8+L/4+B/8<=120,C/2+T/2+L/3+B/3<=160,

L>=100,C-2*T>=0];

constraints :=

[
18C + 18T + 24L+ 20B ≤ 6000, 28C + 35L ≤ 5000,

10T+14B ≤ 1000,
1

3
C+

1

8
T+

1

4
L+

1

8
B ≤ 120,

1

2
C+

1

2
T+

1

3
L+

1

3
B ≤ 160,

100 ≤ L, 0 ≤ C − 2T

]
> LPSolve(profit(C,T,L,B),constraints,’maximize’,

assume=nonnegative);[
2942.09183674067, [B = 52.2959183669781, C = 53.5714285714286, L = 100.,

T = 26.7857142862306]
]

Unfortunately, the optimal solution to the linear program is not an integer solution,
and a fractional solution doesn’t really make sense in the context of the problem. (Sorry—I
didn’t intend for this to happen.) We can ask Maple to find the optimal integer solution
by using assume=nonnegint instead of assume=nonnegative as an option to LPSolve. It
turns out that we also have to increase the default depth limit for the search process. When
we do this, we get the following result:

> LPSolve(profit(C,T,L,B),constraints,’maximize’,

assume=nonnegint,depthlimit=7);[
2922, [B = 52, C = 52, L = 101, T = 26]

]
Hence, in order to maximize profit, LFI should produce 52 benches, 52 chairs, 101 lounges,
and 26 tables, which will produce a profit of $2922.

3. Find an extreme point of the feasible region of the following linear program.

maximize x1 − 2x2 + x3

subject to 3x1 + 3x2 − x3 − 2x4 ≤ 90

x1 + 5x3 ≥ 20

−4x1 − x2 + x3 − x4 = 6

x2 − 2x3 + x4 ≤ 40

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

. Solution. An extreme point of the feasible region is a basic feasible solution, so that is
what we are after in this problem. One approach is to perform Phase I of the two-phase
simplex algorithm in order to get a basic feasible solution. We don’t care about the objective
function, so we don’t need an objective row in our tableau (only the artificial objective row).

x1 x2 x3 x4 s1 p2 a2 a3 s4 −ξ RHS

3 1 −6 1 0 1 0 0 0 1 −26

3 3 −1 −2 1 0 0 0 0 0 90
1 0 5 0 0 −1 1 0 0 0 20
−4 −1 1 −1 0 0 0 1 0 0 6

0 1 −2 1 0 0 0 0 1 0 40
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Pivot on the 5 in the x3 column:

x1 x2 x3 x4 s1 p2 a2 a3 s4 −ξ RHS

21/5 1 0 1 0 −1/5 6/5 0 0 1 −2

16/5 3 0 −2 1 −1/5 1/5 0 0 0 94
1/5 0 1 0 0 −1/5 1/5 0 0 0 4

−21/5 −1 0 −1 0 1/5 −1/5 1 0 0 2
2/5 1 0 1 0 −2/5 2/5 0 1 0 48

Pivot on the 1/5 in the p2 column:

x1 x2 x3 x4 s1 p2 a2 a3 s4 −ξ RHS

0 0 0 0 0 0 1 1 0 1 0

−1 2 0 −3 1 0 0 1 0 0 96
−4 −1 1 −1 0 0 0 1 0 0 6
−21 −5 0 −5 0 1 −1 5 0 0 10
−8 −1 0 −1 0 0 0 2 1 0 52

All entries in the artificial objective row are nonnegative, so Phase I is complete. The
artificial objective value is 0, so Phase I was successful. All artificial variables are nonbasic,
so we have a basic feasible solution, which is x1 = 0, x2 = 0, x3 = 6, x4 = 0.

Another approach is to ask Maple to optimize the constant function 0 subject to the
given constraints.

> restart;

> with(Optimization);

[ImportMPS , Interactive,LPSolve,LSSolve,Maximize,Minimize,NLPSolve,

QPSolve]

> constraints:=[3*x1+3*x2-x3-2*x4<=90,x1+5*x3>=20,-4*x1-x2+x3-x4=6,

x2-2*x3+x4<=40];

constraints := [3 x1 +3 x2−x3−2 x4 ≤ 90, 20 ≤ x1 +5 x3 ,−4 x1−x2 +x3−x4 = 6,

x2 − 2x3 + x4 ≤ 40]

> LPSolve(0,constraints,assume=nonnegative);[
0., [x1 = 0., x2 = 0., x3 = 6., x4 = 0.]

]
So Maple also produces the basic feasible solution x1 = 0, x2 = 0, x3 = 6, x4 = 0.

Look at the x2 column in the tableau at the end of Phase I: it is a nonbasic column
with a zero in the artificial objective row and a positive entry below. This means that we
can pivot on that column to get another basic feasible solution. If we do this, we find the
other extreme point of the feasible region, which is x1 = 0, x2 = 48, x3 = 54, x4 = 0.
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4. Consider a project consisting of several activities, each having a usual time and a set of
immediate prerequisites. Some of the activities can be sped up; these activities additionally
have a crash time and a per-unit speedup cost. (This is the kind of problem we considered
when we discussed the critical path method.) Suppose that the overall project needs to be
sped up to meet a deadline, and it is desired to do so at minimum total speedup cost. Is it
true that only the critical activities (under the usual times) are candidates to be sped up?
If so, explain why. If not, give a counterexample.

. Solution. No, activities that are not critical under the usual times may also be candidates
to be sped up. For example:

Immediate Usual time Crash time
Activity prerequisites (days) (days)

A — 2 1
B — 3 1

The CPM network for this project is shown below, along with values calculated from the
usual times: earliest times (written in green above the nodes), latest times (written in red
below the nodes), and floats (written in blue below the arcs). The critical path under the
usual times is highlighted in yellow.

0

0

0

1

2

3

2

3

3

3

3

3

A: [1
, 2

]

1

B: [1, 3]
0

1

0

In this project, only activity B is critical under the usual times. But if the project is to be
sped up to meet a deadline of 1 day, then both A and B must be sped up.

5. An important communications line is to be built between locations s and t in a dangerous,
disaster-prone area. The line cannot be built directly; it will need to be built as a sequence
of links joining intermediate points a, b, . . . , g. The following table shows the estimated
probabilities of failure of a link built between pairs of points. (Not all pairs of points are
possible locations for a communications link; impossible locations are indicated with a dash.)
If any link fails, then the entire communications line fails. Determine a route for the line
that minimizes the probability of failure.

s a b c d e f g t

s — 1.5% — — — — 3.0% 4.0% —
a 1.5% — — — 5.0% — 2.0% — —
b — — — 6.0% 8.0% — — — 0.5%
c — — 6.0% — — 2.0% 3.5% 7.0% —
d — 5.0% 8.0% — — — 2.5% — —
e — — — 2.0% — — — 5.5% 5.0%
f 3.0% 2.0% — 3.5% 2.5% — — 1.0% —
g 4.0% — — 7.0% — 5.5% 1.0% — —
t — — 0.5% — — 5.0% — — —
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. Solution. If the communications line is built using k links, and the probabilities of failure
of those links are p1, p2, . . . , pk, respectively, then the probability that the line does not fail
is

k∏
i=1

(1− pi),

assuming that the events of link failure are mutually independent. We aim to maximize this
quantity, which we can do by maximizing its logarithm:

log

[ k∏
i=1

(1− pi)
]

=

k∑
i=1

log(1− pi).

Since 0 < pi < 1 for all i, the value of log(1− pi) will be negative, so equivalently we aim to
minimize the positive sum

k∑
i=1

[−log(1− pi)].

Therefore, what we are seeking is a minimum-cost path (i.e., a “shortest” path) from s to t,
where the cost of each arc (i, j) is −log(1− pij).

So we modify the cost table, replacing each probability p with (a rational approximation
of) −log(1− p):

s a b c d e f g t

s — 0.01511 — — — — 0.03046 0.04082 —
a 0.01511 — — — 0.05129 — 0.02020 — —
b — — — 0.06188 0.08338 — — — 0.00501
c — — 0.06188 — — 0.02020 0.03563 0.07257 —
d — 0.05129 0.08338 — — — 0.02532 — —
e — — — 0.02020 — — — 0.05657 0.05129
f 0.03046 0.02020 — 0.03563 0.02532 — — 0.01005 —
g 0.04082 — — 0.07257 — 0.05657 0.01005 — —
t — — 0.00501 — — 0.05129 — — —

Note that because these probabilities are rather close to zero, these costs are not too far
from the probabilities themselves. This is a consequence of the fact that log(1 + x) ≈ x for
x ≈ 0, which comes from the Maclaurin series for log(1 + x). So it’s not totally invalid to
use the probabilities themselves as the costs.

Our goal, then, is to find a shortest path from s to t in the following graph.
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One approach is to use Dijkstra’s algorithm. The iterations of Dijkstra’s algorithm are
shown in the figures below. In each figure, the edge weights are circled, the vertex labels
(denoting the tentative distance from s) are shown in red, the current set W of vertices
whose distances from s have definitely been determined is outlined in light blue, and the
vertex x outside W with the smallest vertex label is boxed in green.
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Now all vertices are included in W , so the labels give the shortest distance from s
for each vertex. To find a shortest path from s to any vertex, we identify the admissible
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edges, which are those edges whose weight equals the difference of the vertex labels at their
endpoints. The admissible edges are shown as double green lines in the figure below.
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From this figure, we see that the shortest path from s to t is s–f–c–b–t. The cost of this
path in the graph is 0.13298, which is the negative of the logarithm of the probability that
the corresponding communications line does not fail; so the probability of failure of this line
is 1− e−0.13298 ≈ 12.45%.

Another approach is to formulate a linear program to find the shortest path from s
to t in the graph. The node-arc LP formulation is shown below. For each edge (i, j) in the
graph, there are two variables fij and fji denoting the flow from i to j and from j to i,
respectively. (Recall that the node-arc LP formulation for the shortest path is based on a
directed graph. The graph here is undirected, so flow can pass through an edge in either
direction.) The flow-balance constraints enforce the conditions that the net outflow at every
node must be 0, except at node s where it is 1 and at node t where it is −1. The objective
function is the cost of the flow.

minimize
∑

edges (i,j)

[−log(1− pij)](fij + fji)

subject to fsa + fsf + fsg − fas − ffs − fgs = 1

fas + fad + faf − fsa − fda − ffa = 0

fbc + fbd + fbt − fcb − fdb − ftb = 0

fcb + fce + fcf + fcg − fbc − fec − ffc − fgc = 0

fda + fdb + fdf − fad − fbd − fad = 0

fec + feg + fet − fce − fge − fte = 0

ffs + ffa + ffc + ffd + ffg − fsf − faf − fcf − fdf − fgf = 0

fgs + fgc + fge + fgf − fsg − fcg − feg − ffg = 0

ftb + fte − fbt − fet = −1

all variables nonnegative.

The following Maple worksheet solves this linear program.

> restart;

> with(Optimization);

[ImportMPS , Interactive,LPSolve,LSSolve,Maximize,Minimize,NLPSolve,

QPSolve]
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> cost:=(sa,sf,sg,as,ad,af,bc,bd,bt,cb,ce,cf,cg,da,db,df,ec,eg,et,

fs,fa,fc,fd,fg,gs,gc,ge,gf,tb,te)->-log(1-0.015)*(sa+as)

-log(1-0.03)*(sf+fs)-log(1-0.04)*(sg+gs)-log(1-0.05)*(ad+da)

-log(1-0.02)*(af+fa)-log(1-0.06)*(bc+cb)-log(1-0.08)*(bd+db)

-log(1-0.005)*(bt+tb)-log(1-0.02)*(ce+ec)-log(1-0.035)*(cf+fc)

-log(1-0.07)*(cg+gc)-log(1-0.025)*(df+fd)-log(1-0.055)*(eg+ge)

-log(1-0.05)*(et+te)-log(1-0.01)*(fg+gf);

cost := (sa, sf , sg , as, ad , af , bc, bd , bt , cb, ce, cf , cg , da, db, df , ec, eg , et , fs, fa, fc,

fd , fg , gs, gc, ge, gf , tb, te)→ −log(0.985) (sa + as)− log(0.97) (sf + fs)

− log(0.96) (sg+gs)−log(0.95) (ad+da)−log(0.98) (af +fa)−log(0.94) (bc+cb)

− log(0.92) (bd + db)− log(0.995) (bt + tb)− log(0.98) (ce + ec)

− log(0.965) (cf + fc)− log(0.93) (cg + gc)− log(0.975) (df + fd)

− log(0.945) (eg + ge)− log(0.95) (et + te)− log(0.99) (fg + gf )

> flow:=[sa+sf+sg-as-fs-gs=1,as+ad+af-sa-da-fa=0,

bc+bd+bt-cb-db-tb=0,cb+ce+cf+cg-bc-ec-fc-gc=0,

da+db+df-ad-bd-fd=0,ec+eg+et-ce-ge-te=0,

fs+fa+fc+fd+fg-sf-af-cf-df-gf=0,gs+gc+ge+gf-sg-cg-eg-fg=0,

tb+te-bt-et=-1];

flow := [sa + sf + sg − as − fs − gs = 1, as + ad + af − sa − da − fa = 0,

bc + bd + bt − cb − db − tb = 0, cb + ce + cf + cg − bc − ec − fc − gc = 0,

da + db + df − ad − bd − fd = 0, ec + eg + et − ce − ge − te = 0,

fs + fa + fc + fd + fg − sf − af − cf − df − gf = 0,

gs + gc + ge + gf − sg − cg − eg − fg = 0, tb + te − bt − et = −1]

> LPSolve(cost(sa,sf,sg,as,ad,af,bc,bd,bt,cb,ce,cf,cg,da,db,df,ec,

eg,et,fs,fa,fc,fd,fg,gs,gc,ge,gf,tb,te),flow,

assume=nonnegative);[
0.132974330420616, [ad = 0., af = 1.37679669262847 10−9, as = 0., bc = 0.,

bd = 0., bt = 0.999999998623202, cb = 0.999999995525409, ce = 0., cf = 0.,

cg = 0., da = 0., db = 0., df = 0., ec = 0., eg = 0.,

et = 3.44199262913333 10−10, fa = 0., fc = 0.999999997934804,

fd = 2.40939493661442 10−9, fg = 0., fs = 0., gc = 0.,

ge = 6.88398525826666 10−10, gf = 0., gs = 0., sa = 0.,

sf = 0.999999998967403, sg = 0., tb = 0., te = 0.]
]

The optimal values of all variables are either 0 or 1 (although floating-point roundoff error
is evident in the Maple output), and the shortest path is indicated by the variables that
have the value 1 in the optimal solution: fsf , ffc, fcb, and fbt, which correspond to the
route s–f–c–b–t. The optimal objective value reported by Maple agrees with the value we
determined via Dijkstra’s algorithm.
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