Section 8.7, exercise 9. Find the Maclaurin series for $f(x)=\sinh x$ using the definition of a Maclaurin series. Also find the associated radius of convergence.

Hyperbolic sine (written sinh) and hyperbolic cosine (written cosh) are defined as follows:

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x=\frac{e^{x}+e^{-x}}{2}
$$

It is easy to check that these functions are derivatives of each other:

$$
\frac{d}{d x} \sinh x=\cosh x, \quad \frac{d}{d x} \cosh x=\sinh x .
$$

Furthermore, we have

$$
\sinh 0=\frac{e^{0}-e^{-0}}{2}=0, \quad \cosh 0=\frac{e^{0}+e^{-0}}{2}=1 .
$$

By definition, the Maclaurin series for a function $f(x)$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
$$

We make a table of the derivatives of $f(x)=\sinh x$ and these derivatives evaluated at 0 .

n	$f^{(n)}(x)$	$f^{(n)}(0)$
0	$\sinh x$	0
1	$\cosh x$	1
2	$\sinh x$	0
3	$\cosh x$	1
4	$\sinh x$	0
5	$\cosh x$	1
\vdots	\vdots	\vdots

So we see that the Maclaurin series for $f(x)=\sinh x$ is

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} & =\frac{0}{0!} x^{0}+\frac{1}{1!} x^{1}+\frac{0}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{0}{4!} x^{4}+\frac{1}{5!} x^{5}+\cdots \\
& =\frac{x^{1}}{1!}+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

To find the radius of convergence, we can use the Ratio Test. Let $a_{n}=x^{2 n+1} /(2 n+1)$!. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{x^{2(n+1)+1}}{[2(n+1)+1]!} \cdot \frac{(2 n+1)!}{x^{2 n+1}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+3}}{x^{2 n+1}} \cdot \frac{(2 n+1)!}{(2 n+3)!}\right| \\
& =\lim _{n \rightarrow \infty} \frac{x^{2}}{(2 n+3)(2 n+2)} \\
& =x^{2} \cdot \lim _{n \rightarrow \infty} \frac{1}{(2 n+3)(2 n+2)} \\
& =x^{2} \cdot 0 \\
& =0
\end{aligned}
$$

which is certainly less than 1 (regardless of the value of x), so the Ratio Test implies that the series converges for all x. Hence the radius of convergence is $R=\infty$.

Section 8.7, exercise 21. Prove that the series obtained in Exercise 9 represents $\sinh x$ for all x.

We first establish some facts about the functions $\sinh x$ and $\cosh x$. The graphs of $y=\sinh x, y=\cosh x$, and $y=-\cosh x$ are shown at the right. These graphs show several important properties of these functions.

First, we note that $\cosh x$ is always positive. This is easy to see from the definition,

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}
$$

because the exponential function e^{x} is always positive (even for negative values of x).

Second, we see that $\cosh x$ is decreasing for $x<0$ and increasing for $x>0$. In particular, since $\cosh x$ is continuous (because e^{x} is continuous), this means that $\cosh x$ is minimized at $x=0$, with a minimum value of $\cosh 0=1$. To verify this, we note that e^{x} is a strictly increasing function, so we have $e^{x}<e^{y}$ if $x<y$. So, if x is positive (so $-x<x$), we have $e^{-x}<e^{x}$, so

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}>0
$$

Therefore, $\cosh x$ has a positive derivative for $x>0$, which means it is increasing there. Similarly, if x is negative (so $-x>x$), we have $e^{-x}>e^{x}$, so

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}<0
$$

which means $\cosh x$ is decreasing for $x<0$.
Third, we see that $\sinh x$ is always between $-\cosh x$ and $\cosh x$. To verify this, we first note that $e^{x}>0$ and $e^{-x}>0$ for all x, so we have

$$
\frac{-e^{x}-e^{-x}}{2}<\frac{e^{x}-e^{-x}}{2}<\frac{e^{x}+e^{-x}}{2}
$$

which is to say,

$$
-\cosh x<\sinh x<\cosh x
$$

In other words, $|\sinh x|<\cosh x$.

Now that we have these facts about $\sinh x$ and $\cosh x$, we can prove that the Maclaurin series we found in Exercise 9 converges to $f(x)=\sinh x$ for all x. By Taylor's Formula, the remainder term in the Maclaurin series is

$$
R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!} x^{n+1}
$$

where z is some number between 0 and x. (Note, however, that z depends on n.) We aim to prove that this remainder goes to 0 as $n \rightarrow \infty$, which will show that the Maclaurin series converges to $f(x)=\sinh x$.

Depending on whether n is even or odd, the $(n+1)$ st derivative $f^{(n+1)}(z)$ is either $\cosh z$ or $\sinh z$. In either case, however, we have $\left|f^{(n+1)}(z)\right| \leq \cosh z$, because $|\sinh z|<\cosh z$ (as shown above) and $|\cosh z| \leq \cosh z$ (since $\cosh z$ is always positive). Also, since z is closer to 0 than x is, we
have $\cosh z<\cosh x$ (because the function $\cosh x$ is decreasing for $x<0$ and increasing for $x>0$). So we see that

$$
0 \leq\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(z)}{(n+1)!} x^{n+1}\right| \leq\left|\frac{\cosh z}{(n+1)!} x^{n+1}\right|<\left|\frac{\cosh x}{(n+1)!} x^{n+1}\right|
$$

Now $\lim _{n \rightarrow \infty} 0=0$, and

$$
\lim _{n \rightarrow \infty}\left|\frac{\cosh x}{(n+1)!} x^{n+1}\right|=(\cosh x) \cdot \lim _{n \rightarrow \infty} \frac{|x|^{n+1}}{(n+1)!}=(\cosh x) \cdot 0=0
$$

(Here we used the fact that $\lim _{n \rightarrow \infty} x^{n} / n!=0$ for every real number x, as shown at the bottom of page 461 in the textbook.) So, by the Squeeze Theorem, we have

$$
\lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=0
$$

This implies that

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

(see Theorem 6 on page 414 of the textbook), which was what we wanted to show.
Therefore, for every x, the remainder term in the Maclaurin series goes to 0 as $n \rightarrow \infty$, so the series converges to $\sinh x$.

