
Section 8.7, exercise 9. Find the Maclaurin series for f(x) = sinhx using the definition of a
Maclaurin series. Also find the associated radius of convergence.

Hyperbolic sine (written sinh) and hyperbolic cosine (written cosh) are defined as follows:

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
.

It is easy to check that these functions are derivatives of each other:

d

dx
sinhx = coshx,

d

dx
coshx = sinhx.

Furthermore, we have

sinh 0 =
e0 − e−0

2
= 0, cosh 0 =

e0 + e−0

2
= 1.

By definition, the Maclaurin series for a function f(x) is

∞∑
n=0

f (n)(0)

n!
xn = f(0) +

f ′(0)

1!
x +

f ′′(0)

2!
x2 + · · · .

We make a table of the derivatives of f(x) = sinhx and these derivatives evaluated at 0.

n f (n)(x) f (n)(0)

0 sinhx 0
1 coshx 1
2 sinhx 0
3 coshx 1
4 sinhx 0
5 coshx 1
...

...
...

So we see that the Maclaurin series for f(x) = sinhx is

∞∑
n=0

f (n)(0)

n!
xn =

0

0!
x0 +

1

1!
x1 +

0

2!
x2 +

1

3!
x3 +

0

4!
x4 +

1

5!
x5 + · · ·

=
x1

1!
+

x3

3!
+

x5

5!
+ · · ·

=
∞∑

n=0

x2n+1

(2n + 1)!
.

To find the radius of convergence, we can use the Ratio Test. Let an = x2n+1/(2n + 1)!. Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ x2(n+1)+1

[2(n + 1) + 1]!
· (2n + 1)!

x2n+1

∣∣∣∣
= lim

n→∞

∣∣∣∣x2n+3

x2n+1
· (2n + 1)!

(2n + 3)!

∣∣∣∣
= lim

n→∞

x2

(2n + 3)(2n + 2)

= x2 · lim
n→∞

1

(2n + 3)(2n + 2)

= x2 · 0
= 0,

which is certainly less than 1 (regardless of the value of x), so the Ratio Test implies that the series
converges for all x. Hence the radius of convergence is R =∞.
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Section 8.7, exercise 21. Prove that the series obtained in Exercise 9 represents sinhx for all x.
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y = sinh x

y = cosh x

y = −cosh x

We first establish some facts about the functions sinhx
and coshx. The graphs of y = sinhx, y = coshx, and
y = − coshx are shown at the right. These graphs
show several important properties of these functions.

First, we note that coshx is always positive. This
is easy to see from the definition,

coshx =
ex + e−x

2
,

because the exponential function ex is always positive
(even for negative values of x).

Second, we see that coshx is decreasing for x < 0
and increasing for x > 0. In particular, since coshx is
continuous (because ex is continuous), this means that
coshx is minimized at x = 0, with a minimum value of
cosh 0 = 1. To verify this, we note that ex is a strictly
increasing function, so we have ex < ey if x < y. So,
if x is positive (so −x < x), we have e−x < ex, so

sinhx =
ex − e−x

2
> 0.

Therefore, coshx has a positive derivative for x > 0,
which means it is increasing there. Similarly, if x is
negative (so −x > x), we have e−x > ex, so

sinhx =
ex − e−x

2
< 0,

which means coshx is decreasing for x < 0.
Third, we see that sinhx is always between − coshx and coshx. To verify this, we first note

that ex > 0 and e−x > 0 for all x, so we have

−ex − e−x

2
<

ex − e−x

2
<

ex + e−x

2
,

which is to say,
− coshx < sinhx < coshx.

In other words, |sinhx| < coshx.

Now that we have these facts about sinhx and coshx, we can prove that the Maclaurin series we
found in Exercise 9 converges to f(x) = sinhx for all x. By Taylor’s Formula, the remainder term
in the Maclaurin series is

Rn(x) =
f (n+1)(z)

(n + 1)!
xn+1,

where z is some number between 0 and x. (Note, however, that z depends on n.) We aim to
prove that this remainder goes to 0 as n→∞, which will show that the Maclaurin series converges
to f(x) = sinhx.

Depending on whether n is even or odd, the (n + 1)st derivative f (n+1)(z) is either cosh z or
sinh z. In either case, however, we have |f (n+1)(z)| ≤ cosh z, because |sinh z| < cosh z (as shown
above) and |cosh z| ≤ cosh z (since cosh z is always positive). Also, since z is closer to 0 than x is, we

Page 2



have cosh z < coshx (because the function coshx is decreasing for x < 0 and increasing for x > 0).
So we see that

0 ≤ |Rn(x)| =
∣∣∣∣f (n+1)(z)

(n + 1)!
xn+1

∣∣∣∣ ≤ ∣∣∣∣ cosh z

(n + 1)!
xn+1

∣∣∣∣ < ∣∣∣∣ coshx

(n + 1)!
xn+1

∣∣∣∣ .
Now limn→∞ 0 = 0, and

lim
n→∞

∣∣∣∣ coshx

(n + 1)!
xn+1

∣∣∣∣ = (coshx) · lim
n→∞

|x|n+1

(n + 1)!
= (coshx) · 0 = 0.

(Here we used the fact that limn→∞ xn/n! = 0 for every real number x, as shown at the bottom of
page 461 in the textbook.) So, by the Squeeze Theorem, we have

lim
n→∞

|Rn(x)| = 0.

This implies that
lim

n→∞
Rn(x) = 0

(see Theorem 6 on page 414 of the textbook), which was what we wanted to show.
Therefore, for every x, the remainder term in the Maclaurin series goes to 0 as n→∞, so the

series converges to sinhx.
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